高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全球变暖减缓期陆地地表气温变化特征和CMIP5多模式的未来情景预估

何金海 詹丰兴 祁莉 王迪

何金海, 詹丰兴, 祁莉, 王迪. 全球变暖减缓期陆地地表气温变化特征和CMIP5多模式的未来情景预估[J]. 大气科学, 2016, 40(1): 33-45. doi: 10.3878/j.issn.1006-9895.1409.14217
引用本文: 何金海, 詹丰兴, 祁莉, 王迪. 全球变暖减缓期陆地地表气温变化特征和CMIP5多模式的未来情景预估[J]. 大气科学, 2016, 40(1): 33-45. doi: 10.3878/j.issn.1006-9895.1409.14217
HE Jinhai, ZHAN Fengxing, QI Li, WANG Di. Evolution of Surface Temperature during Global Warming Hiatus Based on Observations and CMIP5 Simulations[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(1): 33-45. doi: 10.3878/j.issn.1006-9895.1409.14217
Citation: HE Jinhai, ZHAN Fengxing, QI Li, WANG Di. Evolution of Surface Temperature during Global Warming Hiatus Based on Observations and CMIP5 Simulations[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(1): 33-45. doi: 10.3878/j.issn.1006-9895.1409.14217

全球变暖减缓期陆地地表气温变化特征和CMIP5多模式的未来情景预估

doi: 10.3878/j.issn.1006-9895.1409.14217
基金项目: 国家自然科学基金项目41475086,国家自然科学基金重大研究计划项目91337216,长江学者和创新团队发展计划项目(PCSIRT),江苏高校优势学科建设工程资助项目(PAPD),江苏省高校青蓝工程

Evolution of Surface Temperature during Global Warming Hiatus Based on Observations and CMIP5 Simulations

