高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华北一次积层混合云微物理和降水特征的数值模拟与飞机观测对比研究

朱士超 郭学良

朱士超, 郭学良. 华北一次积层混合云微物理和降水特征的数值模拟与飞机观测对比研究[J]. 大气科学, 2015, 39(2): 370-385. doi: 10.3878/j.issn.1006-9895.1405.14117
引用本文: 朱士超, 郭学良. 华北一次积层混合云微物理和降水特征的数值模拟与飞机观测对比研究[J]. 大气科学, 2015, 39(2): 370-385. doi: 10.3878/j.issn.1006-9895.1405.14117
ZHU Shichao, GUO Xueliang. A Case Study Comparing WRF-Model-Simulated Cloud Microphysics and Precipitation with Aircraft Measurements in Stratiform Clouds with Embedded Convection in Northern China[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(2): 370-385. doi: 10.3878/j.issn.1006-9895.1405.14117
Citation: ZHU Shichao, GUO Xueliang. A Case Study Comparing WRF-Model-Simulated Cloud Microphysics and Precipitation with Aircraft Measurements in Stratiform Clouds with Embedded Convection in Northern China[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(2): 370-385. doi: 10.3878/j.issn.1006-9895.1405.14117

华北一次积层混合云微物理和降水特征的数值模拟与飞机观测对比研究

doi: 10.3878/j.issn.1006-9895.1405.14117
基金项目: 国家科技支撑计划项目2006BAC12B03, 公益性行业(气象)科研专项GYHY200806001、GYHY201306040, 江苏省普通高校研究生科研创新计划资助项目CXZZ13_0508

A Case Study Comparing WRF-Model-Simulated Cloud Microphysics and Precipitation with Aircraft Measurements in Stratiform Clouds with Embedded Convection in Northern China

