高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WRF模式多种边界层参数化方案对四川盆地不同量级降水影响的数值试验

高笃鸣 李跃清 蒋兴文 李娟 吴遥

高笃鸣, 李跃清, 蒋兴文, 李娟, 吴遥. WRF模式多种边界层参数化方案对四川盆地不同量级降水影响的数值试验[J]. 大气科学, 2016, 40(2): 371-389. doi: 10.3878/j.issn.1006-9895.1503.14323
引用本文: 高笃鸣, 李跃清, 蒋兴文, 李娟, 吴遥. WRF模式多种边界层参数化方案对四川盆地不同量级降水影响的数值试验[J]. 大气科学, 2016, 40(2): 371-389. doi: 10.3878/j.issn.1006-9895.1503.14323
GAO Duming, LI Yueqing, JIANG Xingwen, LI Juan, WU Yao. Influence of Planetary Boundary Layer Parameterization Schemes on the Prediction of Rainfall with Different Magnitudes in the Sichuan Basin Using the WRF Model[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(2): 371-389. doi: 10.3878/j.issn.1006-9895.1503.14323
Citation: GAO Duming, LI Yueqing, JIANG Xingwen, LI Juan, WU Yao. Influence of Planetary Boundary Layer Parameterization Schemes on the Prediction of Rainfall with Different Magnitudes in the Sichuan Basin Using the WRF Model[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(2): 371-389. doi: 10.3878/j.issn.1006-9895.1503.14323

WRF模式多种边界层参数化方案对四川盆地不同量级降水影响的数值试验

doi: 10.3878/j.issn.1006-9895.1503.14323
基金项目: 国家自然科学基金91337215、41275051,公益性行业(气象)科研专项经费项目GYHY201406001、GYHY201206039、GYHY201006053,国家重点基础研究发展计划(973计划)项目2012CB417202

Influence of Planetary Boundary Layer Parameterization Schemes on the Prediction of Rainfall with Different Magnitudes in the Sichuan Basin Using the WRF Model

