高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风切变对中尺度对流系统强度和组织结构影响的数值试验

郑淋淋 孙建华

郑淋淋, 孙建华. 风切变对中尺度对流系统强度和组织结构影响的数值试验[J]. 大气科学, 2016, 40(2): 324-340. doi: 10.3878/j.issn.1006-9895.1505.14311
引用本文: 郑淋淋, 孙建华. 风切变对中尺度对流系统强度和组织结构影响的数值试验[J]. 大气科学, 2016, 40(2): 324-340. doi: 10.3878/j.issn.1006-9895.1505.14311
ZHENG Linlin, SUN Jianhua. The Impact of Vertical Wind Shear on the Intensity and Organizational Mode of Mesoscale Convective Systems Using Numerical Experiments[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(2): 324-340. doi: 10.3878/j.issn.1006-9895.1505.14311
Citation: ZHENG Linlin, SUN Jianhua. The Impact of Vertical Wind Shear on the Intensity and Organizational Mode of Mesoscale Convective Systems Using Numerical Experiments[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(2): 324-340. doi: 10.3878/j.issn.1006-9895.1505.14311

风切变对中尺度对流系统强度和组织结构影响的数值试验

doi: 10.3878/j.issn.1006-9895.1505.14311
基金项目: 安徽省气象科技发展基金项目KM201416,公益性行业(气象)科研专项GYHY201406002,国家重点基础研究发展计划(973计划)项目2013CB430101

The Impact of Vertical Wind Shear on the Intensity and Organizational Mode of Mesoscale Convective Systems Using Numerical Experiments