  • 摘要: 为考察云数值模式中的云物理方案和对实例云物理和降水过程的模拟能力, 本文将中尺度数值模式(WRF)模拟的华北地区一次积层混合云的微物理结构特征、降水过程与国家科技支撑计划重点项目环北京地区三架飞机联合云探测实验数据以及雷达、地面降水观测数据进行了深入的比较和验证研究。结果表明:WRF 模式能够较好地模拟出此次积层混合云的云系演变、雷达回波和降水分布特征。对比结果是:(1)模式模拟的云中液态水浓度(LWC)与飞机观测值具有较好的一致性, 在3℃ 层, 飞机观测的LWC 最大值为0.8 g m-3, 模拟的飞机路径上的LWC 最大值为0.78 g m-3, 两者接近;在-8℃ 层, 飞机观测LWC 最大值为1.5 g m-3, 模拟的飞机路径上的LWC 最大值为1.1 g m-3, 模拟值偏小;在-5℃ 层以下, 模式能够准确模拟云中水凝物的垂直分布, 包括融化层的分布, 模拟的水凝物质量浓度与实测吻合。而对固态水, 在-6~-10℃, 由于模式中雪粒子凇附增长过程较大, 聚合过程发生的高度偏高, 导致模式模拟的固态水凝物质量浓度高于实测值, 说明模式在雪粒子增长过程的处理方面有待进一步改进。(2)在云粒子谱参数方面, 在-8℃ 层, 由于模拟的雪粒子质量浓度偏高, 所以模式计算的粒子谱的截距和斜率都小于飞机观测值, 模拟偏小;在-5℃ 层, 两者比较接近;在3℃ 层, 由于云中小粒子浓度逐渐减少, 所以模式计算的斜率接近观测值, 但是截距大于观测值, 说明模式降水粒子谱参数的描述方案有待改进, 模式中谱形参数μ 不应一直设置为0, 而是应该随着高度变化而变化。
  • [1] Caniaux G, Redelsperger J L, Lafore J P. 1994. A numerical study of the stratiform region of a fast-moving squall line. Part I:General description and water and heat budgets [J]. J. Atmos. Sci., 51 (14):2046-2074.
    [2] Carbone R E, Bohne A R. 1975. Cellular snow generation—A doppler radar study [J]. J. Atmos. Sci., 32 (7):1384-1394. 陈宝君, 李子华, 刘吉成, 等. 1998. 三类降水云雨滴谱分布模式 [J]. 气象学报, 56 (4):506-512. Chen B J, Li Z H, Liu J C, et al. 1998.
    [3] Model of raindrop size distribution in three types of precipitation [J].Acta Meteorologica Sinica (in Chinese), 56 (4):506-512.
    [4] Colle B A, Mass C F. 2000. The 5-9 February 1996 flooding event over the pacific northwest:Sensitivity studies and evaluation of the MM5 precipitation forecasts [J]. Mon. Wea. Rev., 128 (3):593-617.
    [5] Colle B A, Westrick K J, Mass C F. 1999. Evaluation of MM5 and Eta-10 precipitation forecasts over the Pacific Northwest during the cool season [J]. Wea. Forecasting, 14 (2):137-154.
    [6] Evans A G, Locatelli J D, Stoelinga M T, et al. 2005. The IMPROVE-1 storm of 1-2 February 2001. Part II:Cloud structures and the growth of precipitation [J]. J. Atmos. Sci., 62 (10):3456-3473.
    [7] Field P R, Hogan R J, Brown P R A, et al. 2005. Parametrization of ice-particle size distributions for mid-latitude stratiform cloud [J]. Quart.J. Roy. Meteor. Soc., 131 (609):1997-2017.
    [8] Garvert M F, Woods C P, Colle B A, et al. 2005. The 13-14 December 2001 IMPROVE-2 event. Part II:Comparisons of MM5 model simulations of clouds and precipitation with observations [J]. J. Atmos. Sci., 62 (10):3520-3534.
    [9] Herzegh P H, Hobbs P V. 1980. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. II:Warm-frontal clouds [J]. J. Atmos. Sci., 37:597-611.
    [10] Herzegh P H, Hobbs P V. 1981. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. IV:Vertical air motions and microphysical structures of prefrontal surge clouds and cold-frontal clouds [J]. J. Atmos. Sci., 38 (8):1771-1784.
    [11] Heymsfield A J, Bansemer A, Field P R, et al. 2002. Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds:Results from in situ observations in TRMM field campaigns [J]. J. Atmos. Sci., 59 (24):3457-3491.
    [12] Heymsfield A J, Bansemer A, Schmitt C, et al. 2004a. Effective ice particle densities derived from aircraft data [J]. J. Atmos. Sci., 61 (9):982-1003.
    [13] Heymsfield A J, Schmitt C G, Bansemer A, et al. 2004b. Effective ice particle densities for cold anvil cirrus [J]. Geophys. Res. Lett., 31 (2):L02101.
    [14] Hobbs P V, Locatelli J D. 1978. Rainbands, precipitation cores and generating cells in a cyclonic storm [J]. J. Atmos. Sci., 35 (2):230-241.
    [15] Hobbs P V, Matejka T J, Herzegh P H, et al. 1980. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. I:A case study of a cold front [J]. J. Atmos. Sci., 37 (3):568-596.
