高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植被对干旱趋势的影响

刘永强

刘永强. 植被对干旱趋势的影响[J]. 大气科学, 2016, 40(1): 142-156. doi: 10.3878/j.issn.1006-9895.1508.15146
引用本文: 刘永强. 植被对干旱趋势的影响[J]. 大气科学, 2016, 40(1): 142-156. doi: 10.3878/j.issn.1006-9895.1508.15146
LIU Yongqiang. Impacts of Vegetation on Drought Trends[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(1): 142-156. doi: 10.3878/j.issn.1006-9895.1508.15146
Citation: LIU Yongqiang. Impacts of Vegetation on Drought Trends[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(1): 142-156. doi: 10.3878/j.issn.1006-9895.1508.15146

植被对干旱趋势的影响

doi: 10.3878/j.issn.1006-9895.1508.15146
基金项目: 美国自然科学基金会、农业部和能源部联合项目:地球系统模式预报年代际区域气候 (NIFA-2013-35100-20516)

Impacts of Vegetation on Drought Trends

  • 摘要: 历史干旱事件的观测和数值研究表明,植被可通过地—气水分、能量和其他通量交换影响和反馈干旱.本研究旨在了解气候变化情形下植被对干旱趋势的影响和机制.应用美国大陆七个动力气候降尺度区域气候变化情景,计算和分析了现在和未来的干旱指数、空间分布和季节变化.通过比较同一气候区两种植被类型区域干旱强度和频率理解植被的影响.集成分析结果表明,未来美国干旱很可能增加,其中大平原中部所有季节都很显著,而东南和西南地区夏秋更为显著.植被对干旱趋势的影响和气候区有关.在温暖和潮湿/干燥气候区,林地(草地)未来干旱强度和频率的增幅大于对应的农田(荒漠)区域,因此植被可以放大未来干旱的风险.相反,在寒冷和潮湿气候区,林地(草地)区域未来干旱强度和频率增幅较小,表明植被放大未来干旱的作用可能只在某些气候情形下出现.这种植被对未来干旱影响的复杂性和对气候区的依赖性对气候模式提供可靠的干旱模拟和预测及森林管理部门制定适应和减缓气候变化的策略提出了新的挑战.
  • [1] Anderegg W R L, Anderegg L D L, Berry J A, et al. 2014. Loss of whole-tree hydraulic conductance during severe drought and multi-year forest die-off [J]. Oecologia, 175 (1): 11-23, doi: 10.1007/s00442-013-2875-5.
    [2] Betts R A. 2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo [J]. Nature, 408: 187-190, doi: 10.1038/35041545.
    [3] Bonan G B. 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests [J]. Science, 320: 1444-1449, doi:10.1126/ science.1155121.
    [4] Charney J, Quirk W J, Chow S -H, et al. 1977. A comparative study of the effects of albedo change on drought in semi-arid regions [J]. J. Atmos. Sci., 34: 1366-1385, doi:10.1175/1520-0469(1977)034<1366: ACSOTE> 2.0.CO; 2.
    [5] Charney J G. 1975. Dynamics of deserts and drought in the Sahel [J]. Q. J. R. Meteor. Soc., 101 (428): 193-202, doi: 10.1002/qj.49710142802.
    [6] Chen G S, Notaro M, Liu Z Y, et al. 2012. Simulated local and remote biophysical effects of afforestation over the southeast United States in boreal summer [J]. J. Climate, 25: 4511-4522, doi: 10.1175/JCLI-D-11-00317.1.
    [7] Cook B I, Ault T R, Smerdon J E. 2015. Unprecedented 21st century drought risk in the American Southwest and Central Plains [J]. Sci. Adv., 1(1): e1400082, doi: 10.1126/sciadv.1400082.
    [8] Cook B I, Smerdon J E, Seager R, et al. 2014. Global warming and 21st century drying [J]. Clim. Dyn., 43 (9-10): 2607-2627. doi:10.1007/ s00382-014-2075-y.
    [9] Dai A. 2011. Drought under global warming: A review [J]. Wiley Interdisciplinary Reviews: Climate Change, 2: 45-65, doi:10. 1002/wcc.81.
    [10] Dai Y J, Dickinson R R, Wang Y P. 2004. A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance [J]. J. Climate, 17 (12): 2281-2299, doi: 10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2.
    [11] Dickinson R E, Henderson-Sellers A, Kennedy P J. 1993. Biosphere-atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model [R]. NCAR Technical Note NCAR/ TN-387+STR, doi: 10.5065/D67W6959.
    [12] 丁一汇 李巧萍 董文杰. 2005. 植被变化对中国区域气候影响的数值模拟研究 [J]. 气象学报, 63 (5): 613-621. Ding Y H, Li Q P, Dong W J. 2005. A numerical simulation study of the impacts of vegetation changes on regional climate in China [J]. Acta Meteor. Sinica, 63 (5): 613-621, doi: 10.11676/qxxb2005.060
    [13] Elguindi N, Bi X, Giorgi F, et al. 2004. RegCM Version 3 User's guide [R]. PWCG Abdus Salam ICTP, Trieste, Italy, 48pp.
    [14] Ellison D, Futter M N, Bishop K. 2012. On the forest cover-water yield debate: From demand-to supply-side thinking [J]. Global Change Biol., 18: 806-820, doi: 10.1111/j.1365-2486.2011.02589.x.
