高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ENSO预测的目标观测敏感区在热带太平洋海温的多模式集合预报中的应用

智协飞 张璟 段晚锁

智协飞, 张璟, 段晚锁. ENSO预测的目标观测敏感区在热带太平洋海温的多模式集合预报中的应用[J]. 大气科学, 2015, 39(4): 767-776. doi: 10.3878/j.issn.1006-9895.1408.14181
引用本文: 智协飞, 张璟, 段晚锁. ENSO预测的目标观测敏感区在热带太平洋海温的多模式集合预报中的应用[J]. 大气科学, 2015, 39(4): 767-776. doi: 10.3878/j.issn.1006-9895.1408.14181
ZHI Xiefei, ZHANG Jing, DUAN Wansuo. Application of Sensitive Area for Target Observation Associated with El Niño-Southern Oscillation Predictions to Multimodel Ensemble Forecast of the Tropical Pacific Sea Surface Temperature[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(4): 767-776. doi: 10.3878/j.issn.1006-9895.1408.14181
Citation: ZHI Xiefei, ZHANG Jing, DUAN Wansuo. Application of Sensitive Area for Target Observation Associated with El Niño-Southern Oscillation Predictions to Multimodel Ensemble Forecast of the Tropical Pacific Sea Surface Temperature[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(4): 767-776. doi: 10.3878/j.issn.1006-9895.1408.14181

ENSO预测的目标观测敏感区在热带太平洋海温的多模式集合预报中的应用

doi: 10.3878/j.issn.1006-9895.1408.14181
基金项目: 国家重点基础研究发展计划(973计划)项目2012CB955200, 江苏省普通高校研究生科研创新计划项目CXZZ13_0502, 江苏高校优势学科建设工程资助项目(PAPD)

Application of Sensitive Area for Target Observation Associated with El Niño-Southern Oscillation Predictions to Multimodel Ensemble Forecast of the Tropical Pacific Sea Surface Temperature

