高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

RegCM3 CORDEX东亚试验模拟和预估的中国夏季温度变化

李东欢 周天军 邹立维 马双梅

李东欢, 周天军, 邹立维, 马双梅. RegCM3 CORDEX东亚试验模拟和预估的中国夏季温度变化[J]. 大气科学, 2017, 41(3): 544-560. doi: 10.3878/j.issn.1006-9895.1607.16153
引用本文: 李东欢, 周天军, 邹立维, 马双梅. RegCM3 CORDEX东亚试验模拟和预估的中国夏季温度变化[J]. 大气科学, 2017, 41(3): 544-560. doi: 10.3878/j.issn.1006-9895.1607.16153
Donghuan LI, Tianjun ZHOU, Liwei ZOU, Shuangmei MA. Simulated and Projected Surface Air Temperature over China in RegCM3 CORDEX East Asia Experiments[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(3): 544-560. doi: 10.3878/j.issn.1006-9895.1607.16153
Citation: Donghuan LI, Tianjun ZHOU, Liwei ZOU, Shuangmei MA. Simulated and Projected Surface Air Temperature over China in RegCM3 CORDEX East Asia Experiments[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(3): 544-560. doi: 10.3878/j.issn.1006-9895.1607.16153

RegCM3 CORDEX东亚试验模拟和预估的中国夏季温度变化

doi: 10.3878/j.issn.1006-9895.1607.16153
基金项目: 

公益性行业 (气象) 科研专项 Grant GYHY201506012

国家自然科学基金项目 Grants 41420104006

国家自然科学基金项目 41330423

气象灾害教育部重点实验室 (南京信息工程大学) 开放课题 Grant KLME1505

详细信息
    作者简介:

    李东欢, 女, 1990年出生, 博士研究生, 主要从事气候模拟研究.E-mail:lidh@lasg.iap.ac.cn

    通讯作者:

    周天军, E-mail:zhoutj@lasg.iap.ac.cn

  • 中图分类号: P467

Simulated and Projected Surface Air Temperature over China in RegCM3 CORDEX East Asia Experiments

Funds: 

Chinese R & D Special Fund (Meteorology) for Public Welfare Industry Grant GYHY201506012

National Natural Science Foundation of China Grants 41420104006

National Natural Science Foundation of China 41330423

Open Project of Key Laboratory of Meteorological Disaster of Ministry of Education (Nanjing University of Information Science and Technology) Grant KLME1505

  • 摘要: 按照CORDEX (COordinated Regional Downscaling Experiment) 计划试验设计要求,利用中国科学院大气物理研究所全球模式FGOALS-g2的数据驱动区域气候模式RegCM3,针对1986~2005年历史气候和2010~2065年RCP8.5排放情景下气候预估,对东亚地区进行了50 km动力降尺度模拟。首先评估了RegCM3模式及驱动模式FGOALS-g2对1986~2005年夏季中国地表气温和极端高温事件的模拟能力,然后比较了两个模式在RCP8.5排放情景下对中国夏季地表气温和极端高温事件预估的变化,重点分析了动力降尺度结果的优势。结果表明,两个模式均能合理再现夏季中国地表气温和极端高温事件的大尺度气候态特征。相对于全球模式,区域模式由于水平分辨率较高,能在刻画地表气温分布的细节上体现出优势。在RCP8.5排放情景下,两个模式预估的三个地表气温指标均显著升高,到21世纪中期 (2046~2065年),两个模式预估的全国平均地表气温增幅相当,气温日较差变化均较小。在FGOALS-g2模式预估中,到21世纪中期,三个地表气温指标的增幅相当,气温日较差没有明显变化,东北和青藏高原的地表气温增幅最大。在RegCM3模式预估中,到21世纪中期,中国大部分地区日最高气温 (Tmax) 增幅大于日最低气温 (Tmin) 增幅,气温日较差增加;而在青藏高原西部,Tmax的增幅较Tmin偏低,气温日较差减小。在RCP8.5排放情景下,两个模式预估的极端高温事件到21世纪中期也显著增加,RegCM3模式预估的极端高温事件全国平均增幅略高于FGOALS-g2模式的预估。在两个模式的预估中,日最高气温最大值 (TXx)、暖昼指数 (TX90p) 和持续暖期指数 (WSDI) 变化的空间分布特征与Tmax相似;和当代相比TX90p增加了60%以上,而WSDI增加了一倍以上。
  • 图  1  中国地形 (填色,单位:米) 和5个分区。黑色方框分别表示5个分区:西北 (NW,36°~50°N, 75°~105°E)、西藏 (TP,28°~36°N, 75°~105°E)、东北 (NE,43°~54°N, 116°~132°E)、华北 (NC,32°~43°N, 105°~122°E) 和东南 (SE,18°~32°N, 105°~122°E)