  • 摘要: 利用中尺度模式WRF三种边界层参数化方案(MYJ、YSU和ACM2),对2012年四川盆地夏季连续40天逐日降水量进行数值试验,并检验评估了不同边界层参数化方案下模式对分级降水量和边界层结构的模拟能力,分析了各参数化方案对降水量模拟差异的可能原因。结果表明:三种边界层参数化方案对较小量级(小雨和中雨)降水量的模拟,24 h时效优于48 h,ACM2方案效果较好;对较大量级(大雨和暴雨)降水的模拟,48 h时效优于24 h,YSU方案模拟效果较好。对比分析温江站加密探空观测与模式模拟的大气边界层结构表明,ACM2方案对小量级降水时边界层结构的模拟较为准确,而YSU方案更适合于温江站大量级降水时边界层结构的模拟。不同边界层参数化方案对各量级降水量模拟差异的可能原因是边界层湍流混合强度的不同,MYJ方案湍流混合作用较弱,导致底层大量水汽积聚,不稳定性强,容易产生虚假降水,因此对各量级降水模拟能力均有限;YSU方案具有强烈的垂直混合强度,有利于局地水汽的向上输送,更易达到大量级降水发生发展的条件,适用于盆地较大量级降水的模拟;ACM2方案在保证足够湍流混合强度的同时,在较稳定条件下会关闭非局地输送,不致于产生过强降水,适合盆地较小量级降水的数值模拟
  • [1] Beljaars A C M. 1995. The parametrization of surface fluxes in large-scale models under free convection[J]. Quart. J. Roy. Meteor. Soc., 121(522):255-270.
    [2] Chen F, Dudhia J. 2001. Coupling an advanced land surface hydrology model with the Penn State NCAR MM5 modeling system. Part I:Model implementation and sensitivity[J]. Mon. Wea. Rev., 129(1):569-585.
    [3] Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J.Atmos. Sci., 46(20):3077-3107.
    [4] Hong S Y, Pan H L. 1996. Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J]. Mon. Wea. Rev., 124(10):2322-2339.
    [5] Hong S Y, Dudhia J, Chen S H. 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Mon. Wea. Rev., 132(1):103-120.
    [6] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon. Wea. Rev., 134(9):2318-2341.
    [7] Hu X M, Nielsen-Gammon J W, Zhang F Q. 2010. Evaluation of three planetary boundary layer schemes in the WRF model[J]. J. Appl. Meteor.Climatol., 49(9):1831-1844.
    [8] Janjic Z I. 1996. The surface layer in the NCEP Eta Model[C]//Eleventh Conference on Numerical Weather Prediction, Norfolk, VA, 19-23 August 1996. Boston, MA:Am. Meteor. Soc., 354-355.
    [9] Janjić Z I. 2001. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model[C]. NCEP Office Note, 61 pp.
    [10] Jankov I, Gallus W A Jr, Segal M, et al. 2005. The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall[J]. Wea. Forecasting. 20(6):1048-1060.
    [11] Jankov I, Schultz P J, Anderson C J, et al. 2007. The impact of different physical parameterizations and their interactions on cold season QPF in the American River basin[J]. J. Hydrometeor., 8(5):1141-1151.
    [12] Kain J S, Fritsch J M. 1990. A one-dimensional entraining/detraining plume model and its application in convective parameterization[J]. J. Atmos.Sci., 47(23):2784-2802.
    [13] Kain J S, Fritsch J M. 1993. Convective parameterization for mesoscale models:The Kain-Fritsch scheme[M]//The Representation of Cumulus Convection in Numerical Models. Boston, MA:American Meteorological Society, 24:165-170.
    [14] 卢萍, 宇如聪. 2008. 地表潜热通量对四川地区降水影响的数值分析[J]. 高原山地气象研究, 28(3):1-7. Lu Ping, Yu Rucong. 2008. Numerical analysis on the impacts of surface latent heat flux transport on Sichuan rainfall process[J]. Plateau and Mountain Meteorology Research(in Chinese), 28(3):1-7.
    [15] Mellor G L, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems[J]. Rev. Geophys. Space Phys., 20:851-875.
    [16] Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmosphere:RRTM, a validated correlated-k model for the longwave[J]. J. Geophys. Res., 102(D14):16663-16682.
    [17] Nielsen-Gammon J W, Powell C L, Mahoney M J, et al. 2008. Multisensor estimation of mixing heights over a coastal city[J]. J. Appl. Meteor.Climatol., 47(1):27-43.
    [18] Pleim J E. 2007. A combined local and nonlocal closure model for the atmospheric boundary layer. PartⅠ:Model description and testing[J]. J.Appl. Meteor. Climatol., 46(9):1383-1395.
    [19] 沈桐立, 田永祥, 葛孝贞, 等. 2003. 数值天气预报[M]. 北京:气象出版社, 303-304. Sheng Tongli, Tian Yongxiang, Ge Xiaozhen, et al. 2003. Numerical Weather Prediction(in Chinese)[M]. Beijing:China Meteorological Press, 303-304.
    [20] 沈新勇, 黄文彦, 王卫国, 等. 2014. 利用TWP-ICE 试验资料对比两种边界层参数化方案[J]. 应用气象学报, 25(4):385-396. Shen Xinyong, Huang Wenyan, Wang Weiguo, et al. 2014. Contrastive study on two boundary layer parameterization schemes using TWP-ICE experiment data[J]. J. Appl. Meter. Sci.(in Chinese), 25(4):385-396.
    [21] 王有民, 叶殿秀, 艾婉秀, 等. 2013. 2012 年中国气候概况[J]. 气象, 39(4):500-507. Wang Youmin, Ye Dianxiu, Ai Wanxiu, at al. Climatic characteristics over China in 2012[J]. Meteorological Monthly(in Chinese), 39(4):500-507.
    [22] 王遵娅, 任福民, 王东阡, 等. 2013. 2012 年海洋和大气环流异常及其对中国气候的影响[J]. 气象, 39(4):508-515. Wang Zunya, Ren Fumin, Wang Dongqian, at al. 2013. Anomalies of ocean and atmospheric circulation in 2012 and their impacts on climate in China[J]. Meteorological Monthly(in Chinese), 39(4):508-515.
    [23] 伍荣生. 2002. 大气动力学[M]. 北京:高等教育出版社, 165-203. Wu Rongsheng. 2002. Atmospheric Dynamics(in Chinese)[M]. Beijing:Higher Education Press, 165-203.
    [24] 肖玉华, 何光碧, 顾青源, 等. 2010. 边界层参数化方案对不同性质降水模拟的影响[J]. 高原气象, 29(2):331-339. Xiao Yuhua, He Guangbi, Gu Qingyuan, at al. 2010. Impact of boundary layer parameterization schemes on numerical simulation of different property precipitation[J]. Plateau Meteorology(in Chinese), 29(2):331-339.
    [25] 徐慧燕, 朱叶, 刘瑞, 等. 2013. 长江下游地区不同边界层参数化方案的试验研究[J]. 大气科学, 37(1):149-159. Xu Huiyan, Zhu Ye, Liu Rui, et al. 2013. Simulation experiments with different planetary boundary layer schemes in the lower reaches of the Yangtze River[J]. Chinese J. Atmos. Sci.(in Chinese), 37(1):149-159.
    [26] 徐裕华. 1991. 西南气候[M]. 北京:气象出版社, 140-143. Xu Yuhua. 1991. A Series of Climate for China:Climate of Southwest China(in Chinese)[M]. Beijing:China Meteorological Press, 140-143.
    [27] 杨大升, 刘余滨, 刘式适. 1983. 动力气象学[M]. 北京:气象出版社, 332-357. Yang Dasheng, Liu Yubin, Liu Shikuo. 1983. Dynamic Meteorology(in Chinese)[M]. Beijing:China Meteorological Press, 332-357.
    [28] 叶笃正, 李崇银, 王必魁, 动力气象学[M]. 1988. 北京:科学出版社, 138-153. Ye Duzheng, Li Chongyin, Wang Bikui. 1988. Dynamic Meteorology(in Chinese)[M]. Beijing:Science Press, 138-153.
    [29] 赵鸣, 苗曼倩, 王彦昌. 1991. 边界层气象学教程[M]. 北京:气象出版社, 1-366. Zhao Ming, Miao Manqian, Wang Yanchang. 1991. A Course in Boundary Layer Meteorology(in Chinese)[M]. Beijing:China Meteorological Press, 1-366.
    [30] 赵鸣. 2008. 边界层和陆面过程对中国暴雨影响研究的进展[J]. 暴雨灾害, 27(2):186-190. Zhao Ming. 2008. A review of the research on the effects of boundary layer and land surface process on heavy rain in China[J]. Torrential Rain and Disasters(in Chinese), 27(2):186-190.
  • 加载中
计量
  • 文章访问数:  3486
  • HTML全文浏览量:  3
  • PDF下载量:  2289
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-21

目录

    /

    返回文章
    返回