A Blending Method for Storm-Scale Ensemble Forecast and Its Application to Beijing Extreme Precipitation Event on July 21, 2012
-
摘要: 风暴尺度集合预报系统(Storm-Scale Ensemble Forecast system,简称SSEFs)中集合成员之间发散度不足一直都是研究的难点。本文尝试了将Barnes空间滤波融入到集合转换卡尔曼滤波(ETKF)更新预报系统中的混合初值扰动法。该方案将ETKF方法的小尺度信息与来自于侧边界条件扰动的大尺度信息相结合,缓解了扰动在侧边界不匹配的问题。通过2012年北京“7.21”暴雨并使用邻位方法对比分析了不同初值扰动方案在不同时间尺度与空间尺度上的特征,在此基础上进一步探讨了构造混合初始扰动法的可行性。结果表明:ETKF试验所构造的初始扰动无法与侧边界条件扰动相匹配,混合后的初始扰动可以有效缓解SSEFs中由于初始扰动与侧边界扰动不匹配产生的虚假波动,其中大尺度信息保留较多的混合试验(ETKF80)和动力降尺度方案(Down)在减少虚假波动方面的效果最优;从集合离散度来看,在前期暖区降水阶段ETKF的离散度在小尺度上最大,随着锋面降水的开始,Down的离散度逐渐超过ETKF,而使用各滤波波段构造的混合试验同时具备ETKF与Down二者的特征。选择合理的滤波波段可以获得最为合理的离散度表现(ETKF180),说明仅考虑侧边界匹配(Down和ETKF80)并不能获得最合理的集合离散度,应综合考虑其他因素。从降水概率预报结果来看,选取合适的滤波波段所构造的混合扰动试验同样获得了较好的效果。
-
关键词:
- 风暴尺度集合预报系统 /
- 集合转换卡尔曼滤波 /
- 混合初始扰动 /
- 离散度 /
- 概率预报
Abstract: In order to overcome the under-dispersive problem in the storm-scale ensemble forecast system (SSEFs), a new blending method to generate initial perturbation is designed and tested for the WRF SSEFs. This new scheme is based on the combination of the ETKF (Ensemble Transform Kalman Filter) and the Barnes filter for scale decomposition. This scheme is applied to the simulation of the Beijing extreme precipitation event on July 21, 2012and the neighborhood methods is employed to verify the performance of this new scheme. Results indicate that the blending method can effectively solve the scale mismatch problem in the lateral boundary in storm-scale ensemble prediction system, in which ETKF80 (with wavelength scale of 180 km) and Down (Dynamical downscaling) show the best overall performance. The Dispersion Fractions Skill Score (DFSS) shows that the ETKF has a larger spread in small scales during the period of warm area precipitation while Down produces a larger spread at large scales during period of frontal precipitation. The experiments with initial perturbations generated by the blending method take advantage of both the ETKF and Down. The ETKF180 (with wavelength scale of 180 km) generates the most reasonable ensemble spreads. Results also indicate that in order to get better ensemble spread in SSEFs, not only the lateral scale mismatch but also some other elements (such as the interaction between different scales of initial perturbation) should be considered. The blending method ETKF180 also improves the precipitation probability forecast. -
图 4 各组集合预报试验内区域与外区域地面气压离散度标准化偏差:(a)ETKF;(b)ETKF80;(c)ETKF180;(d)ETKF350;(e)ETKF500;(f)Down
Figure 4. Normalized differences in surface pressure spread between inner domain and outer domain for different ensemble forecast experiments: (a) ETKF, (b) ETKF80, (c) ETKF180, (d) ETKF350, (e) ETKF500, and (f) Down
图 5 2012年7月21日03 时至7月22日00 时北京地区(39.4°~41°N,115.4°~117.5°E)观测与各组集合试验的集合成员、控制试验区域平均的逐小时累积降水量(单位:mm h-1)时间序列:(a)ETKF;(b)ETKF80;(c)ETKF180;(d)ETKF350;(e)ETKF500;(f)Down。虚线为控制试验,黑色实线为观测,灰色实线为集合成员
Figure 5. Spatially averaged hourly accumulated precipitation over Beijing area (39.4°-41°N, 115.4°-117.5°E) as a function of lead time from initialization time 0300 UTC 21 Jul for observations (OBS), ensemble members of different ensemble experiments, and control experiments (CTL): (a) ETKF; (b) ETKF80; (c) ETKF180; (d) ETKF350; (e) ETKF500; (f) Down
图 6 (a-e)离散分区预报技巧评分与(f-g)误差分区预报技巧评分(×10):(a、f)ETKF80 与ETKF 的差;(b、g) ETKF180 与ETKF 的差;(c、h)ETKF350 与ETKF 的差;(d、i)ETKF500 与ETKF 的差;(e、j)Down 与ETKF 的差
Figure 6. (a-e) Dispersion and (f-g) error fractions skill scores (dFSS and eFSS) for (a, f) difference between the ETKF80 and ETKF, (b, g) difference between the ETKF180 and ETKF, (c, h) difference between the ETKF350 and ETKF, (d, i) difference between the ETKF500 and ETKF, (e, j) difference between the Down and ETKF
