高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地面加热与高原低涡和对流系统相互作用的一次个例研究

田珊儒 段安民 王子谦 巩远发

田珊儒, 段安民, 王子谦, 巩远发. 地面加热与高原低涡和对流系统相互作用的一次个例研究[J]. 大气科学, 2015, 39(1): 125-136. doi: 10.3878/j.issn.1006-9895.1404.13311
引用本文: 田珊儒, 段安民, 王子谦, 巩远发. 地面加热与高原低涡和对流系统相互作用的一次个例研究[J]. 大气科学, 2015, 39(1): 125-136. doi: 10.3878/j.issn.1006-9895.1404.13311
Tian Shanru, Duan Anmin, Wang Ziqian, Gong Yuanfa. Interaction of Surface Heating, the Tibetan Plateau Vortex, and a Convective System: A Case Study[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(1): 125-136. doi: 10.3878/j.issn.1006-9895.1404.13311
Citation: Tian Shanru, Duan Anmin, Wang Ziqian, Gong Yuanfa. Interaction of Surface Heating, the Tibetan Plateau Vortex, and a Convective System: A Case Study[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(1): 125-136. doi: 10.3878/j.issn.1006-9895.1404.13311

地面加热与高原低涡和对流系统相互作用的一次个例研究

doi: 10.3878/j.issn.1006-9895.1404.13311
基金项目: 国家自然科学基金项目41175070,国家重点基础研究发展计划(973计划)项目91337216,财政部/科技部公益性行业(气象)科研专项GYHY201006014

Interaction of Surface Heating, the Tibetan Plateau Vortex, and a Convective System: A Case Study

