高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

边界层湍流参数化改进对雾的模拟影响

黄翊 彭新东

黄翊, 彭新东. 边界层湍流参数化改进对雾的模拟影响[J]. 大气科学, 2017, 41(3): 533-543. doi: 10.3878/j.issn.1006-9895.1606.16152
引用本文: 黄翊, 彭新东. 边界层湍流参数化改进对雾的模拟影响[J]. 大气科学, 2017, 41(3): 533-543. doi: 10.3878/j.issn.1006-9895.1606.16152
Yi HUANG, Xindong PENG. The Impact of an Improved Planetary Boundary Layer Parameteriza tion Scheme on the Simulation of Fog[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(3): 533-543. doi: 10.3878/j.issn.1006-9895.1606.16152
Citation: Yi HUANG, Xindong PENG. The Impact of an Improved Planetary Boundary Layer Parameteriza tion Scheme on the Simulation of Fog[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(3): 533-543. doi: 10.3878/j.issn.1006-9895.1606.16152

边界层湍流参数化改进对雾的模拟影响

doi: 10.3878/j.issn.1006-9895.1606.16152
基金项目: 

国家重点基础研究发展计划(973计划)项目 2012CB417204

国家自然科学基金项目 41175095

国家自然科学基金项目 41575103

详细信息
    作者简介:

    黄翊, 女, 1990年出生, 硕士, 主要从事数值天气预报方面的研究.E-mail:hyi9003@163.com

    通讯作者:

    彭新东, E-mail:pengxd@camscma.cn

  • 中图分类号: P456.6

The Impact of an Improved Planetary Boundary Layer Parameteriza tion Scheme on the Simulation of Fog

Funds: 

National Basic Research Program of China 2012CB417204

National Natural Science Foundation of China 41175095

National Natural Science Foundation of China 41575103

  • 摘要: 为了提高边界层参数化在我国复杂下垫面上的描述能力,改善边界层能量和物质输送计算和检验其数值模拟效果,本文选取WRF三维模式,采用基于我国不同下垫面上的边界层观测资料改进的新MYNN(Mellor-Yamada-Nakanishi-Niino)参数化方案对2009年3月17日黄海海雾以及2011年12月4日华北地区两次大雾过程进行模拟检验,探讨边界层参数化方案对雾和边界层结构模拟的影响。参照卫星云图和探空资料,边界层内云水混合比垂直积分的水平分布的模拟能力明显提高,反映了改进的MYNN方案能够更好地模拟出两次雾过程的发生、移动和雾区空间分布,更精确的云水混合比和温度的垂直分布能更好地给出雾区的垂直结构和稳定层结,同时可改善雾区低层位温以及比湿垂直分布的模拟。
  • 图  1  2009年3月17日(a)02:00(协调世界时,下同)、(b)08:00黄海雾区FY-3卫星可见光云图

    Figure  1.  Visible cloud images of FY-3 satellite of sea fogs in Yellow Sea at (a) 0200 UTC and (b) 0800 UTC 17 March 2009

    图  2  2011年12月(a、b)3日和(c、d)4日华北雾区的FY-3卫星可见光云图分布:(a、c)02:00;(b、d)08:00

    Figure  2.  Visible cloud images of FY-3 satellite of sea fogs in North China at (a, b) 3 December and (c, d) 4 December, 2011: (a, c) 0200 UTC; (b, d) 0800 UTC

    图  3  2009年3月17日(a、b)02:00与(c、d)08:00黄海区域、2011年12月(e、f)3日08:00和(g、h)4日02:00京津冀地区低层(300 m以下)云水混合比(g kg-1)积分平均模拟分布结果:原MYNN方案模拟结果(左列);改进的MYNN模拟结果(右列)

    Figure  3.  Horizontal distributions of simulated vertically integrated cloud water mixing ratios (g kg-1) below 300 m with original MYNN scheme (left column) and improved MYNN scheme (right column) in the Yellow Sea at (a, b) 0200 UTC and (c, d) 0800 UTC 17 March 2009, and in the Beijing–Tianjin–Hebei region at (e, f) 0800 UTC 3 December and (g, h) 0200 UTC 4 December 2011

    图  4  (a、b)2009年3月17日08:00和(c、d)2011年12月4日02:00个例中原始(左列)和改进(右列)MYNN方案模拟的云水混合比(阴影;g kg-1)与温度(等值线;℃)分别沿(a、b)124°E和(c、d)117°E的垂直剖面

    Figure  4.  Vertical cross sections of cloud water mixing ratios (shaded; g kg-1) and temperature (contours; ℃) simulated by original MYNN scheme (left column) and improved MYNN scheme (right column) at (a, b) 0800 UTC 17 March 2009 along 124°E and (c, d) 0200 UTC 4 December 2011 along 117°E

    图  5  2009年3月17日(a、b)02:00与(c、d)08:00原MYNN边界层参数化方案(左列)及改进方案(右列)模拟的低层(90 m)湍流感热通量的分布

