高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二流—四流球谐函数谱展开累加辐射传输方案在全球气候模式中的应用

张华 卢鹏 荆现文

张华, 卢鹏, 荆现文. 二流—四流球谐函数谱展开累加辐射传输方案在全球气候模式中的应用[J]. 大气科学, 2015, 39(1): 137-144. doi: 10.3878/j.issn.1006-9895.1404.13316
引用本文: 张华, 卢鹏, 荆现文. 二流—四流球谐函数谱展开累加辐射传输方案在全球气候模式中的应用[J]. 大气科学, 2015, 39(1): 137-144. doi: 10.3878/j.issn.1006-9895.1404.13316
Zhang Hua, LU Peng, Jing Xianwen. Application of Two-Four Stream Spherical Harmonic Expansion Approximation in a Global Climate Model[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(1): 137-144. doi: 10.3878/j.issn.1006-9895.1404.13316
Citation: Zhang Hua, LU Peng, Jing Xianwen. Application of Two-Four Stream Spherical Harmonic Expansion Approximation in a Global Climate Model[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(1): 137-144. doi: 10.3878/j.issn.1006-9895.1404.13316

二流—四流球谐函数谱展开累加辐射传输方案在全球气候模式中的应用

doi: 10.3878/j.issn.1006-9895.1404.13316
基金项目: 国家自然科学基金项目41375080,科技部公益性行业(气象)科研专项项目GYHY201406023,国家重点基础研究发展计划项目2011CB403405

Application of Two-Four Stream Spherical Harmonic Expansion Approximation in a Global Climate Model

