高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沙尘气溶胶作为冰核对阿克苏地区一次多单体型强对流风暴降水及其微物理过程影响的数值模拟研究

王雨 银燕 陈倩 王旭 肖辉

王雨, 银燕, 陈倩, 王旭, 肖辉. 沙尘气溶胶作为冰核对阿克苏地区一次多单体型强对流风暴降水及其微物理过程影响的数值模拟研究[J]. 大气科学, 2017, 41(1): 15-29. doi: 10.3878/j.issn.1006-9895.1605.15246
引用本文: 王雨, 银燕, 陈倩, 王旭, 肖辉. 沙尘气溶胶作为冰核对阿克苏地区一次多单体型强对流风暴降水及其微物理过程影响的数值模拟研究[J]. 大气科学, 2017, 41(1): 15-29. doi: 10.3878/j.issn.1006-9895.1605.15246
Yu WANG, Yan YIN, Qian CHEN, Xu WANG, Hui XIAO. A Numerical Study of the Effect of Aerosols Acting as Ice Nuclei on the Precipitation and Microphysical Processes in a Multi-size Convective Storm Occurring in Aksu in Xinjiang, Northwest China[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(1): 15-29. doi: 10.3878/j.issn.1006-9895.1605.15246
Citation: Yu WANG, Yan YIN, Qian CHEN, Xu WANG, Hui XIAO. A Numerical Study of the Effect of Aerosols Acting as Ice Nuclei on the Precipitation and Microphysical Processes in a Multi-size Convective Storm Occurring in Aksu in Xinjiang, Northwest China[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(1): 15-29. doi: 10.3878/j.issn.1006-9895.1605.15246

沙尘气溶胶作为冰核对阿克苏地区一次多单体型强对流风暴降水及其微物理过程影响的数值模拟研究

doi: 10.3878/j.issn.1006-9895.1605.15246
基金项目: 

公益性行业(气象)专项 GYHY201306047

详细信息
    作者简介:

    王雨,男,1991年出生,硕士,主要研究方向为气溶胶-云相互作用。E-mail:rainwang417@vip.qq.com

    通讯作者:

    银燕,E-mail:yinyan@nuist.edu.cn

  • 中图分类号: P426

A Numerical Study of the Effect of Aerosols Acting as Ice Nuclei on the Precipitation and Microphysical Processes in a Multi-size Convective Storm Occurring in Aksu in Xinjiang, Northwest China

Funds: 

Special Scientific Research Fund of Meteorology in the Public Welfare Profession of China GYHY201306047

  • 摘要: 将DeMott冰核浓度参数化方案引入到WRF中尺度数值模式中,模拟了新疆阿克苏地区一次多单体型强对流风暴,并对背景大气条件和沙尘条件下气溶胶作为冰核,对云中微物理结构和降水变化的影响进行了敏感性试验和对比分析,结果显示:在背景大气条件和沙尘条件下增加冰核浓度对降水中心强度影响较小,并且总体上看降水分布变化不大,但是降水局部的变化量较明显;不同背景条件下IN(Ice Nuclei)浓度的增加使得冰晶和雪的质量混合比和数浓度均有较大幅度的增加,其中雪的主要源项为凝华增长过程,而霰增长主要来源于冰相粒子碰并过冷云滴,并且在背景大气和沙尘条件下增加IN都使得霰的数浓度增加,尺度减少。
  • 图  1  (a)模式模拟区域;(b)2012 年7 月13 日14:00 500 hPa 位势高度场(黑色实线;单位:gpm)和温度场(红色实线;单位:℃);2012 年7 月13 日(c1)15:56、(c2)16:07、(c3)16:18 和(c4)16:29 雷达组合反射率(雷达每个距离圈距离为30 km);模式模拟的2012 年7 月13 日(d1) 18:00、(d2)18:10、(d3)18:20 和(d4)18:30 雷达组合反射率

    Figure  1.  (a) Model domains; (b) geopotential height (black solid lines, units: gpm) and temperature (red lines, units: ℃ ) at 500 hPa at 1400 BJT (Beijing time) 13 July 2012; radar combined reflectivity at (c1) 1556 BJT, (c2) 1607 BJT, (c3) 1618 BJT, and (c4) 1629 BJT 13 July 2012 (interval distance between the radar circles is 30 km); simulated combined reflectivity at (d1) 1800 BJT, (d2) 1810 BJT, (d3) 1820 BJT, (d4) 1830 BJT 13 July 2012

