高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FGOALS-g2模式模拟和预估的全球季风区极端降水及其变化

彭冬冬 周天军 邹立维 张丽霞 陈晓龙

彭冬冬, 周天军, 邹立维, 张丽霞, 陈晓龙. FGOALS-g2模式模拟和预估的全球季风区极端降水及其变化[J]. 大气科学, 2016, 40(5): 1059-1072. doi: 10.3878/j.issn.1006-9895.1512.15243
引用本文: 彭冬冬, 周天军, 邹立维, 张丽霞, 陈晓龙. FGOALS-g2模式模拟和预估的全球季风区极端降水及其变化[J]. 大气科学, 2016, 40(5): 1059-1072. doi: 10.3878/j.issn.1006-9895.1512.15243
PENG Dongdong, ZHOU Tianjun, ZOU Liwei, ZHANG Lixia, CHEN Xiaolong. The FGOALS-g2 Simulation of Global Monsoon Extreme Precipitation and Future Projection[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(5): 1059-1072. doi: 10.3878/j.issn.1006-9895.1512.15243
Citation: PENG Dongdong, ZHOU Tianjun, ZOU Liwei, ZHANG Lixia, CHEN Xiaolong. The FGOALS-g2 Simulation of Global Monsoon Extreme Precipitation and Future Projection[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(5): 1059-1072. doi: 10.3878/j.issn.1006-9895.1512.15243

FGOALS-g2模式模拟和预估的全球季风区极端降水及其变化

doi: 10.3878/j.issn.1006-9895.1512.15243
基金项目: 国家自然科学基金项目41420104006、41330423、41205080、41305072,公益性行业(气象)科研专项GYHY201506012

The FGOALS-g2 Simulation of Global Monsoon Extreme Precipitation and Future Projection