  • 摘要: 本文首先构建了二流—四流球谐函数谱展开累加辐射传输的新方案,然后将其应用于国家气候中心第二代大气环流模式BCC_AGCM2.0.1的新版本中,并与模式中原有的Eddington累加方案进行了比较。由于新方案本质上是单层Eddington近似方案在四流上的推广。因此新方案在计算精度上要优于原方案。通过在全球气候模式中的应用与比较,本文发现新方案对气候模拟会产生比较大的影响。在晴空条件下,新方案计算的在南纬30°到60°区间、北大西洋东北部以及非洲北部的撒哈拉沙漠区域的地表向下年平均短波辐射通量要小于原方案结果,最大差别可以达到3.5 W/m2;同时,新方案计算的在南纬30°到60°区间和北大西洋东北部的大气顶向上年平均短波辐射通量要大于原方案结果,最大差别达到3 W/m2。在有云大气情况下,新方案计算的地表向下年平均短波辐射通量要小于原方案结果,并随着纬度的增加,新旧两种方案的差别逐渐变大,在南北极时达到最大5.5 W/m2;同时,新方案计算的在赤道区域的大气顶的年平均短波向上辐射通量要小于原方案结果,最大差别为2.5 W/m2,而在南北纬30°到60°区间,新方案计算的在大气顶的年平均短波向上辐射通量则要大于原方案结果,最大差别为1.5 W/m2。新方案计算的年平均短波加热率普遍高于原方案结果,特别是在800 hPa到地表之间的低层大气以及50 hPa到100 hPa的高层大气,最大差别可达0.03 K/d。因此,新方案有助于改善全球气候模式中普遍存在的赤道平流层中下层的温度冷偏差现象。
  • [1] Ayash T, Gong S L, Jia C Q. 2008. Implementing the delta-four-stream approximation for solar radiation computations in an atmosphere general circulation model [J]. J. Atmos. Sci., 65 (7): 2448-2457.
    [2] Barker H W, Stephens G L, Partain P T, et al. 2003. Assessing 1D atmospheric solar radiative transfer models: Interpretation and handling of unresolved clouds [J]. J. Climate, 16 (16): 2676-2699.
    [3] 陈洪滨, 卞建春, 吕达仁. 2006. 上对流层—下平流层交换过程研究的进展与展望 [J]. 大气科学, 30 (5): 813-820. Chen H B, Bian J C, Lü D R. 2006. Advances and prospects in the study of stratosphere exchange [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(5): 813-820.
    [4] Chou M D. 1992. A solar radiation model for use in climate studies [J]. J. Atmos. Sci., 49 (9): 762-772.
    [5] Coakley J A Jr, Cess R D, Yurevich F B. 1983. The effect of tropospheric aerosols on the Earth's radiation budget: A parameterization for climate models [J]. J. Atmos. Sci., 40 (1): 116-138.
    [6] 丁守国, 赵春生, 石广玉, 等. 2005. 近20年全球总云量变化趋势分析 [J]. 应用气象学报, 16 (5): 670-677. Ding S G, Zhao C S, Shi G Y, et al. 2005. Analysis of global total cloud amount variation over the past 20 years [J]. Journal of Applied Meteorological Science (in Chinese), 16(5): 670-677.
    [7] Forster P M, Fomichev V I, Rozanov E, et al. 2011. Evaluation of radiation scheme performance within chemistry climate models [J]. J. Geophys. Res., 116 (D10): 10302, doi: 10.1029/2010JD015361.
    [8] Fouquart Y, Bonnel B, Ramaswamy V. 1991. Intercomparing shortwave radiation codes for climate studies [J]. J. Geophys. Res., 96 (D5): 8955- 8968.
    [9] Gong S L, Barrie L A, Lazare M. 2002. Canadian Aerosol Module (CAM): A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 2. Global sea-salt aerosol and its budgets [J]. J. Geophys. Res., 107 (D24): AAC 13-1-AAC 13-14, doi: 10.1029/2001JD002004.
    [10] Gong S L, Barrie L A, Blanchet J P, et al. 2003. Canadian Aerosol Module: A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 1. Module development [J]. J. Geophys. Res., 108 (D1): AAC 3-1-AAC 3-16, doi: 10.1029/2001JD002002.
    [11] Halthore R N, Crisp D, Schwartz S E, et al. 2005. Intercomparison of shortwave radiative transfer codes and measurements [J]. J. Geophys. Res., 110(D11): D11206, doi: 10.1029/2004JD005293.
    [12] Hurrell J W, and Trenberth K E. 1999. Global sea surface temperature analyses: multiple problemsand their implications for climate analysis, modeling, and reanalysis [J] Bull. Amer. Met. Soc., 80 (12):2661-2678
    [13] 荆现文, 张华. 2012. McICA云—辐射方案在国家气候中心全球气候模式中的应用与评估 [J]. 大气科学, 36 (5): 945-958. Jing X W, Zhang H. 2012. Application and evaluation of McICA Cloud-Radiation framework in the AGCM of the National Climate Center [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(5): 945-958.
    [14] Jing X W, and Zhang H. 2013. Application and evaluation of McICA scheme in BCC_AGCM2.0.1 [C]. AIP Conf. Proc. 1531, 756, doi: 10.1063/1.4804880.
    [15] Kay M J, Box M A, Trautmann T, et al. 2001. Actinic flux and net flux calculations in radiative transfer—A comparative study of computational efficiency [J]. J. Atmos. Sci., 58 (24): 3752-3761.
    [16] Li J, Ramaswamy V. 1996. Four-stream spherical harmonic expansion approximation for solar radiative transfer [J]. J. Atmos. Sci., 53 (8): 1174-1186.
    [17] Liou K N, Fu Q, Ackerman T P. 1988. A simple formulation of the delta-four-stream approximation for radiative transfer paramterization [J]. J. Atmos. Sci., 45 (13): 1940-1947.
    [18] Liu M, Nachamkin J E, Westphal D L. 2009. On the improvement of COAMPS weather forecasts using an advanced radiative transfer model [J]. Wea. Forecasting, 24 (1): 286-306.
    [19] Randles C A, Kinne S, Myhre G, et al. 2013. Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: Results from the AeroCom Radiative Transfer Experiment [J]. Atmos. Chem. Phys., 13: 2347-2379.
    [20] Scinocca J F, McFarlane N A, Lazare M, et al. 2008. Technical Note: The CCCma third generation AGCM and its extension into the middle atmosphere [J]. Atmos. Chem. Phys., 8, 7055-7074, doi: 10.5194/acp-8-7055-2008.
    [21] Shibata K, Uchiyama A. 1992. Accuracy of the delta-four-stream approximation in inhomogeneous scattering atmospheres [J]. J. Meteor. Soc. Japan, 70 (6): 1097-1109.
    [22] Shi G Y, 1981. An accurate calculation and representation of the infrared transmission function of the atmospheric constituents [D]. Ph.D. dissertation, Dept. of Science, Tohoku University of Japan, 71pp.
    [23] 石广玉. 2007. 大气辐射学 [M]. 北京: 科学出版社, 1. Shi Guangyu. 2007. Atmospheric Radiation (in Chinese) [M]. Beijing: Science Press, 1.
    [24] Wu T W, Yu R C, Zhang F. 2008. A modified dynamic framework for the atmospheric spectral model and its application [J]. J. Atmos. Sci., 65 (7): 2235-2253.
    [25] Wu T W, Yu R C, Zhang F, et al. 2010. The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day [J]. Climate Dyn., 34 (1): 123-147.
    [26] Zhang F, Li J. 2013. Doubling-adding method for delta-four-tream spherical harmonic expansion approximation in radiative transfer parameterization [J]. J. Atmos. Sci., 70: 3084-3101.
    [27] Zhang F, Shen Z P, Li J N, et al. 2013. Analytical delta-four-stream doubling-adding method for radiative transfer parameterizations [J]. J. Atmos. Sci., 70 (3): 794-808.
    [28] 张华. 1999. 非均匀路径相关K-分布方法的研究 [D]. 中国科学院大气物理研究所博士学位论文, 169pp. Zhang Hua. 1999. On the study of a new correlated K-distribution method for nongray gaseous absorption in the inhomogeneous scattering atmosphere [D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences, 169pp.
    [29] Zhang H, Nakajima T, Shi G Y, et al. 2003. An optimal approach to overlapping bands with correlated k distribution method and its application to radiative calculations [J]. J. Geophys. Res., 108(D20): 4641, doi: 10.1029/2002JD003358.
    [30] Zhang H, Shi G Y, Nakajima T, et al. 2006a. The effects of the choice of the k-interval number on radiative calculations [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 98 (1): 31-43.
    [31] Zhang H, Suzuki T, Nakajima T, et al. 2006b. Effects of band division on radiative calculations [J]. Optical Engineering, 45 (1): 016002.
    [32] Zhang H, Wang Z L, Wang Z Z, et al. 2012. Simulation of direct radiative forcing of aerosols and their effects on East Asia climate using an interactive GCM-aerosol coupled system [J]. Climate Dyn., 38 (7): 1675-1693.
    [33] Zhang H, Jing X W, Li J N. 2014. Application and evaluation of a new radiation code under McICA scheme in BCC_AGCM2.0.1 [J]. Geosci. Model Dev., 7: 737-754.
  • 加载中
计量
  • 文章访问数:  2463
  • HTML全文浏览量:  37
  • PDF下载量:  2720
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-16
  • 修回日期:  2014-05-07

目录

    /

    返回文章
    返回