    [16] Hobbs P V, Rangno A L. 1990. Rapid development of high ice particle concentrations in small polar maritime cumuliform clouds [J]. J. Atmos.
    [17] Sci., 47 (22):2710-2722. 洪延超, 黄美元, 王首平. 1984. 梅雨云系中亮带不均匀性的理论探讨 [J]. 大气科学, 8 (2):197-204. Hong Y C, Huang M Y, Wang S P. 1984. A theoretical study on inhomogeneity of bright band in Mei-yu frontal cloud system [J]. Scientia Atmospherica Sinica (in Chinese), 8 (2):197- 204.
    [18] Hou T J, Lei H C, Hu Z X, et al. 2013. Observations and modeling of ice water content in a mixed-phase cloud system [J]. Atmos. Oceanic Sci.Lett., 6 (4):210-215.
    [19] Houze R A Jr, Hobbs P V, Herzegh P H, et al. 1979. Size distributions of precipitation particles in frontal clouds [J]. J. Atmos. Sci., 36 (1):156- 162.
    [20] Houze R A Jr, Rutledge S A, Matejka T J, et al. 1981. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. III:Air motions and precipitation growth in a warm-frontal rainband [J]. J. Atmos. Sci., 38 (3):639-649. 胡朝霞, 雷恒池, 郭学良, 等. 2007. 降水性层状云系结构和降水过程的 观测个例与模拟研究 [J]. 大气科学, 31 (3):425-439. Hu Z X, Lei HC, Guo X L, et al. 2007. Studies of the structure of a stratiform cloud and the physical processes of precipitation formation [J]. Chinese Journal ofAtmospheric Sciences (in Chinese), 31 (3):425-439. 黄美元, 洪延超. 1984. 在梅雨锋云系内层状云回波结构及其降水的不 均匀性 [J]. 气象学报, 42 (1):81-87. Huang M Y, Hong Y C. 1984.
    [21] The inhomogeneous features of the precipitation and the echo structure of stratiform cloud in Mei-yu frontal cloud system [J]. Acta MeteorologicaSinica (in Chinese), 42 (1):81-87.
    [22] Korolev A V, Bailey M P, Hallett J, et al. 2004. Laboratory and in situ observation of deposition growth of frozen drops [J]. J. Appl. Meteor., 43 (4):612-622.
    [23] Lang S E, Tao W K, Zeng X P, et al. 2011. Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme:Tropical convective systems [J]. J. Atmos. Sci., 68 (10):2306-2320.
    [24] Lawson R P, Stewart R E, Angus L J. 1998. Observations and numerical simulations of the origin and development of very large snowflakes [J]. J.Atmos. Sci., 55 (21):3209-3229.
    [25] Lawson R P, Stewart R E, Strapp J W, et al. 1993. Aircraft observations of the origin and growth of very large snowflakes [J]. Geophys. Res. Lett., 20 (1):53-56.
    [26] Lawson R P, Zuidema P. 2009. Aircraft microphysical and surface-based radar observations of summertime arctic clouds [J]. J. Atmos. Sci., 66 (12):3505-3529.
    [27] Lu G X, Guo X L. 2012. Distribution and origin of aerosol and its transform relationship with CCN derived from the spring multi-aircraft measurements of Beijing Cloud Experiment (BCE) [J]. Chin. Sci. Bull., 57 (19):2460-2469.
    [28] Marshall J S. 1953. Precipitation trajectories and patterns [J]. J. Meteor., 10 (1):25-29.
    [29] Matejka T J, Houze R A Jr, Hobbs P V. 1980. Microphysics and dynamics of clouds associated with mesoscale rainbands in extratropical cyclones [J].Quart. J. Roy. Meteor. Soc., 106 (447):29-56.
    [30] McFarquhar G M, Black R A. 2004. Observations of particle size and phase in tropical cyclones:Implications for mesoscale modeling of microphysical processes [J]. J. Atmos. Sci., 61 (4):422-439.
    [31] Molthan A L, Petersen W A, Nesbitt S W, et al. 2010. Evaluating the snow crystal size distribution and density assumptions within a single-moment microphysics scheme [J]. Mon. Wea. Rev., 138 (11):4254-4267.