    Figure  5.  Horizontal distributions of simulated turbulent sensible heat fluxes at 90-m height with original MYNN scheme (left column) and improved MYNN scheme (right column) at (a, b) 0200 UTC and (c, d) 0800 UTC 17 March 2009

    图  6  (a、b)2009年3月17日12:00济州岛站点、(c、d)2011年12月4日00:00北京站点(a、c)位温和(b、d)比湿的垂直廓线,蓝色线为原MYNN,红线为改进的MYNN,黑线代表观测值

    Figure  6.  Vertical profiles of (a, c) potential temperature and (b, d) water vapor mixing ratios simulated with original MYNN scheme (blue) and improved MYNN scheme (red) and from observational data (black) at (a, b) 1200 UTC 17 March 2009 at Jeju Island station and (c, d) 0000 UTC 4 December 2011 at Beijing station

  • [1] Abdella K, McFarlane N. 1997. A new second-order turbulence closure scheme for the planetary boundary layer [J]. J. Atmos. Sci., 54 (14): 1850-1867, doi:10.1175/1520-0469(1997)054<1850:ANSOTC>2.0.CO;2.
    [2] Bergot T, Guedalia D. 1994. Numerical forecasting of radiation fog. PartⅠ: Numerical model and sensitivity tests [J]. Mon. Wea. Rev., 122 (6): 1218-1230, doi:10.1175/1520-0493(1994)122<1218:NFORFP>2.0.CO;2.
    [3] Businger J A, Wyngaard J C, Izumi Y, et al. 1971. Flux-profile relationships in the atmospheric surface layer [J]. J. Atmos. Sci., 28(2): 181-189, doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.
    [4] 曹祥村, 邵利民, 易海祁, 等. 2009.一次冬季平流辐射雾过程的观测分析及数值模拟研究[J].海洋学报, 31 (4): 39-50. doi: 10.3321/j.issn:0253-4193.2009.04.005

    Cao Xiangcun, Shao Limin, Yi Haiqi, et al. 2009. Observational analysis and numerical simulation of an advection-radiation sea fog event in winter [J]. Acta Oceanologica Sinica (in Chinese), 31 (4): 39-50, doi: 10.3321/j.issn:0253-4193.2009.04.005.
    [5] 程相坤, 程航, 徐杰, 等. 2013.一次黄海海雾成因分析及数值模拟试验[J].气象与环境学报, 29 (6): 15-23. doi: 10.3969/j.issn.1673-503X.2013.06.003

    Cheng Xiangkun, Cheng Hang, Xu Jie, et al. 2013. Forming reason of a sea fog event and its numerical simulation over the Yellow Sea [J]. J. Meteor. Environ. (in Chinese), 29 (6): 15-23, doi: 10.3969/j.issn.1673-503X.2013.06.003.
    [6] Cho Y K, Kim M O, Kim B C. 2000. Sea fog around the Peninsula [J]. J. Appl. Meteor., 39 (12): 2473-2479, doi:10.1175/1520-0450(2000) 039<2473:SFATKP>2.0.CO;2.
    [7] Cotton W, Anthes R. 1993.风暴和云动力学[M].北京:气象出版社, 331-342.
    [8] Cotton W, Anthes R. 1993. Storm and Cloud Dynamics (in Chinese) [M]. Beijing: China Meteorological Press, 331-342
    [9] 邓长菊, 尹晓惠, 甘璐. 2014.北京雾与霾天气大气液态水含量和相对湿度层结特征分析[J].气候与环境研究, 19 (2): 193-199. doi: 10.3878/j.issn.1006-9585.2014.13078

    Deng Changju, Yin Xiaohui, Gan Lu. 2014. Stratification characteristic analysis of atmospheric liquid water content and relative humidity during fog and haze weather in Beijing [J]. Climatic Environ. Res. (in Chinese), 19 (2): 193-199, doi: 10.3878/j.issn.1006-9585.2014.13078.
    [10] Dyer A J. 1974. A review of flux-profile relationships [J]. Bound.-Layer Meteor., 7 (3): 363-372, doi: 10.1007/BF00240838.
    [11] Giannakopoulou E M, Nhili R. 2014. WRF model methodology for offshore wind energy applications [J]. Adv. Meteor., 2014, 2014: 319819, doi: 10.1155/2014/319819.
    [12] Hariprasad K B R R, Srinivas C V, Singh A B, et al. 2014. Numerical simulation and intercomparison of boundary layer structure with different PBL schemes in WRF using experimental observations at a tropical site [J]. Atmos. Res., 145-146: 27-44, doi: 10.1016/j.atmosres.2014.03.023.
    [13] 黄健, 王斌, 周发琇, 等. 2010.华南沿海暖海雾过程中的湍流热量交换特征[J].大气科学, 34 (4): 715-725. doi: 10.3878/j.issn.1006-9895.2010.04.05

