高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于陆面模式Noah-MP的不同参数化方案在半干旱区的适用性

叶丹 张述文 王飞洋 毛伏平 杨茜茜

叶丹, 张述文, 王飞洋, 毛伏平, 杨茜茜. 基于陆面模式Noah-MP的不同参数化方案在半干旱区的适用性[J]. 大气科学, 2017, 41(1): 189-201. doi: 10.3878/j.issn.1006-9895.1604.15226
引用本文: 叶丹, 张述文, 王飞洋, 毛伏平, 杨茜茜. 基于陆面模式Noah-MP的不同参数化方案在半干旱区的适用性[J]. 大气科学, 2017, 41(1): 189-201. doi: 10.3878/j.issn.1006-9895.1604.15226
Dan YE, Shuwen ZHANG, Feiyang WANG, Fuping MAO, Xixi YANG. The Applicability of Different Parameterization Schemes in Semi-Arid Region Based on Noah-MP Land Surface Model[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(1): 189-201. doi: 10.3878/j.issn.1006-9895.1604.15226
Citation: Dan YE, Shuwen ZHANG, Feiyang WANG, Fuping MAO, Xixi YANG. The Applicability of Different Parameterization Schemes in Semi-Arid Region Based on Noah-MP Land Surface Model[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(1): 189-201. doi: 10.3878/j.issn.1006-9895.1604.15226

基于陆面模式Noah-MP的不同参数化方案在半干旱区的适用性

doi: 10.3878/j.issn.1006-9895.1604.15226
基金项目: 

国家重点基础研究发展计划(973计划) Grant 2013CB430100

国家自然科学基金项目 Grant 41575098

高等学校博士学科点专项科研基金 Grant 20120211110019

详细信息
    作者简介:

    叶丹,女,1989年出生,硕士研究生,从事陆面过程模拟和参数化方案比较的研究。E-mail:yed13@lzu.edu.cn

    通讯作者:

    张述文,E-mail:zhangsw@lzu.edu.cn

  • 中图分类号: P404

The Applicability of Different Parameterization Schemes in Semi-Arid Region Based on Noah-MP Land Surface Model

Funds: 

National Basic Research Program of China (973 Program) Grant 2013CB430100

National Natural Science Foundation of China (NSFC) Grant 41575098

Specialized Research Fund for the Doctoral Program of Higher Education Grant 20120211110019

  • 摘要: 针对陆面模式Noah-MP对兰州大学半干旱气候与环境观测站(SACOL)2009年8月地表热通量模拟值偏差大的问题,通过分析相关物理过程和模拟试验来探究偏差的来源,并确定合适的参数化方案:采用Chen97方案计算感热输送系数可以改善感热通量的模拟;采用Jarvis气孔阻抗方案能增大植被蒸腾,改进模式对潜热通量的模拟效果,同时也使热通量在感热和潜热间的分配比例合理;采用LP92方案可减小土壤蒸发阻抗并有利于土壤蒸发,使得模式对潜热通量的模拟效果变好。不同参数化方案的组合试验表明:同时采用2组或3组新的参数化方案组合可以进一步减小模拟的地表感热和潜热通量的均方根误差,但是土壤湿度和温度的模拟效果并没有同步改善。
  • 图  1  土壤湿度的模拟值与观测值对比,土壤深度分别为(a)0.05 m、(b)0.2 m、(c)0.4 m 和(d)0.8 m

    Figure  1.  Comparisons between simulated and observed soil moisture at depths of (a) 0.05 m, (b) 0.2 m, (c) 0.4 m, and (d) 0.8 m, respectively

    图  2  土壤温度的模拟值与观测值的对比,土壤深度分别为(a)0.05 m、(b)0.2 m、(c)0.5 m 和(d)0.8 m

    Figure  2.  Comparisons between simulated and observed soil temperature at depths of (a) 0.05, (b) 0.2, (c) 0.5, and (d) 0.8 m, respectively

    图  3  (a)净辐射通量、(b)潜热通量和(c)感热通量模拟值与观测值的对比

    Figure  3.  Comparisons of simulated and observed (a) net radiation flux, (b) latent heat flux and (c) sensible heat flux

    图  4  (a)感热输送系数及(b)对应的感热通量

    Figure  4.  Comparisons of (a) heat exchange coefficient and (b) corresponding sensible heat flux