    Figure  1.  The topography (shaded, units: m) and five sub-regions of China. The boxes illustrate the five sub-regions: Northwest China (NE, 36°-50°N, 75°-105°E), Tibetan Plateau (TP, 28°-36°N, 75°-105°E), Northeast China (NE, 43°-54°N, 116°-132°E), North China (NC, 32°-43°N, 105°-122°E), and Southeast China (SE, 18°-32°N, 105°-122°E)

    图  2  1986~2005年中国夏季地表气温指标气候态 (观测资料CN05.1,左列) 和模式模拟偏差 (FGOALS-g2模式,中列;RegCM3模式,右列)。从上到下依次为日最高气温Tmax、日平均气温T2m,日最低气温Tmin

    Figure  2.  Climatology and simulation biases of summer surface air temperature indices (units: ℃) in mainland China for 1986-2005. The top panels indicate the results of Tmax (daily maximum temperature), the middle panels indicate the results of T2m (daily average temperature), and the bottom panels indicate the results of Tmin (daily minimum temperature). The left panels indicate the results from CN05.1 data (0.5°×0.5° daily temperature dataset), the middle panels indicate the bias between FGOALS-g2 (Flexible Global Ocean-Atmosphere-Land System Model: Grid-point Version 2) model simulation and CN05.1 data, and the right panels indicate the bias between RegCM3 (Regional Climate Model version 3) model simulation and CN05.1 data

    图  3  (a) Tmax、(c) T2m、(e) Tmin的区域平均 (单位:℃)。(b) Tmax、(d) T2m和 (f) Tmin的泰勒图,数字1~5分别表示NW、TP、NC、SE、NE,数字6表示整个中国大陆

    Figure  3.  Regionally averaged summer surface air temperature indices: (a) Tmax, (c) T2m, and (e) Tmin. Taylor diagrams of (b) Tmax, (d) T2m, and (e) Tmin. Numbers 1-5 represent NW, TP, NC, SE, NE, respectively; number 6 represents the mainland China

    图  4  1986~2005年中国极端高温事件气候态 (观测资料CN05.1,左列) 和模式模拟偏差 (FGOALS-g2模式,中列;RegCM3模式,右列)。从上到下依次为日最高气温最大值TXx (单位:℃)、暖昼指数TX90p (单位:d)、持续暖期指数WSDI (单位:d)

    Figure  4.  Climatology and simulation biases of summer high-temperature indices in mainland China for 1986-2005. The top panels indicate the results of TXx (maximum value of daily maximum temperature), the middle panels indicate the results of TX90p (warm days index), and the bottom panels indicate the results of WSDI (warm spell duration index). The left panels indicate the results from CN05.1 data, the middle panels indicate the bias between model FGOALS-g2 and CN05.1 data, and the right panels indicate the bias between model RegCM3 and CN05.1 data

    图  5  图 3,但为极端高温事件指数区域平均和泰勒图。从上到下分别为TXx (单位:℃)、TX90p (单位:d) 和WSDI (单位:d)

    Figure  5.  As in Fig. 3, but for summer high-temperature indices. Top panels: TXx (units: ℃); middle panels: TX90p (units: d); bottom panels: WSDI (units: d)

    图  6  1986~2005年中国夏季地表气温概率密度分布:(a) Tmax;(c) T2m;(e) Tmin。图中的概率密度分布使用所选时段、所选区域中各个点的逐日数据 (不是区域平均) 计算而成

    Figure  6.  Probability density distributions of (a) Tmax, (b) T2m, and (c) Tmin from each individual grid (not regionally averaged) in mainland China for 1986–2005

    图  7  2010~2065年RCP8.5排放情景下中国区域平均的夏季地表气温距平序列 (相对于当代1986~2005年):(a) Tmax、(b) T2m、(c) Tmin

    Figure  7.  Time series of regionally averaged (a) Tmax anomaly, (b) T2m anomaly, (c) Tmin anomaly in mainland China under the RCP8.5 scenario for 2010–2065 with reference period 1986–2005

    图  8  RCP8.5排放情景下中国夏季地表气温 (上:Tmax;中:T2m;下:Tmin) 气候态变化情况 (2046~2065年与1986~2005年差值)。左列:FGOALS-g2模式预估结果;右列:RegCM3模式预估结果

    Figure  8.  Climatology changes (2046-2065 minus 1986-2005) in surface air temperature (top: Tmax; middle: T2m; bottom: Tmin) in mainland China under RCP8.5 scenario. Left panels: FGOALS-g2 model simulation; right panels: RegCM3 model simulation