  • 摘要: 本文将ENSO预测的目标观测敏感区与多模式集合预报方法相结合, 提出了一种能够有效提高预报技巧且又具有较小计算成本的多模式集合预报方法。该方法在目标观测敏感区内采用模式不等权的多模式超级集合预报方法(SUP), 而在其他区域采用相对简单的等权的多模式消除偏差集合平均方法(BREM)。利用CMIP5中15个气候系统模式的工业革命前参照试验(pi-Control)数据, 针对热带太平洋海温的长期演变开展了理想预报试验。将新集合预报方法与现有的多模式集合预报方法进行了比较。结果表明, 在所考察的预报期内(即1~20年), 新集合预报方法与整个热带太平洋区域使用SUP方法具有相当的预报技巧, 但前者的计算成本明显小于后者, 计算时间仅为后者的1/4。可见, 新方法是一个具有较高预报技巧且计算成本较小的多模式集合预报方法。同时, 其较高的预报技巧强调了热带太平洋SST预测对ENSO目标观测敏感区内的模式误差也是极端敏感的, 也正因如此, 多模式集合预报方法才能够有效过滤模式误差的影响, 具有较高的预报技巧。
  • [1] Cartwright T J, Krishnamurti T N. 2007. Warm season mesoscale superensemble precipitation forecasts in the southeastern United States [J]. Wea. Forecasting, 22 (4): 873-886.
    [2] Chakraborty A, Krishnamurti T N. 2006. Improved seasonal climate forecasts of the south Asian summer monsoon using a suite of 13 coupled ocean-atmosphere models [J]. Mon. Wea. Rev., 134 (6): 1697-1721.
    [3] Danard M B, Holl M M, Clark J R. 1968. Fields by correlation assembly—A numerical analysis technique [J]. Mon. Wea. Rev., 96 (3): 141-149.
    [4] Duan W S, Liu X C, Zhu K Y, et al. 2009. Exploring the initial errors that cause a significant “spring predictability barrier” for El Niño events [J]. J. Geophys. Res., 114( C4), doi: 10.1029/2008JC004925.
    [5] Duan W S, Wei C. 2013. The ‘spring predictability barrier' for ENSO predictions and its possible mechanism: Results from a fully coupled model [J]. Int. J. Climatol., 33 (5): 1280-1292, doi: 10.1002/joc.3513.
    [6] Duan W S, Zhao P. 2014. Nonlinear forcing singular vector-type tendency errors of the Zebiak-Cane model and its effect on ENSO predictability [J]. Climate Dyn. doi: 10.1007/s00382-014-2369-0.
    [7] 龚道溢, 王绍武. 1999. 近百年ENSO对全球陆地及中国降水的影响 [J]. 科学通报, 44 (3): 315-320. Gong D Y, Wang S W. 1999. ENSO influence on global land and precipitation in China over the past century [J]. Chinese Science Bulletin (in Chinese), 44 (3): 315-320.
    [8] Jin E K, Kinter III J L, Wang B, et al. 2008. Current status of ENSO prediction skill in coupled ocean-atmosphere models [J]. Climate Dyn., 31 (6): 647-664.
    [9] Johnson B, Kumar V, Krishnamurti T N. 2013. Rainfall anomaly prediction using statistical downscaling in a multimodel superensemble over tropical South America [J]. Climate Dyn., 43 (7-8): 1731-1752, doi: 10.1007/s00382-013-2001-8.
    [10] Kang I S, Yoo J H. 2006. Examination of multi-model ensemble seasonal prediction methods using a simple climate system [J]. Climate Dyn., 26 (2-3): 285-294.
    [11] Ke Z J, Zhang P Q, Dong W J, et al. 2009. A new way to improve seasonal prediction by diagnosing and correcting the intermodel systematic errors [J]. Mon. Wea. Rev., 137 (6): 1898-1907.
    [12] Kharin V V, Zwiers F W. 2002. Climate predictions with multimodel ensembles [J]. J. Climate, 15 (7): 793-799.
    [13] Krishnamurti T N, Kishtawal C M, Timothy E L, et al. 1999. Improved weather and seasonal climate forecasts from multimodel superensemble [J]. Science, 285 (5433): 1548-1550.
    [14] Krishnamurti T N, Kishtawal C M, Shin D W, et al. 2000a. Improving tropical precipitation forecasts from a multianalysis superensemble [J]. J. Climate, 13 (23): 4217-4227.
    [15] Krishnamurti T N, Kishtawal C M, Zhang Z. 2000b. Multimodel ensemble forecasts for weather and seasonal climate [J]. J. Climate, 13 (23): 4197-4216.
    [16] Krishnamurti T N, Chakraborty A, Krishnamurti R, et al. 2006. Seasonal prediction of sea surface temperature anomalies using a suite of 13 coupled atmosphere-ocean models [J]. J. Climate, 19 (23): 6069-6088.
    [17] Krishnamurti T N, Gnanaseelan C, Chakraborty A. 2007. Prediction of the diurnal change using a multimodel superensemble. Part I: Precipitation [J]. Mon. Wea. Rev., 135 (10): 3613-3632.
    [18] Krishnamurti T N, Mishra A K, Chakraborty A. 2009. Improving global model precipitation forecasts over India using downscaling and the FSU superensemble. Part I: 1-5 day forecasts [J]. Mon. Wea. Rev., 137 (9): 2713-2735.
    [19] Krishnamurti T N, Kumar V. 2012. Improved seasonal precipitation forecasts for the Asian monsoon using 16 atmosphere-ocean coupled models. Part II: Anomaly [J]. J. Climate, 25 (1): 65-88.
    [20] Lorenz E N, Emanuel K A. 1998. Optimal sites for supplementary weather observations: Simulation with a small model [J]. J. Atmos. Sci., 55 (3): 399-414.
    [21] Luo J J, Masson S, Behera S K, et al. 2008. Extended ENSO predictions using a fully coupled ocean-atmosphere model [J]. J. Climate, 21 (1): 84-93.
    [22] Min Y M, Kryjov V N, Park C K. 2009. A Probabilistic multimodel ensemble approach to seasonal prediction [J]. Wea. Forecasting, 24 (3): 812-828.