  • 摘要: 本文利用NCEP-FNL再分析资料、FY-2E卫星TBB数据、CMORPH降水资料,通过热力学和动力学诊断分析并结合中尺度天气模式WRF的数值模拟试验,研究了2012年6月下旬青藏高原一次东移对流系统的生成发展机制以及与地面加热相互作用的物理过程。结果表明,高原中西部地面感热加热是高原低涡生成、发展和东移的主导因子。而东移的高原低涡通过加强偏北、偏南气流形成的辐合带,进而触发高原东部对流系统的生成。同时,高原对流系统降水产生的凝结潜热释放也加强了东移高原低涡的强度,这表明地面加热与高原低涡和对流系统之间存在一种正反馈机制。数值试验结果进一步表明,除了适当的背景环流外,高原地面潜热通量能够增强中低层大气的不稳定性,为对流系统的发生发展积累能量,造成有利于对流降水的热力环境。
  • [1] 曹勇. 2012. 2012年6月大气环流和天气分析 [J]. 气象, 38 (9): 1155- 1160. Cao Yong. 2012. Analysis of the June 2012 atmospheric circulation and weather [J]. Meteorological Monthly (in Chinese), 38(9): 1155-1160.
    [2] Chen F, Mitchell K, Schaake J, et al. 1996. Modeling of land surface evaporation by four schemes and comparison with FIFE observations [J]. J. Geophys. Res., 101 (D3): 7251-7268.
    [3] 陈功, 李国平, 李跃清. 2012. 近20年来青藏高原低涡的研究进展 [J]. 气象科技进展, 2 (2): 6-12. Chen Gong, Li Guoping, Li Yueqing. 2012. The research progress of the Tibetan Plateau vortex in recent twenty years [J]. Advances in Meteorological Science and Technology (in Chinese), 2 (2): 6-12.
    [4] Duan A M, Wu G X. 2008. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: Observations [J]. J. Climate, 21: 3149-3164.
    [5] 段安民, 吴国雄. 2003. 7月青藏高原大气热源空间型及其与东亚大气环流和降水的相关研究 [J]. 气象学报, 61 (4): 447-456. Daun Anmin, Wu Guoxiong. 2003. The main spatial heating patterns over the Tibetan Plateau in July and the corresponding distributions of circulation and precipitation over Eastern Asia [J]. Acta Meteorologica Sinica (in Chinese), 61 (4): 447-456.
    [6] Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model [J]. J. Atmos. Sci., 46 (20): 3077-3107.
    [7] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteo. Soc., 77 (3): 437-470.
    [8] 傅慎明, 孙建华, 赵思雄, 等. 2011. 梅雨期青藏高原东移对流系统影响江淮流域降水的研究 [J]. 气象学报, 69 (4): 581-600. Fu Shenming, Sun Jianhua, Zhao Sixiong, et al. 2011. A study of the impacts of the eastward propagation of convective cloud systems over the Tibetan Plateau on the rainfall of the Yangtze-Huai River basin [J]. Acta Meteorologica Sinica (in Chinese), 69 (4): 581-600.
    [9] Hong S Y, Lim J J. 2006. The WRF single-moment 6-class microphysics scheme (WSM6) [J]. J. Korean Meteor. Soc., 42: 129-151.
    [10] Hong Song-You, Noh Yign, Duhia Jimy. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Mon. Wea. Rev., 134: 2318-2341.
    [11] Hoskins B J. 1997. A potential vorticity view of synoptic development [J]. Meteor. Appl., 4 (4): 325-334.
    [12] 江吉喜, 范梅珠. 2002. 夏季青藏高原上的对流云和中尺度对流系统 [J]. 大气科学, 26 (2): 263-270. Jiang Jixi, Fan Meizhu. 2002. Convective clouds and mesoscale convective systems over the Tibetan Plateau in summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26 (2): 263-270.
    [13] Kain J S, Fritsch J M. 1990. A one-dimensional entraining/detraining plume model and its application in convective parameterization [J]. J. Atmos. Sci., 47: 2784-2802.
    [14] Li Y D, Wang Y, Song Y, et al. 2008. Characteristics of summer convective systems initiated over the Tibetan Plateau. Part I: Origin, track, development, and precipitation [J]. Journal of Applied Meteorology and Climatology, 47 (10): 2769-2965.
    [15] 李栋梁, 柳苗, 王慧. 2008. 高原东部凝结潜热及其对北半球500 hPa高度场和我国汛期降水的影响 [J]. 高原气象, 27 (4): 713-718. Li Dongliang, Liu Miao, Wang Hui. 2008. Latent heat series over the east part of QXP in rainy season and its impact on 500hPa height fields of northern hemisphere and precipitation in China flood season [J]. Plateau Meteorology (in Chinese), 27 (4): 713-718.
    [16] 李国平, 赵邦杰, 杨锦青. 2002. 地面感热对青藏高原低涡流场结构及发展的作用 [J]. 大气科学, 26 (4): 559-525. Li Guoping, Zhao Bangjie, Yang Jinqing. 2002. A dynamical study of the role of surface sensible heating in the structure and intensification of the Tibetan Plateau vortices [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26 (4): 559-525.
    [17] 李国平, 刘红武. 2006. 地面热源强迫对青藏高原低涡作用的动力学分析 [J]. 热带气象学报, 22 (6): 632-637. Li Guoping, Liu Hongwu. 2006. A dynamical study of the role of surface heating on the Tibetan Plateau vortices [J]. Journal of Tropical Meteorology (in Chinese), 22 (6): 632-637.
    [18] 卢萍, 宇如聪. 2008. 地表潜热通量对四川地区降水影响的数值分析 [J]. 高原山地气象研究, 28 (3): 1-7. Lu Ping, Yu Rucong. 2008. Numerical analysis on the impacts of surface latent heat flux transport on Sichuan rainfall process [J]. Plateau and Mountain Meteorology Research (in Chinese), 28 (3): 1-7.
    [19] 卢萍, 宇如聪, 周天军. 2009. 四川盆地西部暴雨对初始水汽条件敏感性的模拟研究 [J]. 大气科学, 33 (2): 241-250. Lu Ping, Yu Rucong, Zhou Tianjun. 2009. Numerical simulation on the sensitivity of heavy rainfall over the western Sichuan basin to initial water vapor condition [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33 (2): 241-250.
    [20] 罗四维, 杨洋, 吕世华. 1991. 一次青藏高原夏季低涡的诊断分析研究 [J]. 高原气象, 10 (1): 1-12. Luo Siwei, Yangyang, Lü Shihua. 1991. Diagnostic analyses of a summer vortex over Qinghai-Xizang plateau for 29—30 June 1979 [J]. Plateau Meteorology (in Chinese), 10 (1): 1-12.