  • 摘要: 利用LASG/IAP(中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室)全球耦合模式FGOALS-g2,评估了其对全球季风区极端气候指标的模拟能力,并讨论了RCP8.5排放情景下21世纪季风区极端气候指标的变化特征。总体而言,模式对季风区总降水和极端气候指标1997~2014年气候态和年际变率的空间分布均具有一定的模拟能力。偏差主要表现在模式低估了亚洲季风强降水中心,低估了中雨(10~20 mm d-1)和大雨(20~50 mm d-1)的频率而高估了暴雨(>50 mm d-1)频率。在RCP8.5排放情景下,由于可降水量的增加,模式预估的全球季风区极端降水、降水总量和降水强度将持续增加。到2076~2095年,极端降水和降水强度在北美季风区增加最显著(约22%和17%),降水总量在澳大利亚增加最显著(约37%)。然而,FGOALS-g2对全球季风区平均的日降水量低于1 mm的连续最大天数(CDD)的预估变化不显著,这是由于预估的CDD在陆地季风区将增加,而在海洋季风区将减少。对各子季风区的分析显示,CDD在南美季风区变长最显著,达到30%,在澳洲季风区变短最显著,达到40%,这与两季风区日降水量低于1 mm的降水事件发生频率变化不同有关。
  • [1] Adler R F, Huffman G J, Chang A, et al. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present) [J]. J. Hydrometeor., 4 (6): 1147-1167, doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.
    [2] Allen M R, Ingram W J. 2002. Constraints on future changes in climate and the hydrologic cycle [J]. Nature, 419 (6903): 224-232, doi: 10.1038/nature01092.
    [3] 陈活泼. 2013. CMIP5模式对21世纪末中国极端降水事件变化的预估 [J]. 科学通报, 58 (8): 743-752. Chen H P. 2013. Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models [J]. Chinese Sci. Bull., 58 (12): 1462-1472, doi: 10.1007/s11434-012-5612-2.
    [4] 陈晓晨, 徐影, 姚遥. 2015. 不同升温阈值下中国地区极端气候事件变化预估 [J]. 大气科学, 39 (6): 1123-1135. Chen Xiaochen, Xu Ying, Yao Yao. 2015. Changes in climate extremes over China in a 2℃, 3℃ and 4℃ warmer world [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39 (6): 1123-1135, doi: 10.3878/j.issn.1006-9895.1502.14224.
    [5] Chen X L, Zhou T J, Guo Z. 2014. Climate sensitivities of two versions of FGOALS model to idealized radiative forcing [J]. Science China: Earth Sciences, 57 (6): 1363-1373, doi: 10.1007s11430-013-4692-4.
    [6] Chen X L, Zhou T J. 2015. Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon [J]. Geophys. Res. Lett., 42 (21): 9433-9439, doi: 10.1002/2015GL066384.
    [7] Christensen J H, Kanikicharla K K, Marshall G, et al. 2013. Climate phenomena and their relevance for future regional climate change [M]//Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press, 1217-1308.
    [8] Craig A P, Jacob R, Kauffman B, et al. 2005. CPL6: The new extensible, high performance parallel coupler for the community climate system model [J]. International Journal of High Performance Computing Applications, 19 (3): 309-327, doi: 10.1177/1094342005056117.
    [9] Dai A G. 2006. Precipitation characteristics in eighteen coupled climate models [J]. J. Climate, 19 (18): 4605-4630, doi: 10.1175/JCLI3884.1.
    [10] Held I M, Soden B J. 2006. Robust responses of the hydrological cycle to global warming [J]. J. Climate, 2006, 19 (21): 5686-5699.
    [11] Hsu P, Li T, Luo J J, et al. 2012. Increase of global monsoon area and precipitation under global warming: A robust signal? [J] Geophys. Res. Lett., 39 (6): L06701, doi: 10.1029/2012GL051037.
    [12] Hsu P, Li T, Murakami H, et al. 2013. Future change of the global monsoon revealed from 19 CMIP5 models [J]. J. Geophys. Res.: Atmos., 118 (3): 1247-1260, doi: 10.1002/jgrd.50145.
    [13] Huffman G J, Adler R F, Morrissey M M, et al. 2001. Global precipitation at one-degree daily resolution from multisatellite observations [J]. J. Hydrometeor., 2 (1): 36-50, doi:10.1175/1525-7541(2001)002<0036: GPAODD>2.0.CO;2.
    [14] IPCC. 2013. Climate Change 2013: The Physical Science Basis [M]. Cambridge, UK and New York, NY, USA: Cambridge University Press.
    [15] 姜大膀, 富元海. 2012. 2℃全球变暖背景下中国未来气候变化预估 [J]. 大气科学, 36 (2): 234-246. Jiang Dabang, Fu Yuanhai. 2012. Climate change over China with a 2℃ global warming [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (2): 234-246, doi:10.3878/j. issn.1006-9895.2011.11074.