    图  5  Ball-Berry 和Jarvis 方案模拟的蒸腾热

    Figure  5.  Comparison of simulated transpiration heat fluxes using Ball-Berry and Jarvis schemes, respectively

    图  6  Ball-Berry 和Jarvis 方案模拟的(a)潜热通量和(b)感热通量与对应观测值的比较

    Figure  6.  Comparisons of (a) latent heat fluxes and (b) sensible heat fluxes observed and simulated with Ball-Berry and Jarvis schemes, respectively

    图  7  两种不同地表蒸发方案模拟的(a)土壤蒸发潜热以及(b)潜热通量

    Figure  7.  Comparisons of simulated (a) bare soil evaporative heat fluxes and (b) latent heat fluxes with two different evaporation schemes

    表  1  不同试验模拟的整个8月不同深度处土壤湿度的RMSE和NSE

    Table  1.   RMSE and NSE for the soil moisture at different depths with different experiments in August

    试验编号 不同深度土壤湿度的Rmse/m3 m-3 不同深度土壤湿度的nse
    0.05 m 0.2 m 0.4 m 0.8 m 0.05 m 0.2 m 0.4 m 0.8 m
    1 0.023 0.021 0.028 0.048 0.76 0.80 0.71 -14935.63
    2 0.023 0.025 0.028 0.040 0.74 0.71 0.72 -10443.30
    3 0.035 0.033 0.030 0.033 0.41 0.49 0.68 -7144.51
    4 0.050 0.045 0.036 0.021 -0.20 0.05 0.54 -2842.92
    5 0.035 0.036 0.032 0.029 0.41 0.39 0.65 -5287.44
    下载: 导出CSV

    表  2  不同试验模拟的整个8月不同深度处土壤温度的RMSE和NSE

    Table  2.   RMSE and NSE for the soil temperature at different depths with different experiments in August

    试验编号 不同深度土壤温度的Rmse/℃ 不同深度土壤温度的nse
    0.05 m 0.2 m 0.5 m 0.8 m 0.05 m 0.2 m 0.5 m 0.8 m
    1 2.04 1.90 1.40 0.73 0.73 0.25 -0.16 0.16
    2 2.00 1.82 1.27 0.61 0.74 0.31 0.05 0.41
    3 3.30 3.04 2.34 1.49 0.29 -0.94 -2.21 -2.50
    4 3.55 3.27 2.58 1.70 0.18 -1.23 -2.89 -3.53
    5 3.32 3.06 2.36 1.50 0.28 -0.96 -2.25 -2.56
    下载: 导出CSV

    表  3  8月13~15时(北京时,下同)不同参数化方案模拟热通量的RMSE和NSE

    Table  3.   RMSE and NSE for the latent and sensible heat fluxes simulated with different parameterization schemes from 1300 BT(Beijing Time)to 1500 BT in August

    方案 RMSE/W m-2 NSE
    潜热通量 感热通量 潜热通量 感热通量
    默认 141.27 171.47 -1.17 -11.09
    Chen97 132.85 128.68 -0.91 -5.81
    Jarvis 81.15 116.05 0.29 -4.54
    LP92 68.78 95.02 0.49 -2.71
    下载: 导出CSV

    表  4  不同试验对应参数化方案组合

    Table  4.   Combinations of parameterization schemes in different experiments

    不同参数化方案
    试验编号 感热输送系数 植被气孔阻抗 土壤蒸发
    1 M-O Ball-Berry SZ09
    2 Chen97 Jarvis SZ09
    3 Chen97 Ball-Berry LP92
    4 M-O Jarvis LP92
    5 Chen97 Jarvis LP92
    下载: 导出CSV

    表  5  8月13~15时时段不同试验的潜热通量和感热通量的RMSE 和NSE

    Table  5.   RMSE and NSE for the latent and sensible heat fluxes in different experiments from 1300 BT to 1500 BT in August