    [15] Falloon P D, Dankers R, Betts R A, et al. 2012. Role of vegetation change in future climate under the A1B scenario and a climate stabilisation scenario, using the HadCM3C Earth system model [J]. Biogeosciences, 9: 4739-4756, doi: 10.5194/bg-9-4739-2012.
    [16] 符淙斌, 袁慧玲. 2001. 恢复自然植被对东亚夏季气候和环境影响的一个虚拟试验 [J]. 科学通报, 46 (8): 691-695. Fu C B, Yuan H L. 2001. An virtual numerical experiment to understand the impacts of recovering natural vegetation on the summer climate and environmental conditions in East Asia [J]. Chin. Sci. Bull., 46: 1199-1203, doi:10.1007/ BF02900602.
    [17] 高学杰, 张冬峰, 陈仲新,等. 2007. 中国当代土地利用对区域气候影响的数值模拟 [J]. 中国科学(D辑): 地球科学, 37 (3): 397-404. Gao X J, Zhang D F, Chen Z X, et al. 2007. Land use effects on climate in China as simulated by a regional climate model [J]. Science in China (Series D): Earth Sciences, 50 (4): 620-628, doi: 10.1007/s11430-007-2060-y.
    [18] Grimm N B, Chapin Ⅲ F S, Bierwagen B, et al. 2013. The impacts of climate change on ecosystem structure and function [J]. Front. Ecol. Environ., 11 (9): 474-482, doi: 10.1890/120282.
    [19] Heim R R. 2002. A review of twentieth-century drought indices used in the United States [J]. Bull. Am. Meteor. Soc., 83: 1149-1166.
    [20] IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]// Stocker T F, Qin D, Plattner G -K, et al. (eds.). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 1535pp, doi: 10.1017/ [u1] CBO9781107415324.
    [21] Jiang Z H, Song J, Li L, et al. 2011. Extreme climate events in China: IPCC-AR4 model evaluation and projection [J]. Climatic Change, 110 (1-2): 385-401doi: 10.1007/s10584-011-0090-0.
    [22] Jones J A, Creed I F, Hatcher K L, et al. 2012. Ecosystem processes and human influences regulate streamflow response to climate change at long-term ecological research sites [J]. BioScience, 62 (4): 390-404. doi: 10.1525/bio.2012.62.4.10.
    [23] Keetch J J, Byram G M. 1968. A Drought Index for Forest Fire Control [R]. USDA Forest Service, Southeast Forest Experiment Station Research Paper SE-38. Asheville, NC, 35pp.
    [24] Kottek M, Grieser J, Beck C, et al. 2006. World Map of the Köppen-Geiger climate classification updated [J]. Meteor. Z., 15 (3): 259-263, doi: 10.1127/0941-2948/2006/0130.
    [25] Liu S M, Lu L, Mao D, et al. 2007. Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements [J]. Hydrol. Earth Syst. Sci., 11: 769-783, doi: 10.5194/hess-11-769-2007.
    [26] Liu Y Q. 2010. A numerical study on hydrological impacts of forest restoration in the southern United States [J]. Ecohydrology, 4 (2): 299-314, doi: 10.1002/eco.178.
    [27] Liu Y Q, Stanturf J, Lu H Q. 2008. Modeling the potential of the northern China forest shelterbelt in improving hydroclimate conditions [J]. J. Am. Water Resour. Assoc., 44 (5): 1176-1192, doi:10.1111/j.1752-1688.2008. 00240.x.
    [28] Liu Y Q, Stanturf J, Goodrick S. 2010a. Trends in global wildfire potential in a changing climate [J]. Forest Ecol. Manag., 259 (4): 378-1127, 10.1016/j.foreco.2009.09.002.
    [29] Liu Y Q, Stanturf J, Goodrick S. 2010b. Wildfire potential evaluation during a drought event with a regional climate model and NDVI [J]. Ecolog. Inform., 5 (5): 418-428, doi: 10.1016/j.ecoinf.2010.04.001.
    [30] Liu Y Q, Goodrick S L, Stanturf J A. 2013. Future U.S. wildfire potential trends projected using a dynamically downscaled climate change scenario [J]. Forest Ecol. Manag., 294: 120-135, doi: 10.1016/j.foreco.2012.06.049.
    [31] Liu Z Y, Notaro M, Kutzbach J, et al. 2006. Assessing global vegetation-climate feedbacks from the observation [J]. J. Climate, 19 (5): 787-814, doi: 10.1175/JCLI3658.1.
    [32] Ma D, Notaro M, Liu Z Y, et al. 2013. Simulated impacts of afforestation in East China monsoon region as modulated by ocean variability [J]. Climate Dyn., 41: 2439-2450, doi: 10.1007/s00382-012-1592-9.