图 8 阈值为(a-e)5 mm (3 h)-1 和(b-f)10 mm (3 h)-1 的各组集合试验的BSS:(a、f)ETKF80;(b、g)ETKF180;(c、h)ETKF350;(d、i) ETKF500;(e、j)Down
Figure 8. BSS for different ensemble experiments with thresholds of (a-e) 5 mm (3 h)-1 and (b-f) 10 mm (3 h)-1: (a, f) ETKF80; (b, g) ETKF180; (c, h) ETKF350; (d, i) ETKF500; (e, j) Down
表 1 集合预报试验方案
Table 1. Schemes of the different ensemble forecast experiments
试验名称 内区域初始扰动 外区域初始扰动(为内区域提供侧边界条件扰动) ETKF ETKF方法 动力降尺度方法 ETKF80 混合扰动方法(48~120 km) 动力降尺度方法 ETKF180 混合扰动方法(80~180 km) 动力降尺度方法 ETKF350 混合扰动方法(140~560 km) 动力降尺度方法 ETKF500 混合扰动方法(240~840 km) 动力降尺度方法 Down 动力降尺度方法 动力降尺度方法 -
[1] Barnes S L. 1994. Applications of the Barnes objective analysis scheme. Part I:Effects of undersampling, wave position, and station randomness[J]. J. Atmos. Oceanic Technol., 11 (6):1433-1448, doi: 10.1175/1520-0426(1994)011<1433:AOTBOA>2.0.CO;2. [2] Bowler N E, Mylne K R. 2009. Ensemble transform Kalman filter perturbations for a regional ensemble prediction system[J]. Quart. J. Roy. Meteor. Soc., 135 (640):757-766, doi: 10.1002/qj.404. [3] Buizza R, Palmer T N. 1995. The singular-vector structure of the atmospheric global circulation[J]. J. Atmos. Sci., 52 (9):1434-1456, doi: 10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2. [4] Candille, Talagrand O. 2005. Evaluation of probabilistic prediction systems for a scalar variable[J]. Quart. J. Roy. Meteor. Soc., 131 (609):2131-2150, doi: 10.1256/qj.04.71. [5] Caron J F. 2013. Mismatching perturbations at the lateral boundaries in limited-area ensemble forecasting:A case study[J]. Mon. Wea. Rev., 141 (1):356-374, doi: 10.1175/MWR-D-12-00051.1. [6] Craig G C, Keil C, Leuenberger D. 2012. Constraints on the impact of radar rainfall data assimilation on forecasts of cumulus convection[J]. Quart. J. Roy. Meteor. Soc., 138 (663):340-352, doi: 10.1002/qj.929. [7] Dey S R A, Leoncini G, Roberts N M, et al. 2014. A spatial view of ensemble spread in convection permitting ensembles[J]. Mon. Wea. Rev., 142 (11):4091-4107. doi: 10.1175/MWR-D-14-00172.1 [8] 杜钧, 李俊. 2014. 集合预报方法在暴雨研究和预报中的应用[J]. 气象科技进展, 4 (5):6-20. doi: 10.3969/j.issn.2095-1973.2014.05.001Du Jun, Li Jun. 2014. Application of ensemble methodology to heavy-rain research and prediction[J]. Adv. Meteor. Sci. Technol. (in Chinese), 4 (5):6-20, doi:10.3969/j.issn.2095-1973.2014. 05.001. [9] Duda J D, Gallus W A. 2013. The Impact of large-scale forcing on skill of simulated convective initiation and upscale evolution with convection-allowing grid spacings in the WRF[J]. Wea. Forecasting, 28 (4):994-1018, doi: 10.1175/WAF-D-13-00005.1. [10] Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J. Atmos. Sci., 46 (46):3077-3107. [11] Evensen G. 2004. Sampling strategies and square root analysis schemes for the EnKF[J]. Ocean Dyn., 54 (6):539-560, doi: 10.1007/s10236-004-0099-2. [12] Gao F, Childs P P, Huang X Y, et al. 2014. A relocation-based initialization scheme to improve track-forecasting of tropical cyclones[J]. Adv. Atmos. Sci., 31 (1):27-36, doi: 10.1007/s00376-013-2254-5. [13] Gebhardt C, Theis S E, Paulat M, et al. 2011. Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries[J]. Atmos. Res., 100 (2-3):168-177, doi: 10.1016/j.atmosres.2010.12.008. [14] Harnisch F, Keil C. 2015. Initial conditions for convective-scale ensemble forecasting provided by ensemble data assimilation[J]. Mon. Wea. Rev., 143 (5):1583-1600, doi: 10.1175/MWR-D-14-00209.1. [15] Hersbach H. 2000. Decomposition of the continuous ranked probability score for ensemble prediction systems[J]. Wea. Forecasting, 15 (5):559-570, doi: 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2. [16] Hohenegger C, Walser A, Langhans W, et al. 2008. Cloud-resolving ensemble simulations of the August 2005 Alpine flood. Quart. J. Roy. Meteor. Soc., 134 (633):889-904 doi: 10.1002/qj.v134:633 [17] Hong S Y, Dudhia J, Chen S H. 