    试验编号 rmse/W m-2 NSE
    潜热通量 感热通量 潜热通量 感热通量
    1 141.27 171.47 -1.17 -11.09
    2 75.13 80.24 0.39 -1.65
    3 45.27 58.88 0.78 -0.43
    4 75.42 67.95 0.38 -0.90
    5 60.33 39.88 0.61 0.35
    下载: 导出CSV
  • [1] Aphalo P J, Jarvis P G. 1993. An analysis of Ball's empirical model of stomatal conductance[J]. Ann. Bot., 72 (4):321-327, doi: 10.1006/anbo.1993.1114.
    [2] Avissar R, Mahrer Y. 1988. Mapping frost-sensitive areas with a three-dimensional local-scale numerical model. Part I. Physical and numerical aspects[J]. J. Appl. Meteor., 27 (4):400-413, doi:10.1175/1520-0450(1988)027<0400:MFSAWA>2.0.CO;2.
    [3] Ball J T, Woodrow I E, Berry J A. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions[M]//Biggins J, Ed. Progress in Photosynthesis Research. Netherlands:Springer, 221-224, doi: 10.1007/978-94-017-0519-6_48.
    [4] Callies U, Rhodin A, Eppel D P. 1998. A case study on variational soil moisture analysis from atmospheric observations[J]. J. Hydrol., 212-213:95-108, doi: 10.1016/S0022-1694(98)00204-2.
    [5] Chen F, Janjić Z, Mitchell K. 1997. Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model[J]. Bound.-Layer Meteor., 85 (3):391-421, doi: 10.1023/A:1000531001463.
    [6] Chen F, Mitchell K, Schaake J, et al. 1996. Modeling of land surface evaporation by four schemes and comparison with FIFE observations[J]. J. Geophys. Res., 101 (D3):7251-7268, doi: 10.1029/95JD02165.
    [7] Chen Y Y, Yang K, Zhou D Q, et al. 2010. Improving the Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length[J]. J. Hydrometeorol., 11 (4):995-1006, doi: 10.1175/2010JHM1185.1.
    [8] Dirmeyer P, Gao X, Oki T. 2002. The second global soil wetness project (GSWP-2) science and implementation plan[R]. IGPO Publication Series No. 37, 64pp.
    [9] 房云龙, 孙菽芬, 李倩, 等. 2010. 干旱区陆面过程模型参数优化和地气相互作用特征的模拟研究[J]. 大气科学, 34 (2):290-306. doi: 10.3878/j.issn.1006-9895.2010.02.05

    Fang Yunlong, Sun Shufen, Li Qian, et al. 2010. The optimization of parameters of land surface model in arid region and the simulation of land-atmosphere interaction[J]. Chinese J. Atmos. Sci. (in Chinese), 34 (2):290-306, doi: 10.3878/j.issn.1006-9895.2010.02.05.
    [10] Henderson-Sellers A, Pitman A J, Love P K, et al. 1995. The project for intercomparison of land surface parameterization schemes (PILPS):Phases 2 and 3[J]. Bull. Amer. Meteor. Soc., 76 (4):489-503, doi:10.1175/1520-0477(1995)076<0489:TPFIOL>2.0.CO;2.
    [11] Huang J P, Zhang W, Zuo J Q, et al. 2008. An overview of the semi-arid climate and environment research observatory over the Loess Plateau[J]. Adv. Atmos. Sci., 25 (6):906-921, doi: 10.1007/s00376-008-0906-7.
    [12] Jacquemin B, Noilhan J. 1990. Sensitivity study and validation of a land surface parameterization using the HAPEX-MOBILHY data set[J]. Bound.-Layer Meteor., 52 (1-2):93-134, doi: 10.1007/BF00123180.
    [13] Jarvis P G. 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J]. Philos. Trans. Roy. Soc. B:Biol. Sci., 273 (927):593-610, doi: 10.1098/rstb.1976.0035.
    [14] Kondo J, Saigusa N, Sato T. 1990. A parameterization of evaporation from bare soil surfaces[J]. J. Appl. Meteor., 29 (5):385-389, doi:10.1175/1520-0450(1990)029<0385:APOEFB>2.0.CO;2.
    [15] Koster R D, Dirmeyer P A, Guo Z C, et al. 2004. Regions of strong coupling between soil moisture and precipitation[J]. Science, 305 (5687):1138-1140, doi: 10.1126/science.1100217.
    [16] Lawrence D M, Oleson K W, Flanner M G, et al. 2011. Parameterization improvements and functional and structural advances in version 4 of the Community Land Model[J]. J. Adv. Mod. Earth Syst., 3 (3), doi: 10.1029/2011MS000045.
    [17] Lee T J, Pielke R A. 1992. Estimating the soil surface specific humidity[J]. J. Appl. Meteor., 31 (5):480-484, doi:10.1175/1520-0450(1992)031<0480:ETSSSH>2.0.CO;2.
    [18] 李得勤, 张述文, 段云霞, 等. 2013.SCE-UA 算法优化土壤湿度方程中参数的性能研究[J]. 大气科学, 37 (5):971-982. doi: 10.3878/j.issn.1006-9895