    图  2  初始气溶胶尺度分布(DP为气溶胶粒子的直径)

    Figure  2.  The initial aerosol size distributions (Dp is the diameter of aerosol)

    图  3  2012年7月13日16:00~19:50地面累积降水量(单位:mm):(a)C-case;(b)CD-case;(c)DC-case;(d)D-case;(e)CD-case和C-case的差值;(f)D-case和DC-case的差值

    Figure  3.  Simulated accumulated rainfall (units: mm) from 1600 BJT to 1950 BJT 13 July 2012: (a) Expt C-case, (b) expt CD-case, (c) expt DC-case, (d) expt D-case, (e) the difference between CD-case and C-case, (f) the difference between D-case and DC-case

    图  4  2012年7月13日16:00~19:50云中水凝物的混合比(左列)和数浓度(右列)随时间的变化:(a、b)云滴;(c、d)雨滴;(e、f)冰晶;(g、h)雪;(i、j)霰

    Figure  4.  Temporal variations of mixing ratios (left column) and number concentrations (right column) of hydrometeors from 1600 BJT to 1950 BJT 13 July 2012: (a, b) Cloud droplets, (c, d) rain drops, (e, f) ice crystals, (g, h) snow, and (i, j) graupel

    图  5  C-case(左列)和CD-case(右列)模拟的2012 年7 月13 日18:10 沿图 3e 中直线AB 云中(a-d)水凝物质量混合比(单位:g kg-1)和(c、d)气流垂直速度(填色,单位:m s-1)的垂直分布。虚线为等温线(单位:℃);(a、b)中填色表示云水,黑色实线代表雨水,蓝色实线代表冰晶,红色实线代表雪晶;(c、d)中实线表示霰的质量混合比,单位:g kg-1;横坐标表示格点数。

    Figure  5.  (a-d) Vertical cross sections of mixing ratios of hydrometeors(units: g kg-1)along line AB(shown in Fig. 3e)and(c,d)vertical velocity(colouring,units: m s-1)in C-case(left column)and CD-case(right column)at 1810 BJT 13 July 2012. The dashed lines are isotherms(units: ℃);(a,b)cloud water(shaded),rain water(black solid lines),ice crystals(blue solid lines),and snow crystals(red solid lines);(c,d)vertical velocity(shaded)and graupel(solid lines). Horizontal axis: grid point

    图  6  同图 5,但为19:00

    Figure  6.  Same as Fig. 5,but for1900 BJT 13 July

    表  1  气溶胶粒子谱分布参数

    Table  1.   Parameters for aerosol size distribution

    i 气溶胶粒子谱分布参数
    Ni/cm-3 Ri/μm lgσi
    背景 1 1400 0.0975 0.28
    2
    3
    67.9
    0.72
    0.4825
    2.25
    0.56
    0.32
    沙尘暴 1 1500 0.055 0.55
    2
    3
    930.8
    11
    0.405
    3.4
    0.66
    0.28
    下载: 导出CSV

    表  2  试验设置

    Table  2.   Condition of sensitivity experiments

    试验名称 试验描述
    C-case CCN和IN均采用背景气溶胶谱
    CD-case CCN采用背景气溶胶谱,而IN采用沙尘条件下的气溶胶谱
    DC-case CCN采用沙尘条件下的气溶胶谱,而IN采用背景气溶胶谱
    D-case CCN和IN均采用沙尘条件下的气溶胶谱
    下载: 导出CSV

    表  3  雨滴的源汇项及其微物理过程转化率

    Table  3.   Source and sink terms of raindrop and their microphysical processes conversion rates

    雨滴的源汇项物理意义各微物理过程转化率/10-3 g kg-1 s-1
    13日17:00平均值13日18:10平均值13日19:00平均值
    C-caseCD-caseDC-caseD-caseC-caseCD-caseDC-caseD-caseC-caseCD-caseDC-caseD-case
    PRA雨滴碰并云滴0.0710.0750.0440.0600.1060.0970.0980.0910.03480.03470.0410.030
    PRACS雨滴收集雪5.73×10-52.23×10-51.48×10-46.3×10-53.9×10-57.85×10-58.67×10-56×10-52.1×10-55.5×10-61.1×10-56.0×10-6
    PRC云雨自动转化1.15×10-31.1×10-34.8×10-45.2×10-40.00130.00120.00060.00060.000630.000590.000370.00035
    PGMLT霰的融化0.0560.0670.0640.0620.1440.1630.1550.1500.1540.1300.1460.150
    PSMLT雪晶的融化0.000520.000760.000680.000740.00140.00130.0010.000940.000920.000880.000970.0011
    PRE雨滴的蒸发-0.032-0.035-0.029-0.029-0.077-0.085-0.074-0.079-0.086-0.082-0.077-0.080
    下载: 导出CSV