    图  9  图 7,但为极端高温事件指数距平序列:(a) TXx (单位:℃);(b) TX90p (单位:d);WSDI (单位:d)

    Figure  9.  As in Fig. 7, but for time series of extreme high-temperature indices anomalies: (a) TXx (units: ℃), (b) TX90p (units: d), (c) WSDI (units: d)

    图  10  图 8,但为极端高温事件指数气候态变化情况。上:TXx;中:TX90p;下:WSDI

    Figure  10.  As in Fig. 8, but for climatology changes in extreme high-temperature indices. Top panels: TXx; middle panels: TX90p; bottom panels: WSDI

    图  11  中国夏季地表气温指标变化的概率密度分布:(a) Tmax,(b) T2m,(c) Tmin。各个格点上的数均减去1986~2005年夏季气候态,虚线为1986~2005年,实线为RCP8.5排放情景下2046~2065年,红色表示FGOALS-g2中的结果,绿色表示RegCM3中的结果

    Figure  11.  Probability density distributions of (a) Tmax anomaly, (b) T2m anomaly, and (c) Tmin anomaly. The value of each grid is subtracted by 1986-2005 summer climatology. Dashed lines indicate the results for 1986-2005 and solid lines indicate the results for 2046-2065 under the RCP8.5 scenario. Red indicates results from FGOALS-g2 model simulation and green indicates results from RegCM3 model simulation

    表  1  极端高温事件指数定义

    Table  1.   The definition of extreme high-temperature indices

    名称 英文缩写 定义 单位
    日最高气温最大值 TXx 每年日最高气温最大值
    暖昼指数 TX90p 每年日最高气温大于基准期内90%分位数的天数 d
    持续暖期指数 WSDI 每年至少连续六天最高气温大于基准期内90%分位数的天数 d
    下载: 导出CSV

    表  2  RegCM3模式模拟、FGOALS-g2模式模拟与CN05.1观测资料的差值和空间相关系数

    Table  2.   Differences and pattern correlations between modelRegCM3 simulation results, model FGOALS-g2 simulation results and CN05.1 data

    FGOALS-g2模式RegCM3模式
    与CN05.1资料的差值与CN05.1资料的空间相关系数与CN05.1资料的差值与CN05.1资料的空间相关系数
    Tmax-2.74℃0.76-2.95℃0.92
    T2m-1.94℃0.82-3.73℃0.96
    Tmin-1.81℃0.87-4.04℃0.97
    TXx0.201℃0.77-0.73℃0.91
    TX90p-0.09 d0.820.86d0.66
    WSDI-0.42 d0.68-0.62d0.41
    下载: 导出CSV

    表  3  模式预估的RCP8.5排放情景下到21世纪中期 (2046~2065年) 气候变化

    Table  3.   The projection of regional averaged changes of indices for the middle of 21st century (2046-2065) under RCP8.5 scenario