    Li Deqin, Zhang Shuwen, Duan Yunxia, et al. 2013. Calibration of parameters in soil moisture equation with shuffled complex evolution algorithm[J]. Chinese J. Atmos. Sci. (in Chinese), 37 (5):971-982, doi: 10.3878/j.issn.1006-9895.
    [19] 李得勤, 段云霞, 张述文, 等. 2015. 土壤湿度和土壤温度模拟中的参数敏感性分析和优化[J]. 大气科学, 39 (5):991-1010. doi: 10.3878/j.issn.1006-9895.1503.14276

    Li Deqin, Duan Yunxia, Zhang Shuwen, et al. 2015. Quantifying parameter sensitivity and calibration in simulating soil temperature and moisture[J]. Chinese J. Atmos. Sci. (in Chinese), 39 (5):991-1010, doi:10.3878/j.issn.1006-9895. 1503.14276.
    [20] 李宏宇, 张强, 王胜. 2010. 陇中黄土高原夏季陆面辐射和热量特征研究[J]. 地球科学进展, 25 (10):1070-1081. doi: 10.11867/j.issn.1001-8166.2010.10.1070

    Li Hongyu, Zhang Qiang, Wang Sheng. 2010. Research on characteristics of land-surface radiation and heat budget over the Loess Plateau of central Gansu in summer[J]. Adv. Earth Sci. (in Chinese), 25 (10):1070-1081, doi:10.11867/j.issn. 1001-8166.2010.10.1070.
    [21] 李剑铎, 段青云, 戴永久, 等. 2013.CoLM模拟土壤温度和湿度最敏感参数的研究[J]. 大气科学, 37 (4):841-851. doi: 10.3878/j.issn.1006-9895.2012.12046

    Li Jianduo, Duan Qingyun, Dai Yongjiu, et al. 2013. A study of the most sensitive parameters for simulating soil temperature and moisture of CoLM[J]. Chinese J. Atmos. Sci. (in Chinese), 37 (4):841-851, doi:10.3878/j.issn. 1006-9895.2012.12046.
    [22] 刘远永, 文军, 韦志刚, 等. 2007. 黄土高原塬区地表辐射和热量平衡观测与分析[J]. 高原气象, 26 (5):928-937. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200705004.htm

    Liu Yuanyong, Wen Jun, Wei Zhigang, et al. 2007. Observation and analysis of the land surface radiation and energy balance over the Loess Plateau mesa region[J]. Plateau Meteor. (in Chinese), 26 (5):928-937. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200705004.htm
    [23] McCumber M C, Pielke R A. 1981. Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model:1. Soil layer[J]. J. Geophys. Res., 86 (C10):9929-9938, doi: 10.1029/JC086iC10p09929.
    [24] 孟祥新, 符淙斌. 2009. 不同陆面过程模式对半干旱区通榆站模拟性能的检验与对比[J]. 气候与环境研究, 14 (4):352-362. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200904005.htm

    Meng Xiangxin, Fu Congbin. 2009. Comparative evaluation of land surface models BATS, LSM, and CoLM at Tongyu station in semi-arid area[J]. Climatic Environ. Res. (in Chinese), 14 (4):352-362. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200904005.htm
    [25] Nash J E, Sutcliffe J V. 1970. River flow forecasting through conceptual models part I-A discussion of principles[J]. J. Hydrol., 10 (3):282-290, doi: 10.1016/0022-1694(70)90255-6.
    [26] Niu G Y, Yang Z L, Mitchell K E, et al. 2011. The community Noah land surface model with multiparameterization options (Noah-MP):1. Model description and evaluation with local-scale measurements[J]. J. Geophys. Res., 116 (D12), doi: 10.1029/2010JD015139.
    [27] Noilhan J, Planton S. 1989. A simple parameterization of land surface processes for meteorological models[J]. Mon. Wea. Rev., 117 (3):536-549, doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.
    [28] Philip J R. 1957. Evaporation, and moisture and heat fields in the soil[J]. J. Meteor., 14 (4):354-366. doi: 10.1175/1520-0469(1957)014<0354:EAMAHF>2.0.CO;2
    [29] 任军芳, 苏炳凯, 赵鸣. 1999. 标量粗糙度对地气交换的影响[J]. 大气科学, 23 (3):349-358. doi: 10.3878/j.issn.1006-9895.1999.03.11