    表  4  雪晶的源项及其微物理过程转化率

    Table  4.   Source terms of snow crystals and their microphysical processes conversion rates

    雨滴的源汇项物理意义各微物理过程转化率/10-3 g kg-1 s-1
    13日17:00平均值13日18:10平均值13日19:00平均值
    C-caseCD-caseDC-caseD-caseC-caseCD-caseDC-caseD-caseC-caseCD-caseDC-caseD-case
    PRACS雪碰冻雨滴并转化为雪0.0060.0050.00460.00540.01590.01350.01570.0130.004560.003520.00460.0035
    PSACWS雪晶的淞附0.00440.0050.00480.00510.00760.00690.00770.00880.00650.00690.00670.0083
    PRDS雪晶的凝华0.00880.0120.00840.00970.0170.0230.0170.0220.0210.0350.0280.037
    PRAI冰晶向雪晶的自动转化0.000520.000740.000710.000610.00130.00200.00210.00160.00260.00420.00400.0027
    PRCI雪晶碰并冰晶0.00160.00240.00160.00220.00340.00460.00340.00440.00370.00510.00350.0048
    PRACIS冰晶与过冷雨滴碰并转化为雪1.99×10-53.13×10-51.39×10-51.94×10-52.81×10-53.78×10-51.74×10-52.51×10-52.26×10-53.51×10-51.59×10-52.04×10-5
    下载: 导出CSV

    表  5  霰的源项及其微物理过程转化率

    Table  5.   Source terms of graupel and their microphysical processes conversion rates

    雨滴的源汇项物理意义各微物理过程转化率/10-3 g kg-1 s-1
    13日17:00平均值13日18:10平均值13日19:00平均值
    C-caseCD-caseDC-caseD-caseC-caseCD-caseDC-caseD-caseC-caseCD-caseDC-caseD-case
    PSACWG霰碰并过冷云滴0.07450.07930.0840.0830.120.110.140.140.0890.0860.1020.099
    PRACG霰碰并过冷雨滴0.0210.0180.0130.0150.0380.0410.0330.0270.0120.0100.0130.010
    PRDG霰的凝华增长0.0250.0280.0220.0230.0540.0510.0440.0480.0470.0420.0480.042
    PSACR过冷雨滴与雪碰并转化为霰0.000360.000370.000220.000520.00260.00170.00220.00330.000250.000270.000580.00028
    PGSACW雪与云滴碰并转化为霰0.000240.000450.000540.000630.000550.000490.000770.0010.000290.000490.000560.00067
    PIACR冰晶与过冷雨滴碰并转化为霰0.0240.0410.0230.0350.0540.0630.0500.0530.0210.0200.0230.019
    PGRACS雪与过冷雨滴碰并转化为霰2.19×10-51.22×10-52×10-61×10-50.001030.000134.5×10-50.000361.6×10-66×10-61.4×10-57×10-6
    下载: 导出CSV
  • [1] Andreae M O, Rosenfeld D, Artaxo P, et al. 2004. Smoking rain clouds over the Amazon[J]. Science, 303 (5662):1337-1342, doi:10.1126/science. 1092779.
    [2] Ault A P, Williams C R, White A B, et al. 2011. Detection of Asian dust in California orographic precipitation[J]. J. Geophys. Res., 116 (D16):D16205, doi: 10.1029/2010JD015351.
    [3] 陈丽, 银燕, 杨军, 等. 2007. 沙尘气溶胶对云和降水影响的模拟研究[J]. 南京气象学院学报, 30 (5):590-600. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200705002.htm