  • 摘要: 采用我国实际观测的探空作为中尺度模式Weather Research and Forecasting(WRF)的理想试验的背景场,分别改变整层、低层和中层的垂直风切变,研究其对中尺度对流系统强度和组织结构的影响。结果表明,改变整层垂直风切变对对流系统的强度和组织结构影响最显著,增加整层垂直风切变,对流强度增强且易组织成线状,减小整层垂直风切变,对流强度弱且呈分散状态。从垂直速度、水平风场、散度场和冷池的三维结构特征分析了其影响的机制:(1)风切变增加,上升气流与下沉气流的相互干扰减弱,有利于垂直速度的维持和增强;(2)垂直风切变增加造成水平涡度增加,扭转项的作用分别使上升和下沉运动得到加强;(3)垂直风切变增加,冷池强度和高度增加且集中在系统后部,使系统线状组织性增强。研究还发现,增加垂直风切变造成近地面大风和降水增强,且强降水出现在大风之后,这主要是因为在对流发展阶段上升运动与下沉运动互不干扰情况下,强下沉运动造成的近地面大风,而成熟阶段上升运动不断增强或维持造成雨水比湿不断增加形成强降水。
  • [1] Alexander G P, Young G S. 1992. The relationship between EMEX mesoscale precipitation feature properties and their environmental characteristics[J]. Mon. Wea. Rev., 120:554-564.
    [2] Bluestein H B, Jain M H. 1985. Formation of mesoscale lines of precipitation:Severe squall lines in Oklahoma during the spring[J]. J.Atmos. Sci., 42(16):1711-1732.
    [3] Coniglio M C, Stensrud D J. 2001. Simulation of a progressive derecho using composite initial conditions[J]. Mon. Wea. Rev., 129:1593-1616.
    [4] Ferrier B S, Simpson J, Tao W K. 1996. Factors responsible for precipitation efficiencies in midlatitude and tropical squall simulations[J]. Mon. Wea.Rev., 124:2100-2125.
    [5] Fovell R G, Ogura Y. 1989. Effect of vertical wind shear on numerically simulated multicell storm structure[J]. J. Atmos. Sci., 46:3144-3176.
    [6] Johnson R H, Bresch J F. 1991. Diagnosed characteristics of precipitation systems over Taiwan during the May-June 1987 TAMEX[J]. Mon. Wea.Rev., 119(11):2540-2557.
    [7] Johnson R H, Aves S L, Ciesielski P E, et al. 2005. Organization of oceanic convection during the onset of the 1998 East Asian summer monsoon[J]. Mon. Wea. Rev., 133(1):131-148.
    [8] Lafore J P, Moncrieff M W. 1989. A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines[J]. J. Atmos. Sci., 46(4):521-544.
    [9] LeMone M A, Zipser E J, Trier S B. 1998. The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE[J]. J. Atmos.Sci., 55:3493-3518.
    [10] Lilly D K. 1979. The dynamical structure and evolution of thunderstorms and squall lines[J]. Annual Review of Earth and Planetary Sciences, 7:117-161.
    [11] Moncrieff M W. 1978. The dynamical structure of two-dimensional steady convection in constant vertical shear[J]. Quart. J. Roy. Meteor. Soc., 104:543-567.
    [12] Montmerle T, Lafore J P, Redelsperger J L. 2000. A tropical squall line observed during TOGA COARE:Extended comparisons between simulations and Doppler radar data and the role of midlevel wind shear[J]. Mon. Wea. Rev., 128:3709-3730.
    [13] 潘玉洁, 赵坤, 攀益农. 2008. 一次强飑线内强降水超级单体风暴的单多普勒雷达分析[J]. 气象学报, 66(4):621-636. Pan Yujie, Zhao Kun, Pan Yinong. 2008. Single-Doppler radar observation of a heavy precipitation supercell on a severe squall line[J]. Acta Meteor. Sinica(in Chinese), 66(4):621-636.
    [14] Parker M D, Johnson R H. 2000. Organizational modes of midlatitude mesoscale convective systems[J]. Mon. Wea. Rev., 128(10):3413-3436.
    [15] Rotunno R, Klemp J B, Weisman M L. 1988. A theory for strong, long-lived squall lines[J]. J. Atmos. Sci., 45:463-485.
    [16] Schlesinger R E. 1978. A three-dimensional numerical model of an isolated thunderstorm. Part I:Comparative experiments for variable ambient wind shear[J]. J. Atmos. Sci., 35:690-713.
    [17] Schumacher R S, Johnson R H. 2005. Organization and environmental properties of extreme-rain-producing mesoscale convective systems[J]. Mon. Wea. Rev., 133:961-976.
    [18] 孙建华, 郑淋淋, 赵思雄. 2014. 水汽含量对飑线组织结构和强度影响的数值试验[J]. 大气科学, 38(4):742-755. Sun Jianhua, Zheng Linlin and Zhao Sixiong. 2014. Impact of moisture on the organizational mode and intensity of squall lines determined through numerical experiments[J]. Chinese J. Atmos. Sci.(in Chinese), 38(4):742-755, doi:10.3878/j.issn.1006-9895. 2013.13187.
    [19] Weisman M L, Klemp J B. 1982. The dependence of numerically simulated convective storms on vertical wind shear and buoyancy[J]. Mon. Wea.Rev., 110:504-520.
    [20] Weisman M L, Rotunno R. 2004. "A theory for strong long-lived squall lines" revisited[J]. J. Atmos. Sci., 61:361-382.
    [21] Weisman M L, Klemp J B, Rotunno R. 1988. Structure and evolution of numerically simulated squall lines[J]. J. Atmos. Sci., 45:1990-2013.
    [22] Xue M. 2000. Density currents in two-layer shear flows[J]. Quart. J. Roy.Meteor. Soc., 126:1301-1320.
    [23] 郑淋淋, 孙建华. 2013. 干、湿环境下中尺度对流系统发生的环流背景和地面特征分析[J]. 大气科学, 37(4):891-904. Zheng Linlin, Sun Jianhua. 2013. Characteristics of synoptic and surface circulation of mesoscale convective systems in dry and moist environmental conditions[J]. Chinese J. Atmos. Sci.(in Chinese), 37(4):891-904, doi: 10.3878/j.issn.1006-9895.2012.12090.
    [24] Zheng L L, Sun J H, Zhang X L, et al. 2013. Organizational modes of mesoscale convective systems over central East China[J]. Wea.Forecasting, 28(5):1081-1098.
  • 加载中
计量
  • 文章访问数:  3028
  • HTML全文浏览量:  51
  • PDF下载量:  3283
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-13

目录

    /

    返回文章
    返回