    [21] 罗四维, 杨洋. 1992. 一次青藏高原夏季低涡的数值模拟研究 [J]. 高原气象, 11 (1): 39-48. Luo Siwei, Yangyang. 1992. A case study on numerical simulation of summer vortex over Qinghai-Xizang (Tibetan) plateau [J]. Plateau Meteorology (in Chinese), 11 (1): 39-48.
    [22] Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave [J]. J. Geophys. Res., 102 (D14): 16663-16682.
    [23] Zhang P F, Li G P, Fu X H, et al. 2014. Clustering of Tibetan Plateau vortices by 10-30-day intraseasonal oscillation* [J]. Mon. Wea. Rev., 142: 290-300.
    [24] 青藏高原气象科研拉萨会战组. 1981. 夏半年青藏高原500 hPa低涡切变线研究 [M]. 北京: 科学出版社, 120-155. Lhasa Group for Tibetan Plateau Meteorology Research. 1981. Research of 500 hPa Shear Lines over the Tibetan Plateau in Summer (in Chinese) [M]. Beijing: Science Press, 120-155.
    [25] Sugimoto S, Ueno K. 2010. Formation of mesoscale convective systems over the eastern Tibetan Plateau affected by plateau-scale heating contrasts [J]. J. Geophys. Res., 115 (D16), doi: 10.1029/2009JD013609.
    [26] Tao S Y, Ding Y H. 1981. Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China [J]. Bull. Amer. Meteor. Soc., 62: 23-30.
    [27] Wang W, Kou Y-H, Warner T T. 1993. A diabatically driven mesoscale vortex in the Lee of the Tibetan Plateau [J]. Mon. Wea. Rev., 121: 2542-2561.
    [28] Yasunari T, Miwa T. 2006. Convective cloud systems over the Tibetan Plateau and their impact on meso-scale disturbances in the Meiyu/Baiu frontal zone [J]. J. Meteor. Soc. Japan, 84 (4): 783-803.
    [29] 王斌, 李跃清. 2011. 近10多年南亚高压活动特征及其影响的研究进展 [J]. 高原山地气象研究, 31 (2): 75-80. Wang Bin, Li Yueqing. 2011. Advances in researches of South Asia High activities and its influences on summer drought and flood in China in recent More than 10 years [J]. Plateau and Mountain Meteorology Research (in Chinese), 31 (2): 75-80.
    [30] 王美蓉, 周顺武, 段安民. 2012. 近30 年青藏高原中东部大气热源变化趋势: 观测与再分析资料对比 [J]. 科学通报, 57 (2-3): 178-188. Wang Meirong, Zhou Shunwu, Duan Anmin. 2012. Trend in the atmospheric heat source over the central and eastern Tibetan Plateau during recent decades: Comparison of observations and reanalysis data [J]. Chin. Sci. Bull., 57 (5): 548-557.
    [31] Wang Z Q, Duan A M, Wu G X. 2013. Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in East China: Case studies using the WRF model [J]. Climate Dyn., 42 (11-12): 2885-2898.
    [32] 吴海英, 寿绍文. 2002. 位涡扰动与气旋的发展 [J]. 南京气象学院学报, 25 (4): 510-518. Wu Haiying, Shou Shaowen. 2002. Potential vorticity disturbance and cyclone development [J]. Journal of Nanjing Institute of Meteorology, 25 (4): 510-518.
    [33] 向朔育, 李跃清. 2011. 高原低涡研究和TRMM卫星资料应用的相关进展 [J]. 高原山地气象研究, 31 (1): 74-78. Xiang Shuoyu, Li Yueqing. 2011. Progress in Plateau low vortex and applications of TRMM satellite [J]. Plateau and Mountain Meteorology Research (in Chinese), 31 (1): 74-78.
    [34] Yanai M, Esbensen S, Chu J H. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budget [J]. J. Atmos. Sci., 30 (4): 611-627.
    [35] Ye T Z. 1981. Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood [J]. Bulletin American Meteorological Society, 62: 14-19.
    [36] 叶笃正. 1979. 青藏高原气象学 [M]. 北京: 科学出版社, 7-8. Ye Duzheng. 1979. Tibetan Plateau Meteorology (in Chinese)[M]. Beijing: Science Press, 7-8.
    [37] 郁淑华, 高文良. 2006. 高原低涡移出高原的观测事实分析 [J]. 气象学报, 64 (3): 393-399. Yu Shuhau, Gao Wenliang. 2006. Observational analysis on the movement of vortices before/after moving out the Tibetan Plateau [J]. Plateau Meteorology (in Chinese), 64 (3): 393-399.
    [38] 郁淑华, 高文良, 顾清源. 2007. 近年来影响我国东部洪涝的高原东移涡环流场特征分析 [J]. 高原气象, 26 (3): 466-475. Yu Shuhua, Gao Wenliang, Gu Qingyuan. 2007. The middle-upper circulation analyses of the plateau vortex moving out of plateau and influencing flood in East China in recent years [J]. Plateau Meteorology (in Chinese), 26 (3): 466-475.
    [39] 张顺利, 陶诗言, 张庆云, 等. 2002. 长江中下游致洪暴雨的多尺度条件 [J]. 科学通报, 47 (6): 467-473. Zhang Shunli, Tao Shiyan, Zhang Qingyun, et al. 2002. Multiple-domension weather condition of heavy rain over the middle and lower reaches of the Yangtze River [J]. Chinese Science Bulletin (in Chinese), 47 (6): 467-473.
    [40] Zhu G F, Chen S J. 2003a. Analysis and comparison of mesocale convective systems over the Qinghai-Xizang (Tibetan) Plateau [J]. Advances in Atmospheric Sciences, 20 (3): 311-322.
    [41] Zhu G F, Chen S J. 2003b. A numerical case study on a mesoscale convective system over the Qinghai-Xizang (Tibetan) Plateau [J]. Advances in Atmospheric Sciences, 20 (3): 385-397.
    [42] 竺夏英, 刘屹岷, 吴国雄. 2012. 夏季青藏高原多种地表感热通量资料的评估 [J]. 中国科学: 地球科学, 42 (7): 1104-1112. Zhu Xiaying, Liu Yimin, Wu Guoxiong. 2012. An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets [J]. Science China Earth Sciences, 55 (5): 779-786.
  • 加载中
计量
  • 文章访问数:  3541
  • HTML全文浏览量:  21
  • PDF下载量:  3083
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-05
  • 修回日期:  2014-04-15

目录

    /

    返回文章
    返回