    [16] 江志红, 丁裕国, 陈威霖. 2007. 21世纪中国极端降水事件预估 [J]. 气候变化研究进展, 3 (4): 202-207. Jiang Z H, Ding Y G, Chen W L. 2007. Projection of precipitation extremes for the 21st century over China [J]. Adv. Climate Change Res. (in Chinese), 3(4): 202-207, doi: 10.3969/j.issn.1673-1719.2007.04.003.
    [17] 江志红, 陈威霖, 宋洁, 等. 2009. 7个IPCC AR4模式对中国地区极端降水指数模拟能力的评估及其未来情景预估 [J]. 大气科学, 33(1): 109-120. Jiang Zhihong, Chen Weilin, Song Jie, et al. 2009. Projection and evaluation of the precipitation extremes indices over China based on seven IPCC AR4 coupled climate models [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33 (1): 109-120, doi:10.3878/j.issn. 1006-9895.2009.01.10.
    [18] Jiang Z H, Li W, Xu J J, et al. 2015. Extreme precipitation indices over China in CMIP5 models. Part I: Model evaluation [J]. J. Climate, 28 (21): 8603-8619, doi: 10.1175/JCLI-D-15-0099.1.
    [19] Kim H J, Wang B, Ding Q H. 2008. The global monsoon variability simulated by CMIP3 coupled climate models [J]. J. Climate, 21 (20): 5271-5294, doi: 10.1175/2008JCLI2041.1.
    [20] Kitoh A, Endo H, Kumar K K, et al. 2013. Monsoons in a changing world: A regional perspective in a global context [J]. J. Geophys. Res.: Atmos., 118 (8): 3053-3065, doi: 10.1002/jgrd.50258.
    [21] 李红梅, 李林. 2015. 2℃全球变暖背景下青藏高原平均气候和极端气候事件变化 [J]. 气候变化研究进展, 11 (3): 157-164. Li H M, Li L. 2015. Mean and extreme climate change on the Qinghai-Tibetan Plateau with a 2℃ global warming [J]. Adv. Climate Change Res. (in Chinese), 11 (3): 157-164, doi: 10.3969/j.issn.1673-1719.2015.03.001.
    [22] Li H M, Zhou T J, Li C. 2010. Decreasing trend in global land monsoon precipitation over the past 50 years simulated by a coupled climate model [J]. Adv. Atmos. Sci., 27 (2): 285-292, doi: 10.1007/s00376-009-8173-9.
    [23] Li L J, Lin P F, Yu Y Q, et al. 2013a. The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2 [J]. Adv. Atmos. Sci., 30 (3): 543-560, doi: 10.1007/s00376-012-2140-6.
    [24] Li L J, Wang B, Dong L, et al. 2013b. Evaluation of grid-point atmospheric model of IAP LASG version 2 (GAMIL2) [J]. Adv. Atmos. Sci., 30 (3): 855-867, doi: 10.1007/s00376-013-2157-5.
    [25] Liu H L, Lin P F, Yu Y Q, et al. 2012. The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2 [J]. Acta Meteorologica Sinica, 26 (3): 318-329, doi: 10.1007/s13351-012-0305-y.
    [26] Liu J P. 2010. Sensitivity of sea ice and ocean simulations to sea ice salinity in a coupled global climate model [J]. Science China: Earth Sciences, 53 (6): 911-918, doi: 10.1007/s11430-010-0051-x.
    [27] Meehl G A, Stocker T F, Collins W D, et al. 2007. Global climate projections [M]//Climate Change 2007: The Physical Science Basis. Solomon S, Qin D, Manning M, et al., Eds. Cambridge, UK and New York, NY, USA: Cambridge University Press, 283pp.
    [28] Oleson K W, Lawrence D M, Bonan G B, et al. 2010. Technical description of version 4.0 of the Community Land Model (CLM) [R]. NCAR/TN-478+STR NCAR TECHNICAL NOTE. ISSN Electronic Edition, 2153-2400, doi: 10.5065/D6FB50WZ.
    [29] Pall P, Allen M R, Stone D A. 2007. Testing the Clausius-Clapeyron constraint on changes in extreme precipitation under CO2 warming [J]. Climate Dyn., 28 (4): 351-363, doi: 10.1007/s00382-006-0180-2.
    [30] Riahi K, Rao S, Krey V, et al. 2011. RCP8.5-A scenario of comparatively high greenhouse gas emissions [J]. Climatic Change, 109 (1-2): 33-57, doi: 10.1007/s10584-011-0149-y.
    [31] Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram [J]. J. Geophys. Res.: Atmos., 106 (D7): 7183-7192, doi: 10.1029/2000JD900719.