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Mon. Wea. Rev., 132 (1):103-120. doi: 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2 [18] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon. Wea. Rev., 134(9):2318. doi: 10.1175/MWR3199.1 [19] Hou D C, Kalnay E, Egemeier K K. 2001. Objective verification of the SAMEX '98 ensemble forecasts[J]. Mon. Wea. Rev., 129 (1):73-91, doi: 10.1175/1520-0493(2001)129<0073:OVOTSE>2.0.CO;2. [20] Hsiao L F, Liou C S, Yeh T C, et al. 2010. A vortex relocation scheme for tropical cyclone initialization in advanced research WRF[J]. Mon. Wea. Rev., 138 (8):3298-3315, doi: 10.1175/2010MWR3275.1. [21] Johnson A, Wang X G, Xue M, et al. 2014. Multiscale characteristics and evolution of perturbations for warm season convection-allowing precipitation forecasts:Dependence on background flow and method of perturbation[J]. Mon. Wea. Rev., 142 (3):1053-1073, doi: 10.1175/MWR-D-13-00204.1. [22] Kain J S, Fritsch J M. 1990. A one-dimensional entraining/detraining plume model and its application in convective parameterization[J]. J. Atmos. Sci., 47 (23):2784-2802. doi: 10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2 [23] Kong F, Droegemeier K K, Hickmon N L. 2007. Multiresolution ensemble forecasts of an observed tornadic thunderstorm system. Part II:Storm-scale experiments[J]. Mon. Wea. Rea., 135 (3):759-782, doi: 10.1175/MWR3323.1. [24] 李俊, 杜钧, 刘羽. 2015. 北京"7.21"特大暴雨不同集合预报方案的对比试验[J]. 气象学报, 73 (1):50-71. doi: 10.11676/qxxb2015.008Li Jun, Du Jun, Liu Yu. 2015. A comparison of initial condition-, multi-physics-and stochastic physics-based ensembles in predicting Beijing "7.21" excessive storm rain event[J]. Acta Meteor. Sinica (in Chinese), 73 (1):50-71, doi: 10.11676/qxxb2015.008. [25] Mass C F, Ovens D, Westrick K, et al. 2002. Does increasing horizontal resolution produce more skillful forecasts?[J]. Bull. Amer. Meteor. Soc., 83 (3):407-430, doi:10.1175/1520-0477(2002)083<0407:DIHRPM>2.3. CO;2. [26] Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmosphere:RRTM, a validated correlated-k model for the longwave[J]. J. Geophys. Res., 102 (D14):16663-16682. doi: 10.1029/97JD00237 [27] Nuissier O, Joly B, Vié B, et al. 2012. Uncertainty of lateral boundary conditions in a convection-permitting ensemble:A strategy of selection for Mediterranean heavy precipitation events[J]. Nat. Hazards Earth Syst. Sci., 12 (10):2993-3011, doi: 10.5194/nhess-12-2993-2012. [28] Nutter P, Stensrud D, Xue M. 2004. Effects of coarsely resolved and temporally interpolated lateral boundary conditions on the dispersion of limited-area ensemble forecasts[J]. Mon. Wea. Rev., 132 (10):2358-2377, doi: 10.1175/1520-0493(2004)132<2358:EOCRAT>2.0.CO;2. [29] Palmer T N, Buizza R, Leutbecher M, et al. 2007. The ensemble prediction system-Recent and ongoing developments[C]//ECMWF Technical Memorandum. [30] Peralta C, Bouallègue Z B, Theis S E, et al. 2012. Accounting for initial condition uncertainties in COSMO-DE-EPS[J]. J. Geophys. Res., 117 (D7), doi: 10.1029/2011JD016581. [31] Roberts N M, Lean H W. 2008. Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events[J]. Mon. Wea. Rev., 136 (1):78-97, doi: 10.1175/2007MWR2123.1. [32] Saito K, Seko H, Kunii M, et al. 2012. Effect of lateral boundary perturbations on the breeding method and the local ensemble transform Kalman filter for mesoscale ensemble prediction[J]. Tellus A, 64 (1):11594, doi: 10.3402/tellusa.v64i0.11594. [33] 孙建华, 赵思雄, 傅慎明, 等. 2013. 2012年7月21日北京特大暴雨的多尺度特征[J]. 大气科学, 37 (3):705-718. doi: 10.3878/j.issn.1006-9895.2013.12202Sun Jianhua, Zhao Sixiong, Fu Shenming, et al. 2013. Multi-scale characteristics of record heavy rainfall over Beijing area on July 21, 2012[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37 (3):703-718, doi:10.3878/j.issn. 1006-9895.2013.12202. [34] Szintai B, Ihász I. 2006. The dynamical downscaling of ECMWF EPS products with the ALADIN mesoscale limited area model:Preliminary evaluation[J]. IDOJÁRÁS, 110 (3-4):253-277. http://cn.bing.com/academic/profile?id=a4b3f59aa6e8b4aa055eadf9c5d7f928&encoded=0&v=paper_preview&mkt=zh-cn [35] Tennant W. 2015. Improving initial condition perturbations for MOGREPS-UK[J]. Quart. J. Roy. Meteor. Soc., 141 (691):2324-2336, doi: 10.1002/qj.2524. [36] Toth Z. 2001. Ensemble forecasting in WRF[J]. Bull. Amer. Meteor. Soc., 82 (4):695-697. doi: 10.1175/1520-0477(2001)082<0695:MSEFIW>2.3.CO;2 [37] Vié B, Nuissier O, Ducrocq V. 2011. Cloud-resolving ensemble simulations of Mediterranean heavy precipitating events:Uncertainty on initial conditions and lateral boundary conditions. Mon. Wea. Rev., 139 (2):403-423 doi: 10.1175/2010MWR3487.1 [38] Wang Y, Bellus M, Wittmann C, et al. 2011. The Central European limited-area ensemble forecasting system:ALADIN-LAEF[J]. Quart. J. Roy. Meteor. Soc., 137 (655):483-502, doi: 10.1002/qj.751. [39] Wang Y, Bellus M, Geleyn J F, et al. 2014. A new method for generating initial condition perturbations in a regional ensemble prediction system:Blending[J]. Mon. Wea. Rev., 142 (5):2043-2059, doi: 10.1175/MWR-D-12-00354.1. [40] Warner T T, Peterson R A, Treadon R E. 1997. A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction[J]. Bull. Amer. Meteor. Soc., 78 (11):2599-2617, doi:10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO; 2. [41] Wei M Z, Toth Z, Wobus R, et al. 2006. Ensemble transform Kalman filter-based ensemble perturbations in an operational global prediction system at NCEP[J]. Tellus A, 58 (1):28-44, doi:10.1111/j.1600-0870. 2006.00159.x. [42] Zhang H B, Chen J, Zhi X F, et al. 2015. Study on multi-scale blending initial condition perturbations for a regional ensemble prediction system[J]. Adv. Atmos. Sci., 32 (8):1143-1155, doi: 10.1007/s00376-015-4232-6. [43] 周玉淑, 刘璐, 朱科锋, 等. 2014. 北京"7.21"特大暴雨过程中尺度系统的模拟及演变特征分析[J]. 大气科学, 38 (5):885-896. doi: 10.3878/j.issn.1006-9895.2013.13185Zhou Yushu, Liu Lu, Zhu Kefeng, et al. 2014. Simulation and evolution characteristics of mesoscale systems occurring in Beijing on 21 July 2012[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38 (5):885-896, doi: 10.3878/j.issn.1006-9895.2013.13185. [44] Zhu K F, Yang Y, Xue M. 2015. Percentile-based neighborhood precipitation verification and its application to a landfalling tropical storm case with radar data assimilation[J]. Adv. Atmos. Sci., 32 (11):1449-1459, doi: 10.1007/s00376-015-5023-9. [45] 庄潇然, 闵锦忠, 蔡沅辰, 等. 2016. 不同大尺度强迫条件下考虑初始场与侧边界条件不确定性的对流尺度集合预报试验[J]. 气象学报, 74 (2):244-258. doi: 10.11676/qxxb2016.019Zhuang Xiaoran, Min Jinzhong, Cai Yuanchen, et al. 2016. Convective-scale ensemble prediction experiments under different large-scale forcing with consideration of uncertainties in initial and lateral boundary[J]. Acta Meteor. Sinica (in Chinese), 74 (2):244-258, doi: 10.11676/qxxb2016.019. -