    Chen Li, Yin Yan, Yang Jun, et al. 2007. Effects of sand dust particles on cloud and precipitation:A numerical study[J]. J. Nanjing Inst. Meteor. (in Chinese), 30 (5):590-600. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200705002.htm
    [4] Chen F, and Dudhia J. 2001. Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I:Model description and implementation. Mon. Wea. Rev., 129, 569-585.
    [5] Cooper W A, Lawson R P. 1984. Physical interpretation of results from the HIPLEX-1 experiment[J]. J. Appl. Meteor., 23 (4):523-540, doi: 10.1175/1520-0450(1984)023<0523:PIORFT>2.0.CO;2.
    [6] Cui Z, Davies S, Carslaw K S, et al. 2011. The response of precipitation to aerosol through riming and melting in deep convective clouds[J]. Atmos. Chem. Phys., 11 (7):3495-3510, doi: 10.5194/acp-11-3495-2011.
    [7] DeMott P J, Sassen K, Poellot M R, et al. 2003. African dust aerosols as atmospheric ice nuclei[J]. Geophys. Res. Lett., 30 (14), doi: 10.1029/2003GL017410.
    [8] DeMott P J, Prenni A J, Liu X, et al. 2010. Predicting global atmospheric ice nuclei distributions and their impacts on climate[J]. Proc Natl Acad Sci, 107 (25):11217-11222, doi: 10.1073/pnas.0910818107.
    [9] DeMott P J, Prenni A J, McMeeking G R, et al. 2015. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles[J]. Atmos. Chem. Phys., 15 (1):393-409, doi: 10.5194/acpd-14-17359-2014.
    [10] 董昊, 徐海明, 罗亚丽. 2012. 云凝结核浓度对WRF模式模拟飑线降水的影响:不同云微物理参数化方案的对比研究[J]. 大气科学, 36 (1):145-169. doi: 10.3878/j.issn.1006-9895.2012.01.12

    Dong Hao, Xu Haiming, Luo Yali. 2012. Effects of cloud condensation nuclei concentration on precipitation in convection permitting simulations of a squall line using WRF model:Sensitivity to cloud microphysical schemes[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (1):145-169, doi:10.3878/j.issn.1006-9895. 2012.01.12.
    [11] Fan J W, Ghan S J, Ovchinnikov M, et al. 2011. Representation of arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models-perspectives from a cloud-resolving study[J]. J. Geophys. Res., 116 (D1):D00T07, doi: 10.1029/2010JD015375.
    [12] Fan J, Leung L R, DeMott P J, et al. 2014. Aerosol impacts on California winter clouds and precipitation during CalWater 2011:Local pollution versus long-range transported dust[J]. Atmos. Chem. Phys., 14 (1):81-101, doi: 10.5194/acp-14-81-2014.
    [13] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon. Wea. Rev., 134, 2318-2341. doi: 10.1175/MWR3199.1
    [14] Iacono M J, Delamere J S, Mlawer E J, et al. 2008. Radiative forcing by long-lived greenhouse gases:Calculations with the AER radiative transfer models[J]. J. Geophys. Res. Atmos., 113 (D13):1395-1400. http://cn.bing.com/academic/profile?id=106007d5496799b6c90bf942bcc44a18&encoded=0&v=paper_preview&mkt=zh-cn
    [15] 金莲姬, 银燕, 王盘兴, 等. 2007. 热带深对流云砧数值模拟及云凝结核数浓度对其影响的初步试验[J]. 大气科学, 31 (5):793-804. doi: 10.3878/j.issn.1006-9895.2007.05.04