    [23] Mu M, Xu H, Duan W S. 2007. A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model [J]. Geophys. Res. Lett., 34 (3), doi: 10.1029/2006GL027412.
    [24] Mu M. 2013. Methods, current status, and prospect of targeted observation [J]. Science China Earth Sciences, 56 (12): 1997-2005.
    [25] Mu M, Yu Y S, Xu H, et al. 2013. Similarities between optimal precursors for ENSO events and optimally growing initial errors in El Niño predictions [J]. Theor. Appl. Climatol., 115 (3-4): 461-469, doi: 10.1007/s00704-013-0909-x.
    [26] Peng P T, Kumar A, van den Dool H, et al. 2002. An analysis of multimodel ensemble predictions for seasonal climate anomalies [J]. J. Geophys. Res., 107 (D23): ACL 18-1-ACL 18-12, doi: 10.1029/2002JD002712.
    [27] Sakai K, Kawamura R. 2009. Remote response of the East Asian winter monsoon to tropical forcing related to El Niño-Southern Oscillation [J]. J. Geophys Res., 114 (D6), doi: 10.1029/2008JD010824.
    [28] Thompson P D. 1977. How to improve accuracy by combining independent forecasts [J]. Mon. Wea. Rev., 105 (2): 228-229.
    [29] Trenberth K E, Caron J M, Stepaniak D P, et al. 2002. Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures [J]. J. Geophys. Res., 107 (D8): AAC 5-1-AAC 5-17, doi: 10.1029/2000JD000298.
    [30] van Oldenborgh G J, Doblas-Reyes F J, Wouters B, et al. 2012. Decadal prediction skill in a multi-model ensemble [J]. Climate Dyn., 38(7-8): 1263-1280.
    [31] Wang B, Wu R G, Fu X H. 2000. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? [J]. J. Climate, 13 (9): 1517-1536.
    [32] 杨学胜. 2001. 业务集合预报系统的现状及展望 [J]. 气象, 27 (6): 3-9. Yang X S. 2001. The new development and the outlook of the operational ensemble prediction system [J]. Meteorological Monthly (in Chinese), 27 (6): 3-9.
    [33] Yatagai A, Krishnamurti T N, Kumar V, et al. 2014. Use of APHRODITE rain Gauge-Based precipitation and TRMM 3B43 products for improving Asian monsoon seasonal precipitation forecasts by the superensemble method [J]. J. Climate, 27 (3): 1062-1069.
    [34] Yun W T, Stefanova L, Mitra A K, et al. 2005. A multi-model superensemble algorithm for seasonal climate prediction using DEMETER forecasts [J]. Tellus A, 57 (3): 280-289.
    [35] Zebiak S E, Cane M A. 1987. A model El Niño-Southern oscillation [J]. Mon. Wea. Rev., 115: 2262-2278.
    [36] 翟盘茂, 李晓燕, 任福民. 2003. 全球变化热门话题丛书——厄尔尼诺 [M]. 北京: 气象出版社. Zhai P M, Li X Y, Ren F M. 2003. Global Change—El Niño (in Chinese) [M]. Beijing: China Meteorological Press.
    [37] Zhang J, Duan W S, Zhi X F. 2014. Investigation of the initial errors that cause the “spring predictability barrier” for El Niño events by using CMIP5 model outputs [J]. Sci. China Earth Sci., doi: 10.1007/s11430-014-4994-1.
    [38] 张人禾, 周广庆, 巢纪平. 2003. ENSO动力学与预测 [J]. 大气科学, 27 (4): 674-688. Zhang R H, Zhou G Q, Chao J P. 2003. On ENSO dynamics and its prediction [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27 (4): 674-688.
    [39] 智协飞, 林春泽, 白永清, 等. 2009. 北半球中纬度地区地面气温的超级集合预报 [J]. 气象科学, 29 (5): 569-574. Zhi X F, Lin C Z, Bai Y Q, et al. 2009. Superensemble forecasts of the surface temperature in Northern Hemisphere middle latitudes [J]. Scientia Meteorologica Sinica (in Chinese), 29 (5): 569-574.
    [40] 智协飞, 伍清, 白永清, 等. 2010. 基于IPCC-AR4模式资料的地面气温超级集合预测 [J]. 气象科学, 30 (5): 708-714. Zhi X F, Wu Q, Bai Y Q, et al. 2010. The multimodel superensemble prediction of the surface temperature using the IPCC AR4 scenario runs [J]. Scientia Meteorologica Sinica (in Chinese), 30 (5): 708-714.
    [41] Zhi X F, Qi H X, Bai Y Q, et al. 2012. A comparison of three kinds of multimodel ensemble forecast techniques based on the TIGGE data [J]. Acta Meteor. Sinica, 26 (1): 41-51.
    [42] 智协飞, 季晓东, 张璟, 等. 2013. 基于TIGGE资料的地面气温和降水的多模式集成预报 [J]. 大气科学学报, 36 (3): 257-266. Zhi X F, Ji X D, Zhang J, et al. 2013. Multimodel ensemble forecasts of surface air temperature and precipitation using TIGGE datasets [J]. Trans. Atmos. Sci. (in Chinese), 36 (3): 257-266.
    [43] 周菲凡, 张贺. 2014. 基于CNOP方法的台风目标观测中三种敏感区确定方案的比较研究 [J]. 大气科学, 38 (2): 261-272, doi:10.3878/j.issn.1006-9895.2013.13129. Zhou F F, Zhang H. 2014. Study of the schemes based on CNOP method to identify sensitive areas for typhoon targeted observations [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38 (2): 261-272, doi:10.3878/j.issn.1006-9895. 2013.13129.
  • 加载中
计量
  • 文章访问数:  3065
  • HTML全文浏览量:  0
  • PDF下载量:  2431
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-07
  • 修回日期:  2014-08-29

目录

    /

    返回文章
    返回