    [33] Mearns L O, Arritt R, Biner S, et al. 2012. The North American regional climate change assessment program: Overview of phase I results [J]. Bull. Amer. Met. Soc., 93: 1337-1362, doi: 10.1175/BAMS-D-11-00223.1.
    [34] Meng X H, Evans J P, McCabe M F. 2014. The impact of observed vegetation changes on land-atmosphere feedbacks during drought [J]. J. Hydrometeor, 15: 759-776, doi: 10.1175/JHM-D-13-0130.1.
    [35] NWS (U. S. National Weather Service). 2006 [2015-6-21]. Drought [OL].. http://www.nws.noaa.gov/om/brochures/climate/Drought.pdf.
    [36] Palmer W C. 1965. Meteorological drought [R]. Research Paper 45, U. S. Dept. of Commerce, 58pp.
    [37] Seager R, Ting M F, Held I, et al. 2007. Model projections of an imminent transition to a more arid climate in southwestern North America [J]. Science, 316 (5828): 1181-1184, doi: 10.1126/science.1139601.
    [38] Teuling A J, van Loon A F, Seneviratne S I, et al. 2013. Evapotranspiration amplifies European summer drought [J]. Geophys. Res. Lett., 40: 2071-2075, doi: 10.1002/grl.50495.
    [39] Trenberth K E, Dai A, van der Schrier G, et al. 2014. Global warming and changes in drought [J]. Nature Climate Change, 4: 17-22, doi:10.1038/ NCLIMATE2067.
    [40] Vicente-Serrano S M, Gouveia C, Camarero J J, et al. 2013. Response of vegetation to drought time-scales across global land biomes [J]. Proc. Natl Acad. Sci. USA, 110 (1): 52-57, doi: 10.1073/pnas.1207068110.
    [41] Wang L, Chen W. 2014. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China [J]. Int. J. Climatol., 34 (6): 2059-2078, doi: 10.1002/joc.3822.
    [42] Wu C Y, Chen J M. 2013. Diverse responses of vegetation production to interannual summer drought in North America [J]. Int. J. Appl. Earth Observ. Geoinform., 21: 1-6, doi: 10.1016/j.jag.2012.08.001.
    [43] 吴绍洪, 戴尔阜, 黄玫, 等. 2007. 21世纪未来气候变化情景(B2)下我国生态系统的脆弱性研究 [J]. 科学通报, 52 (7): 811-817. Wu S H, Dai E F, Huang M, et al. 2007. Ecosystem vulnerability of China under B2 climate scenario in the 21st century [J]. Chin. Sci. Bull., 52 (10): 1379-1386, doi: 10.1007/s11434-007-0197-x.
    [44] Xanthopoulos G, Maheras G, Gouma V, et al. 2006. Is the Keetch-Byram drought index (KBDI) directly related to plant water stress? [J] Forest Ecol. Manag., 234 (Suppl. 1): S27.
    [45] Yeh T -C, Wetherald R T, Manabe S. 1984. The effect of soil moisture on the short-term climate and hydrology change—A numerical experiment [J]. Mon. Wea. Rev., 112: 474-490, doi:10.1175/1520-0493(1984)112 <0474: TEOSMO>2.0.CO;2.
    [46] Zargar A, Sadiq R, Naser B, et al. 2011. A review of drought indices [J]. Environ. Rev., 19 (NA): 333-349, doi: 10.1139/a11-013.
    [47] Zhang B Q, Wu P Y, Zhao X N, et al. 2013. Spatiotemporal analysis of climate variability (1971-2010) in spring and summer on the Loess Plateau, China [J]. Hydrological Processes, 28 (4): 1689-1702, doi: 10.1002/hyp.9724.
    [48] Zhang X Q, Lei Y C, Pang Y, et al. 2014. Tree mortality in response to climate change induced drought across Beijing, China [J]. Climatic Change, 124 (1-2): 179-190, doi: 10.1007/s10584-014-1089-0.
    [49] 曾红玲, 季劲钧, 吴国雄. 2010. 全球植被分布对气候影响的数值试验 [J]. 大气科学, 34 (1): 1-11. Zeng H L, Ji J J, Wu G X. 2010. Numerical experiment of the influence of global vegetation distribution on climate [J]. Chinese J. Atmos. Sci., 34 (1): 1-11.
    [50] Zeng N, Neelin J D, Lau K -M, et al. 1999. Enhancement of interdecadal climate variability in the Sahel by vegetation interaction [J]. Science, 286: 1537-1540, doi: 10.1126/science.286.5444.1537.
    [51] Zheng Y Q, Yu G, Qian Y F, et al. 2002. Simulations of regional climatic effects of vegetation change in China [J]. Q. J. R. Meteor. Soc., 128 (584): 2089-2114, doi: 10.1256/003590002320603557.
  • 加载中
计量
  • 文章访问数:  2189
  • HTML全文浏览量:  1
  • PDF下载量:  2003
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-08

目录

    /

    返回文章
    返回