高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两次强对流背景下的对流层向平流层输送特征模拟与分析?

曹治强 吕达仁

曹治强, 吕达仁. 两次强对流背景下的对流层向平流层输送特征模拟与分析?[J]. 大气科学, 2015, 39(5): 875-884. doi: 10.3878/j.issn.1006-9895.1411.14175
引用本文: 曹治强, 吕达仁. 两次强对流背景下的对流层向平流层输送特征模拟与分析?[J]. 大气科学, 2015, 39(5): 875-884. doi: 10.3878/j.issn.1006-9895.1411.14175
CAO Zhiqiang, LÜ Daren. Simulation and Analysis of Troposphere-to-Stratosphere Transport Caused by Two Severe Convection Events[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(5): 875-884. doi: 10.3878/j.issn.1006-9895.1411.14175
Citation: CAO Zhiqiang, LÜ Daren. Simulation and Analysis of Troposphere-to-Stratosphere Transport Caused by Two Severe Convection Events[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(5): 875-884. doi: 10.3878/j.issn.1006-9895.1411.14175

两次强对流背景下的对流层向平流层输送特征模拟与分析?

doi: 10.3878/j.issn.1006-9895.1411.14175
基金项目: 国家重点基础研究发展计划(973计划)项目2010CB428601

Simulation and Analysis of Troposphere-to-Stratosphere Transport Caused by Two Severe Convection Events

  • 摘要: 为了研究强对流及其背景大尺度天气系统在对流层向平流层输送(TST)过程的作用,分别对发生在低纬度和中纬度的两次强对流天气过程进行了模拟。对于发生在广西及其附近地区的低纬度强对流天气来说,云顶温度较低,强对流所带来的直接TST输送约占总输送数的18%,强对流所在的天气尺度或大尺度的系统造成的输送约占总输送数的82%。对于发生在河北及其附近地区的中纬度强对流来说,云顶温度略高,强对流所带来的直接TST输送约占总输送数的0.17%,强对流所在的天气尺度或大尺度的系统过程造成的输送约占总输送数的99.83%。从输送到平流层以后粒子的移动方向来看,这两次过程强对流引起的直接输送都向西南方向移动,而天气尺度或大尺度系统引起的输送都向偏东方向移动。总的来说,强对流所在的背景天气尺度或大尺度的系统所引起的TST都远大于强对流的直接输送。天气尺度或大尺度的系统引起的输送一般发生在强对流发生的2天后,在强对流发生8~9天后达到最大值。
  • [1] 陈斌, 徐祥德, 卞建春, 等. 2010. 夏季亚洲季风区对流层向平流层输送的源区、路径及其时间尺度的模拟研究[J]. 大气科学, 34 (3):495-505. Chen Bin, Xu Xiangde, Bian Jianchun, et al. 2010. Sources, pathways and timescales for the troposphere to stratosphere transport over Asian monsoon regions in boreal summer[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34 (3):495-505.
    [2] Dickerson R R, Huffman G J, Luke W T, et al. 1987. Thunderstorms:An important mechanism in the transport of air pollutants[J]. Science, 235:460-465.
    [3] Emanuel K A, Živković-Rothman M. 1999. Development and evaluation of a convection scheme for use in climate models[J]. J. Atmos. Sci., 56:1766-1782.
    [4] Fischer H, de Reus M, Traub M, et al. 2003. Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes[J]. Atmos. Chem. Phys., 3:739-745.
    [5] Forster C, Stohl A, Seibert P. 2007. Parameterization of convective transport in a Lagrangian particle dispersion model and its evaluation[J]. J. Appl. Meteor. Climatol., 46:403-422.
    [6] James P, Stohl A, Forster C, et al. 2003a. A 15-year climatology of stratosphere-troposphere exchange with a Lagrangian particle dispersion model:1. Methodology and validation[J]. J. Geophys. Res., 108 (D12):8519, doi: 10.1029/2002JD002637.
    [7] James P, Stohl A, Forster C, et al. 2003b. A 15-year climatology of stratosphere-troposphere exchange with a Lagrangian particle dispersion model:2. Mean climate and seasonal variability[J]. J. Geophys. Res., 108 (D12):8522, doi: 10.1029/2002JD002639.
    [8] Kong F Y. 1994. The vertical transport of air pollutants by convective clouds. Part II:Transport of soluble gases and sensitivity tests[J]. Adv. Atmos. Sci., 11 (1):1-12.
    [9] Kong F Y, Qin Y. 1993. The vertical transport of air pollutants by convective clouds. Part I:A non-reactive cloud transport model[J]. Adv. Atmos. Sci., 10 (4):415-427.
    [10] Kong F Y, Qin Y. 1994. The vertical transport of air pollutants by convective clouds. Part Ⅲ:Transport features of different cloud systems[J]. Adv. Atmos. Sci., 11 (1), 13-26
    [11] 李冰, 刘小红, 洪钟祥, 等. 1999. 深对流云输送对于对流层 O3、NOx在分析的作用[J]. 气候与环境研究, 4 (3):291-296. Li Bing, Liu Xiaohong, Hong Zhongxiang, et al. 1999. The role of deep-convective cloud transport in the redistribution of tropospheric chemical species[J]. Climatic and Environmental Research (in Chinese), 4 (3):291-296.
    [12] Poulida O, Dickerson R R, Heymsfield A. 1996. Stratosphere-troposphere exchange in a midlatitude mesoscale convective complex:1. Observations[J]. J. Geophys. Res., 101 (D3):6823-6839.
    [13] Ray E A, Rosenlof K H, Richard E C, et al. 2004. Evidence of the effect of summertime midlatitude convection on the subtropical lower stratosphere from CRYSTAL-FACE tracer measurements[J]. J. Geophys.Res., 109:D18304, doi: 10.1029/2004JD004655.
    [14] Stenchikov G, Dickerson R, Pickering K et al. 1996. Stratosphere-troposphere exchange in a midlatitude mesoscale convective complex:2. Numerical simulations[J]. J. Geophys. Res., 101 (D3):6837-6851.
    [15] Stohl A, Thomson D J. 1999. A density correction for Lagrangian particle dispersion models[J], Bound.-Layer Meteor., 90:155-167.
    [16] Stohl A, Bonasoni P, Cristofanelli P, et al. 2003. Stratosphere-troposphere exchange:A review, and what we have learned from STACCATO[J]. J. Geophys. Res., 108 (D12):8516, doi: 10.1029/2002JD002490.
    [17] Thompson A M, Tao W K, Pickering K E, et al. 1997. Tropical deep convection and ozone formation[J]. Bull. Amer. Meteor. Soc., 78:1043-1054.
    [18] Thomson D J. 1987. Criteria for the selection of stochastic models of particle trajectories in turbulent flows[J]. J. Fluid Mech., 180:529-556.
    [19] Wei M Y. 1987. A new formulation of the exchange of mass and trace constituents between the stratosphere and troposphere[J]. J. Atmos. Sci., 44:3079-3086.
  • 加载中
计量
  • 文章访问数:  1850
  • HTML全文浏览量:  0
  • PDF下载量:  2931
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-24
  • 修回日期:  2014-11-26

目录

    /

    返回文章
    返回