    Jin Lianji, Yin Yan, Wang Panxing, et al. 2007. Numerical modeling of tropical deep convective anvil and sensitivity test on its response to changes in the cloud condensation nuclei concentration[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31 (5):793-804, doi: 10.3878/j.issn.1006-9895.2007.05.04.
    [16] Johnson D B. 1982. The role of giant and ultragiant aerosol particles in warm rain initiation[J]. J. Atmos. Sci., 39 (2):448-460, doi: 10.1175/1520-0469(1982)039<0448:TROGAU>2.0.CO;2.
    [17] Khain A, Rosenfeld D, Pokrovsky A, et al. 2011. The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame[J]. Atmos. Res., 99 (1):129-146, doi: 10.1016/j.atmosres.2010.09.015.
    [18] Koren I, Kaufman Y J, Rosenfeld D, et al. 2005. Aerosol invigoration and restructuring of Atlantic convective clouds[J]. Geophys. Res. Lett., 32 (14), doi: 10.1029/2005GL023187.
    [19] Koren I, Feingold G, Remer L A. 2010. The invigoration of deep convective clouds over the Atlantic:Aerosol effect, meteorology or retrieval artifact?[J]. Atmos. Chem. Phys., 10 (18):8855-8872, doi: 10.5194/acp-10-8855-2010.
    [20] Lebo Z J, Seinfeld J H. 2011. Theoretical basis for convective invigoration due to increased aerosol concentration[J]. Atmos. Chem. Phys., 11 (11):5407-5429, doi: 10.5194/acp-11-5407-2011.
    [21] Levin Z, Ganor E. 1996. The effects of desert particles on cloud and rain formation in the eastern Mediterranean[M]//The Impact of Desert Dust across the Mediterranean. Guerzoni S, Chester R, Eds. Netherlands:Springer, 77-86, doi: 10.1007/978-94-017-3354-0_7.
    [22] Monin A S, Obukhov A M. 1954. Basic laws of turbulent mixing in the surface layer of the atmosphere[J]. Contrib. Geophys. Inst. Acad. Sci., USSR, (151), 163-187 (in Russian).
    [23] Morrison H, Gettelman A. 2008. A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I:Description and numerical tests[J]. J. Climate, 21 (15):3642-3659, doi: 10.1175/2008JCLI2105.1.
    [24] Morrison H, Grabowski W W. 2011. Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment[J]. Atmos. Chem. Phys., 11 (20):10503-10523, doi: 10.5194/acp-11-10503-2011.
    [25] Noppel H, Blahak U, Seifert A, et al. 2010. Simulations of a hailstorm and the impact of CCN using an advanced two-moment cloud microphysical scheme[J]. Atmos. Res., 96 (2-3):286-301, doi:10.1016/j.atmosres. 2009.09.008.
    [26] Phillips V T J, Donner L J, Garner S T. 2007. Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics[J]. J. Atmos. Sci., 64 (3):738-761, doi: 10.1175/JAS3869.1.
    [27] Pratt K A, DeMott P J, French J R, et al. 2009. In situ detection of biological particles in cloud ice-crystals[J]. Nat Geosci, 2 (6):398-401, doi: 10.1038/ngeo521.
    [28] Pruppacher H, Klett J D. 1997. Microphysics of clouds and precipitation[J]. Eos Transactions American Geophysical Union, 93 (51):381-382. http://cn.bing.com/academic/profile?id=6826492d812b2f6a290b0006ed103be5&encoded=0&v=paper_preview&mkt=zh-cn
    [29] Rosenfeld D, Lohmann U, Raga G B, et al. 2008. Flood or drought:How do aerosols affect precipitation?[J]. Science, 321 (5894):1309-1313, doi: 10.1126/science.1160606.
    [30] Saleeby S M, Cotton W R, Lowenthal D, et al. 2013. Aerosol impacts on the microphysical growth processes of orographic snowfall[J]. J. Appl. Meteor. Climatol., 52 (4):834-852, doi: 10.1175/JAMC-D-12-0193.1.
    [31] Skamarock W C, Klemp J B, Dudhia J, et al. 2008. A Description of the Advanced Research WRF Version 3[R]. NCAR Technical Note NCAR/TN-475+STR, 7-25, doi: 10.5065/D68S4MVH.
    [32] Tao W K, Li X W, Khain A, et al. 2007. Role of atmospheric aerosol concentration on deep convective precipitation:Cloud-resolving model simulations[J]. J. Geophys. Res., 112 (D24):D24S18, doi: 10.1029/2007JD008728.
    [33] Teller A, Levin Z. 2006. The effects of aerosols on precipitation and dimensions of subtropical clouds:A sensitivity study using a numerical cloud model[J]. Atmos. Chem. Phys., 6 (1):67-80, doi: 10.5194/acp-6-67-2006.
    [34] Williams E, Rosenfeld D, Madden N, et al. 2002. Contrasting convective regimes over the Amazon:Implications for cloud electrification[J]. J. Geophys. Res., 107 (D20):LBA 50-1-LBA 50-19, doi: 10.1029/2001JD000380.
    [35] Yin Y, Levin Z, Reisin T G, et al. 2000. The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds-A numerical study[J]. Atmos. Res., 53 (1):91-116, doi: 10.1016/S0169-8095(99)00046-0.
    [36] Yin Y, Chen L. 2007. The effects of heating by transported dust layers on cloud and precipitation:A numerical study[J]. Atmos. Chem. Phys., 7 (13):3497-3505, doi: 10.5194/acp-7-3497-2007.
    [37] Zubler E M, Lohmann U, Lüthi D, et al. 2011. Statistical analysis of aerosol effects on simulated mixed-phase clouds and precipitation in the Alps[J]. J. Atmos. Sci., 68 (7):1474-1492, doi: 10.1175/2011JAS3632.1.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  1818
  • HTML全文浏览量:  2
  • PDF下载量:  2057
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-10
  • 网络出版日期:  2016-05-24
  • 刊出日期:  2017-01-15

目录

    /

    返回文章
    返回