    Huang Jian, Wang Bin, Zhou Faxiu, et al. 2010. Turbulent heat exchange in a warm sea fog event on the coast of South China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34 (4): 715-725, doi: 10.3878/j.issn.1006-9895.2010.04.05.
    [14] Huang Y, Peng X. 2017. Improvement of the Mellor-Yamada-Nakanishi-Niino planetary boundary-layer scheme based on observational data in China [J]. Bound-Layer Meteor, 162:171-188, doi: 10.1007/s10546-016-0187-0.
    [15] Iacono M J, Delamere J S, Mlawer E J, et al. 2008. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models [J]. Geophys. Res., 113, D13103.doi: 10.1029/2008JD009944.
    [16] Janjic, Zavisa I, 1994. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes [J]. Mon. Wea. Rev., 122, 927-945.DOI:10.1175/1520-0493 (1994)122<0927:TSMECM>2.0.CO;2
    [17] Kitamura Y. 2010. Modifications to the Mellor-Yamada-Nakanishi-Niino (MYNN) model for the stable stratification case [J]. J. Meteor. Soc. Japan, 88 (5): 857-864, doi: 10.2151/jmsj.2010-506.
    [18] Li P Y, Fu G, Lu C G, et al. 2012. The formation mechanism of a spring sea fog event over the Yellow Sea associated with a low-level jet [J]. Wea. Forecasting, 27 (6): 1538-1553, doi: 10.1175/WAF-D-11-00152.1.
    [19] 陆雪, 高山红, 饶莉娟, 等. 2014.春季黄海海雾WRF参数化方案敏感性研究[J].应用气象学报, 25 (3): 312-320. doi: 10.3969/j.issn.1001-7313.2014.03.008

    Lu Xue, Gao Shanhong, Rao Lijuan, et al. 2014. Sensitivity study of WRF parameterization schemes for the spring sea fog in the Yellow Sea [J]. J. Appl. Meteor. Sci. (in Chinese), 25 (3): 312-320, doi: 10.3969/j.issn.1001-7313.2014.03.008.
    [20] Mellor G L, Yamada T. 1974. A hierarchy of turbulence closure models for planetary boundary layers [J]. J. Atmos. Sci., 31 (7): 1791-1806, doi:10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.
    [21] Mellor G L, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems [J]. Rev. Geophys., 20 (4): 851-875, doi: 10.1029/RG020i004p00851.
    [22] Monin A S, Obukhov A M. 1954. Basic laws of turbulent mixing in the surface layer of the atmosphere [J]. Tr. Akad. Nauk. SSSR Geophiz. Inst., 64: 1963-1987. http://www.mcnaughty.com/keith/papers/Monin_and_Obukhov_1954.pdf
    [23] Nakanishi M. 2001. Improvement of the Mellor-Yamada turbulence closure model based on large-eddy simulation data [J]. Bound.-Layer Meteor., 99 (3): 349-378, doi: 10.1023/A:1018915827400.
    [24] Nakanishi M, Niino H. 2004. An improved Mellor-Yamada level-3 model with condensation physics: Its design and verification [J]. Bound.-Layer Meteor., 112 (1): 1-31, doi: 10.1023/B:BOUN.0000020164.04146.98.
    [25] Nakanishi M, Niino H. 2006. An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog [J]. Bound.-Layer Meteor., 119 (2): 397-407, doi: 10.1007/s10546-005-9030-8.
    [26] Nakanishi M, Niino H. 2009. Development of an improved turbulence closure model for the atmospheric boundary layer [J]. J. Meteor. Soc. Japan, 87 (5): 895-912, doi: 10.2151/jmsj.87.895.
    [27] 彭双姿, 刘从省, 屈右铭, 等. 2012.一次大范围辐射雾天气过程的观测和数值模拟分析[J].气象, 38 (6): 679-687. doi: 10.7519/j.issn.1000-0526.2012.6.005

    Peng Shuangzi, Liu Congsheng, Qu Youming, et al. 2012. Observations and numerical simulation of a wide range of radiation fog [J]. Meteor. Mon. (in Chinese), 38 (6): 679-687, doi: 10.7519/j.issn.1000-0526.2012.6.005.
    [28] Reynolds O. 1883. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels [J]. Proc. Roy. Soc. London, 35: 84-99. doi: 10.1098/rspl.1883.0018
    [29] Reynolds O. 1895. On the dynamical theory of incompressible viscous fluids and the determination of the criterion [J]. Proc. Roy. Soc. A Math. Phys. Eng. Sci., 186: 123-164, doi:10.1098/rsta.1895.0004, doi:10.1098/rsta.1895.0004.
    [30] Thompson G, Field P R, Rasmussen R M, et al. 2008. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. PartⅡ: Implementation of a new snow parameterization [J]. Mon. Wea. Rev., 136, 5095-5115.DOI: 10.1175/2008MWR2387.1.
  • 加载中
图(6)
计量
  • 文章访问数:  2077
  • HTML全文浏览量:  48
  • PDF下载量:  2247
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-01
  • 网络出版日期:  2016-10-25
  • 刊出日期:  2017-05-15

目录

    /

    返回文章
    返回