  • 摘要: 2000年后全球气温的增温率显著下降,全球进入变暖减缓期.本文基于CRU(Climatic Research Unit) 观测资料,分析讨论了2000年后全球及欧亚中高纬度地区全球变暖的减缓特征,评估了CMIP5(Coupled Model Intercomparison Project Phase 5)试验多模式对全球变暖减缓的模拟及未来气温变化预估.结果表明,2000年后全球陆地平均地面气温的增温率大幅下降至0.14℃ (10 a)-1,仅为1976~1999年加速期增温率的一半.全球陆地13个区域中有9个地区的增温率小于2000年前,4个地区甚至出现了降温.其中以欧亚中高纬地区最为特殊.加速期(1976~1999年)增温率达到0.50℃ (10 a)-1,为全球陆地最大,2000年后陡降至-0.17℃ (10 a)-1,为全球最强降温区,为全球变暖的减缓贡献了49.13%.并且具有显著的季节依赖,减缓期冬季增温率下降了-2.68℃ (10 a)-1,而秋季升高了0.86℃ (10 a)-1,呈现反位相变化特征.CMIP5多模式计划中仅BCC-CSM1.1在RCP2.6情景下和MRI-ESM1模式在RCP8.5下的模拟较好地预估了全球及欧亚中高纬地区在2000年后增温率的下降以及欧亚中高纬秋、冬温度的反位相变化特征.BCC-CSM1.1在RCP2.6情景下预估欧亚中高纬地区2012年后温度距平保持在1.2℃左右,2020年后跃至2℃附近振荡.而MRI-ESM1在RCP8.5情景下预估的欧亚中高纬度温度在2030年前一直维持几乎为零的增温率,之后迅速升高.
  • [1] Cattiaux J, Vautard R, Cassou C, et al. 2010. Winter 2010 in Europe: A cold extreme in a warming climate [J]. Geophys. Res. Lett., 37 (20): L20704, doi: 10.1029/2010GL044613.
    [2] Cohen J, Barlow M, Saito K. 2009. Decadal fluctuations in planetary wave forcing modulate global warming in late boreal winter [J]. J. Climate, 22 (16): 4418-4426, doi: 10.1175/2009JCLI2931.1.
    [3] Cohen J, Furtado J C, Barlow M, et al. 2012. Asymmetric seasonal temperature trends [J]. Geophys. Res. Lett., 39 (4): L04705, doi: 10.1029/2011GL050582.
    [4] 丁一汇, 马晓青. 2007. 2004/2005年冬季强寒潮事件的等熵位涡分析 [J]. 气象学报, 65 (5): 695-707. Ding Yihui, Ma Xiaoqing. 2007. Analysis of isentropic potential vorticity for a strong cold wave in 2004/2005 winter [J]. Acta Meteorologica Sinica (in Chinese), 65 (5): 695-707, doi: 10.11676/qxxb2007.065.
    [5] Easterling D R, Michael M F. 2009. Is the climate warming or cooling? [J]. Geophys. Res. Lett., 36(8): L08706, doi: 10.1029/2009GL037810.
    [6] Fyfe J C, Gillett N P, Zwiers F W. 2013. Overestimated global warming over the past 20 years [J]. Nature Climate Change, 3 (9): 767-769, doi: 10.1038/nclimate1972.
    [7] 郭彦, 董文杰, 任福民, 等. 2013. CMIP5模式对中国年平均气温模拟及其与CMIP3模式的比较 [J]. 气候变化研究进展, 9 (3): 181-186. Guo Yan, Dong Wenjie, Ren Fumin, et al.. 2013. Assessment of CMIP5 simulations for China annual average surface temperature and its comparison with CMIP3 simulations [J]. Progressus Inquisitiones De Mutatione Climatis (in Chinese), 9 (3): 181-186, doi: 10.3969/j.issn. 1673-1719.2013. 03.004.
    [8] Hong C C, Li T. 2009. The extreme cold anomaly over southeast Asia in February 2008: Roles of ISO and ENSO [J]. J. Climate, 22 (13): 3786-3801, doi: 10.1175/2009JCLI2864.1.
    [9] 季明霞. 2009. 欧亚大气环流与地表气温之间的反馈和相互作用 [D]. 兰州大学博士学位论文. Ji Mingxia. 2009. Response and interact between atmospheric circulation and temperature of Eurasian [D]. Ph. D dissertation (in Chinese), Lanzhou Univserstiy.
    [10] Kaufmann R K, Kauppi H, Mann M L, et al. 2011. Reconciling anthropogenic climate change with observed temperature 1998-2008 [J]. Proceedings of the National Academy of Sciences of the United States of America, 108 (29): 11790-11793, doi: 10.1073/pnas.1102467108.
    [11] Kosaka Y, Xie S P. 2013. Recent global-warming hiatus tied to equatorial Pacific surface cooling [J]. Nature, 501 (7467): 403-407, doi: 10.1038/ nature12534.
    [12] Meehl G A, Arblaster J M, Fasullo J T, et al. 2011. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods [J]. Nature Climate Change, 1 (7): 360-364, doi: 10.1038/nclimate1229.
    [13] Seager R, Kushnir Y, Nakamura J, et al. 2010. Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10 [J]. Geophys. Res. Lett., 37 (14): L14703, doi: 10.1029/2010GL043830.
    [14] Solomon S, Qin D, Manning M, et al. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press.
    [15] Solomon S, Rosenlof K H, Portmann R W, et al. 2010. Contributions of stratospheric water vapor to decadal changes in the rate of global warming [J]. Science, 327 (5970): 1219-1223, doi: 10.1126/science. 1182488.
    [16] Solomon S, Daniel J S, Neely III R R, et al. 2011. The persistently variable "background" stratospheric aerosol layer and global climate change [J]. Science, 333 (6044): 866-870, doi: 10.1126/science.1206027.
    [17] Stocker T F, Qin D, Plattner G K, et al. 2013. IPCC Climate Change 2013: The Physical Science Basis [M]. Cambridge: Cambridge University Press.
    [18] Tollefson J. 2014. Climate change: The case of the missing heat [J]. Nature, 505 (7483): 276-278, doi: 10.1038/505276a.
    [19] Tollefson J. 2013. Climate change: The forecast for 2018 is cloudy with record heat [J]. Nature, 499 (7457): 139-141, doi: 10.1038/499139a.
    [20] Van Vuuren D P, Edmonds J A. Kainuma M, et al. 2011. A special issue on the RCPs [J]. Climatic Change, 109 (1-2): 1-4, doi: 10.1007/s10584-011-0157-y.
    [21] 王迪, 何金海, 祁莉, 等. 2015. 全球变暖减缓背景下欧亚中高纬度秋冬温度变化特征及其可能原因 [J]. 气象科学. Wang Di, He Jinhai, Qi Li, et al.. 2015. Air temperature variation characters in autumn and winter over Eurasian mid and high latitude under global warming and its possible reasons [J]. Journal of the Meteorological Science (in Chinese), doi: 10.3969/2014jms.0023.
    [22] Wen M, Yang S, Kumar A, et al. 2009. An analysis of the large-scale climate anomalies associated with the snowstorms affecting China in January 2008 [J]. Mon. Wea. Rev., 137 (3): 1111-1131, doi: 10.1175/2008MWR2638.1.
    [23] Wu Z W, Li J P, Jiang Z H, et al. 2010. Predictable climate dynamics of abnormal East Asian winter monsoon: Once-in-a-century snowstorms in 2007/2008 winter [J]. Climate Dyn., 37 (7-8): 1661-1669, doi: 10.1007/s00382-010-0938-4.
    [24] Xin X G, Cheng Y J, Wang F, et al. 2013. Asymmetry of surface climate change under RCP2.6 projections from the CMIP5 models [J]. Adv. Atmos. Sci., 30 (3): 796-805, doi: 10.1007/s00376-012-2151-3.
    [25] Xu C H, Xu Y. 2012. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble [J]. Atmos. Oceanic. Sci. Lett., 5 (6): 527-533.
    [26] 张莉, 丁一汇, 吴统文, 等. 2013. CMIP5模式对21世纪全球和中国年平均地表气温变化和2℃升温阈值的预估 [J]. 气象学报, 71 (6): 1047-1060. Zhang Li, Ding Yihui, Wu Tongwen, et al. 2013. The 21st century annual mean surface air temperature change and the 2℃ warming threshold over the globe and China as projected by the CMIP5 models [J]. Acta Meteorologica Sinica (in Chinese), 71 (6): 1047-1060, doi: 10.11676/ qxxb2013.087.
    [27] Zhang Y. 2012. Projection of 2.0℃ warming over the globe and China under RCP4.5 [J]. Atmos. Oceanic. Sci. Lett., 5 (6): 514-520.
    [28] Zhang Z Y, Gong D Y, Hu M, et al. 2009. Anomalous winter temperature and precipitation events in southern China [J]. J. Geophys. Sci., 19 (4): 471-488, 10.1007/s11442-009-0471-8.
  • 加载中
计量
  • 文章访问数:  3148
  • HTML全文浏览量:  1
  • PDF下载量:  2384
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-30

目录

    /

    返回文章
    返回