    [32] Thomson A M, Calvin K V, Smith S J, et al. 2011. RCP4.5: A pathway for stabilization of radiative forcing by 2100 [J]. Climatic Change, 109 (1-2): 77-94, doi: 10.1007/s10584-011-0151-4.
    [33] Trenberth K E, Stepaniak D P, Caron J M. 2000. The global monsoon as seen through the divergent atmospheric circulation [J]. J. Climate, 13 (22): 3969-3993, doi: 10.1175/1520-0442(2000)013<3969:TGMAST>2.0.CO;2.
    [34] Turner A G, Slingo J M. 2009. Uncertainties in future projections of extreme precipitation in the Indian monsoon region [J]. Atmos. Sci. Lett., 10 (3): 152-158, doi: 10.1002/asl.223.
    [35] Van Pelt S C, Beersma J J, Buishand T A, et al. 2015. Uncertainty in the future change of extreme precipitation over the Rhine basin: The role of internal climate variability [J]. Climate Dyn., 44 (7-8): 1789-1800, doi: 10.1007/s00382-014-2312-4.
    [36] Wang B, Ding Q H. 2006. Changes in global monsoon precipitation over the past 56 years [J]. Geophys. Res. Lett., 33 (6): L06711, doi: 10.1029/2005GL025347.
    [37] Wang B, Liu J, Kim H J, et al. 2012. Recent change of the global monsoon precipitation (1979-2008) [J]. Climate Dyn., 39 (5): 1123-1135, doi:10. 1007/s00382-011-1266-z.
    [38] Wang B, Liu J, Kim H J, et al. 2013. Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation [J]. Proceedings of the National Academy of Sciences of the United States of America, 110 (14): 5347-5352, doi: 10.1073/pnas.1219405110.
    [39] Xue F, Zeng Q C, Huang R H, et al. 2015. Recent advances in monsoon studies in China [J]. Adv. Atmos. Sci., 32 (2): 206-229, doi: 10.1007/s00376-014-0015-8.
    [40] 严中伟, 杨赤. 2000. 近几十年中国极端气候变化格局 [J]. 气候与环境研究, 5 (3): 267-272. Yan Z W, Yang C. 2000. Geographic patterns of extreme climate changes in China during 1951-1997 [J]. Climatic and Environmental Research (in Chinese), 5 (3): 267-272, doi:10.3969/j. issn.1006-9585.2000.03.005.
    [41] Yu Y Q, Zhi H, Wang B, et al. 2008. Coupled model simulations of climate changes in the 20th century and beyond [J]. Adv. Atmos. Sci., 25 (4): 641-654, doi: 10.1007/s00376-008-0641-0.
    [42] Zhang L X, Zhou T J. 2011. An assessment of monsoon precipitation changes during 1901-2001 [J]. Climate Dyn., 37 (1-2): 279-296, doi: 10.1007/s00382-011-0993-5.
    [43] Zhang L X, Zhou T J. 2014. An assessment of improvements in global monsoon precipitation simulation in FGOALS-s2 [J]. Adv. Atmos. Sci., 31 (1): 165-178, doi: 10.1007/s00376-013-2164-6.
    [44] Zhang X B, Alexander L, Hegerl G C, et al. 2011. Indices for monitoring changes in extremes based on daily temperature and precipitation data [J]. Wiley Interdisciplinary Reviews: Climate Change, 2 (6): 851-870, doi: 10.1002/wcc.147.
    [45] Zhou T J, Yu R C, Li H M, et al. 2008. Ocean forcing to changes in global monsoon precipitation over the recent half-century [J]. J. Climate, 21 (15): 3833-3852, doi: 10.1175/2008JCLI2067.1.
    [46] Zhou T J, Song F F, Chen X L. 2013. Historical evolution of global and regional surface air temperature simulated by FGOALS-s2 and FGOALS-g2: How reliable are the model results? [J]. Adv. Atmos. Sci., 30 (3): 638-657, doi: 10.1007/s00376-013-2205-1.
    [47] 周天军, 邹立维, 吴波, 等. 2014. 我国地球气候系统模式研究进展: CMIP计划实施近20年回顾 [J]. 气象学报, 72 (5): 892-907. Zhou T J, Zou L W, Wu B, et al. 2014. Development of earth/climate system models in China: A review from the Coupled Model Intercomparison Proiect perspective [J]. Acta Meteor. Sinica (in Chinese), 72 (5): 892-907, doi: 10.11676/qxxb2014.083.
  • 加载中
计量
  • 文章访问数:  2160
  • HTML全文浏览量:  0
  • PDF下载量:  1829
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-07

目录

    /

    返回文章
    返回