    [32] Morrison H, Gettelman A. 2008. A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I:Description and numerical tests [J]. J. Climate, 21 (15):3642-3659.
    [33] Ono A. 1969. The shape and riming properties of ice crystals in natural clouds [J]. J. Atmos. Sci., 26 (1):138-147.
    [34] Plank V G, Atlas D, Paulsen W H. 1955. The nature and detectability of clouds and precipitation as determined by 1.25-centimeter radar [J]. J.Meteor., 12 (4):358-378.
    [35] Redelsperger J L, Brown P R A, Guichard F, et al. 2000. A GCSS model intercomparison for a tropical squall line observed during TOGACOARE.I:Cloud-resolving models [J]. Quart. J. Roy. Meteor. Soc., 126 (564):823-863.
    [36] Reisner J, Rasmussen R M, Bruintjes R T, et al. 1998. Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model [J]. Quart. J. Roy. Meteor. Soc., 124 (548):1071-1107.
    [37] Rutledge S A, Hobbs P. 1983. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII:A model for the “seeder-feeder” process in warm-frontal rainbands [J]. J.Atmos. Sci., 40 (5):1185-1206.
    [38] Stoelinga M T, Hobbs P V, Mass C F, et al. 2003. Improvement of microphysical parameterization through observational verification experiment [J]. Bull. Amer. Meteor. Soc., 84 (12):1807-1826.
    [39] Syrett W J, Albrecht B A, Clothiaux E E. 1995. Vertical cloud structure in a midlatitude cyclone from a 94-GHz radar [J]. Mon. Wea. Rev., 123 (12):3393-3407.
    [40] Takahashi T, Fukuta N. 1988. Supercooled cloud tunnel studies on the growth of snow crystals between ―4℃ and ―20℃ [J]. J. Meteor. Soc.Japan, 66:841-855.
    [41] Tao W K, Simpson J, Soong S T. 1991. Numerical simulation of a subtropical squall line over the Taiwan Strait [J]. Mon. Wea. Rev., 119:2699-2723. 陶玥, 齐彦斌, 洪延超. 2009. 霰粒子下落速度对云系及降水发展影响 的数值研究 [J]. 气象学报, 67 (3):370-381. Tao Y, Qi Y B, Hong Y C. 2009. Numerical simulations of the influence of the graupel fall terminal velocity on cloud system and precipitation development [J]. Acta Meteorologica Sinica (in Chinese), 67 (3):370-381.
    [42] Trier S B, Skamarock W C, LeMone M A, et al. 1996. Structure and evolution of the 22 February 1993 TOGA COARE squall line:Numerical simulations [J]. J. Atmos. Sci., 53 (20):2861-2886.
    [43] Wexler R, Atlas D. 1959. Precipitation generating cells [J]. J. Meteor., 16 (3):327-332.
    [44] Woods C P, Stoelinga M T, Locatelli J D. 2008. Size spectra of snow particles measured in wintertime precipitation in the Pacific Northwest [J].J. Atmos. Sci., 65 (1):189-205.
    [45] Xu K M, Randall D A. 2001. Explicit simulation of cumulus ensembles with the GATE phase III data:Budgets of a composite easterly wave [J]. Quart.J. Roy. Meteor. Soc., 127(575):1571-1591.
    [46] 杨洁帆, 雷恒池, 胡朝霞. 2010. 一次层状云降水过程微物理机制的数 值模拟研究 [J]. 大气科学, 34 (2):275-289. Yang J F, Lei H C, Hu ZX. 2010. Simulation of the stratiform cloud precipitation microphysical mechanism with the numerical model [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34 (2):275-289.
    [47] 朱士超, 郭学良. 2014. 华北积层混合云中冰晶形状、分布与增长过程 的飞机探测研究 [J]. 气象学报, 72 (2):366-389, doi:10.11676/ qxxb2014.013. Zhu S C, Guo X L. 2014. Ice crystal habits, distribution and growth process in stratiform clouds with embedded convection inNorth China:Aircraft measurements [J]. Acta Meteorologica Sinica (in Chinese), 72 (2):366-389.
  • 加载中
计量
  • 文章访问数:  3394
  • HTML全文浏览量:  29
  • PDF下载量:  1838
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-22
  • 修回日期:  2014-05-23

目录

    /

    返回文章
    返回