    Ren Junfang, Su Bingkai, Zhao Ming. 1999. Influence of scalar roughness lengths on the biosphere-atmosphere transfer[J]. Chinese J. Atmos. Sci. (in Chinese), 23 (3):349-358, doi: 10.3878/j.issn.1006-9895.1999.03.11.
    [30] Sakaguchi K, Zeng X B. 2009. Effects of soil wetness, plant litter, and under-canopy atmospheric stability on ground evaporation in the Community Land Model (CLM3.5)[J]. J. Geophys. Res., 114 (D1), doi: 10.1029/2008JD010834.
    [31] 孙菽芬. 2005. 陆面过程的物理、生化机理和参数化模型[M]. 北京:气象出版社, 307pp.

    Sun Shufen. 2005. Parameterization Study of Physical and Biochemical Mechanism in Land Surface Processes (in Chinese)[M]. Beijing:China Meteorological Press, 307pp.
    [32] 王治海, 刘建栋, 刘玲, 等. 2012. 几种气孔导度模型在华北地区适应性研究[J]. 中国农业气象, 33 (3):412-416. doi: 10.3969/j.issn.1000-6362.2012.03.014

    Wang Zhihai, Liu Jiandong, Liu Ling, et al. 2012. Research on the applicability of several stomatal conductance models on the North China Plain[J]. Chinese J. Agrometeor. (in Chinese), 33 (3):412-416, doi: 10.3969/j.issn.1000-6362.2012.03.014.
    [33] Yang Z L, Niu G Y, Mitchell K E, et al. 2011. The community Noah land surface model with multiparameterization options (Noah-MP):2. Evaluation over global river basins[J]. J. Geophys. Res., 116(D12), doi: 10.1029/2010JD015140.
    [34] 张述文, 李得勤, 邱崇践. 2009. 三类陆面模式模拟土壤湿度廓线的对比研究[J]. 高原气象, 28 (5):988-996. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200905005.htm

    Zhang Shuwen, Li Deqin, Qiu Chongjian. 2009. A comparative study of the three land surface models in simulating the soil moisture profile[J]. Plateau Meteor. (in Chinese), 28 (5):988-996. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200905005.htm
    [35] 张述文, 李得勤, 刘彦华, 等. 2010. 土壤湿度方程求解方法的比较[J]. 兰州大学学报 (自然科学版), 46 (4):46-52, 57. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201004010.htm

    Zhang Shuwen, Li Deqin, Liu Yanhua, et al. 2010. A comparative study of difference algorithms for solving the soil moisture equation[J]. J. Lanzhou Univ. (Nat. Sci.) (in Chinese), 46 (4):46-52, 57. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201004010.htm
    [36] 张述文,刘源,曹帮军,等. 2016.GLDAS 和CMIP5 产品的中国土壤湿度-降水耦合分析及变化趋势[J]. 气候与环境研究, 21 (2):188-196. doi: 10.3878/j.issn.1006-9585.2015.15112

    Zhang Shuwen, Liu Yuan, Cao Bangjun, et al. 2016. Soil moisture-precipitation coupling and trends in China, based on GLDAS and CMIP5 products[J]. Climatic and Environmental Research (in Chinese), 21 (2):188-196, doi: 10.3878/j.issn.1006-9585.2015.15112.
    [37] 周荣卫, 蒋维楣, 刘罡, 等. 2007. 热力粗糙度引入精细城市边界层模式的初步应用[J]. 大气科学, 31 (4):611-620. doi: 10.3878/j.issn.1006-9895.2007.04.06

    Zhou Rongwei, Jiang Weimei, Liu Gang, et al. 2007. A study of introducing temperature roughness length into a fine urban boundary layer model[J]. Chinese J. Atmos. Sci. (in Chinese), 31 (4):611-620, doi:10.3878/j.issn.1006-9895. 2007.04.06.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  2315
  • HTML全文浏览量:  66
  • PDF下载量:  3264
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-06
  • 网络出版日期:  2016-06-22
  • 刊出日期:  2017-01-15

目录

    /

    返回文章
    返回