    模式预估的气候变化
    FGOALS-g2模式RegCM3模式
    Tmax/℃2.802.92
    T2m/℃2.722.89
    Tmin/℃2.712.92
    TXx/℃2.652.94
    TX90p/d21.3624.50
    WSDI/d19.2323.52
    增温幅度最
    大区域
    东北和青藏
    高原地区
    最高气温是除了西北的大部分地区,
    最低气温主要是青藏高原地区
    下载: 导出CSV
  • [1] Bucchignani E, Montesarchio M, Cattaneo L, et al. 2014. Regional climate modeling over China with COSMO-CLM: Performance assessment and climate projections [J]. J. Geophys. Res. Atmos., 119 (21): 12151-12170, doi: 10.1002/2014JD022219.
    [2] Cao L J, Zhu Y N, Tang G L, et al. 2016. Climatic warming in China according to a homogenized data set from 2419 stations [J]. Int. J. Climatol., doi: 10.1002/joc.4639.
    [3] Chen L, Frauenfeld O W. 2014. Surface air temperature changes over the twentieth and twenty-first centuries in China simulated by 20 CMIP5 models [J]. J. Climate, 27 (11): 3920-3937, doi: 10.1175/JCLI-D-13-00465.1.
    [4] Chen R D, Lu R Y. 2015. Comparisons of the circulation anomalies associated with extreme heat in different regions of eastern China [J]. J. Climate, 28 (14): 5830-5844, doi: 10.1175/JCLI-D-14-00818.1.
    [5] Chen W L, Jiang Z H, Li L. 2011. Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs [J]. J. Climate, 24 (17): 4741-4756, doi: 10.1175/2011JCLI4102.1.
    [6] Choi G, Collins D, Ren G Y, et al. 2009. Changes in means and extreme events of temperature and precipitation in the Asia-Pacific network region, 1955-2007 [J]. Int. J. Climatol., 29 (13): 1906-1925, doi: 10.1002/joc.1979.
    [7] Craig A P, Jacob R, Kauffman B, et al. 2005. CPL6: The new extensible, high performance parallel coupler for the Community Climate System Model [J]. International Journal of High Performance Computing Applications, 19 (3): 309-327, doi: 10.1177/1094342005056117.
    [8] DeGaetano A T, Allen R J. 2002. Trends in twentieth-century temperature extremes across the United States [J]. J. Climate, 15 (22): 3188-3205, doi:10.1175/1520-0442(2002)015<3188:TITCTE>2.0.CO;2.
    [9] Della-Marta P M, Haylock M R, Luterbacher J, et al. 2007. Doubled length of western European summer heat waves since 1880 [J]. J. Geophys. Res. Atmos., 112 (D15), doi: 10.1029/2007JD008510.
    [10] Dickinson R E, Henderson-Sellers A, Kennedy P J. 1993. Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model [R]. NCAR Technical Note NCAR/TN-387+ STR, doi:10.5065/D67W6959.
    [11] Ding Y H, Ren G Y, Zhao Z C, et al. 2007. Detection, causes and projection of climate change over China: An overview of recent progress [J]. Adv. Atmos. Sci., 24 (6): 954-971, doi: 10.1007/s00376-007-0954-4.
    [12] Feng J M, Wang Y L, Fu C B. 2011. Simulation of extreme climate events over China with different regional climate models [J]. Atmos. Oceanic Sci. Lett., 4 (1): 47-56, doi: 10.1080/16742834.2011.11446903.
    [13] Gao X J, Shi Y, Giorgi F. 2011. A high resolution simulation of climate change over China [J]. Science China: Earth Sciences, 54 (3): 462-472, doi: 10.1007/s11430-010-4035-7.
    [14] Gao X J, Shi Y, Zhang D F, et al. 2012. Climate change in China in the 21st century as simulated by a high resolution regional climate model [J]. Chinese Science Bulletin, 57 (10): 1188-1195, doi: 10.1007/s11434-011-4935-8.
    [15] Gao X J, Wang M L, Giorgi F. 2013. Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0 [J]. Atmos. Oceanic Sci. Lett., 6 (5): 381-386, doi: 10.3878/j.issn.1674-2834.13.0029.
    [16] Giorgi F, Jones C, Asrar G R. 2009. Addressing climate information needs at the regional level: The CORDEX framework [J]. WMO Bulletin, 58 (3): 175-183. https://public.wmo.int/en/bulletin/addressing-climate-information-needs-regional-level-cordex-framework
    [17] Grell G A. 1993. Prognostic evaluation of assumptions used by cumulus parameterizations [J]. Mon. Wea. Rev., 121 (3): 764-787, doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.
    [18] Holtslag A A M, De Bruijn E I F, Pan H L. 1990. A high resolution air mass transformation model for short-range weather forecasting [J]. Mon. Wea. Rev., 118 (8): 1561-1575, doi:10.1175/1520-0493(1990)118<1561: AHRAMT>2.0.CO;2.
    [19] IPCC, 2013. Climate Change 2013: The Physical Science Basis [M]. Qin D, Plattner G K, Tignor M, et al., Eds. Cambridge, UK, and New York, USA: Cambridge University Press.
    [20] Ji Z M, Kang S C. 2013. Double-nested dynamical downscaling experiments over the Tibetan Plateau and their projection of climate change under two RCP scenarios [J]. J. Atmos. Sci., 70 (4): 1278-1290, doi: 10.1175/JAS-D-12-0155.1.
    [21] Ji Z M, Kang S C. 2015. Evaluation of extreme climate events using a regional climate model for China [J]. Int. J. Climatol., 35 (6): 888-902, doi: 10.1002/joc.4024.
    [22] Jiang Z H, Song J, Li L, et al. 2012. Extreme climate events in China: IPCC-AR4 model evaluation and projection [J]. Climatic Change, 110 (1-2): 385-401, doi: 10.1007/s10584-011-0090-0.
    [23] Kiehl J T, Hack J J, Bonan G B, et al. 1996. Description of the NCAR community climate model (CCM3) [R]. Technical Note NCAR/TN-420+STR, doi:10.5065/D6FF3Q99.
    [24] Li H M, Feng L, Zhou T J. 2011. Multi-model projection of July-August climate extreme changes over China under CO2 doubling. Part Ⅱ: Temperature [J]. Adv. Atmos. Sci., 28 (2): 448-463, doi: 10.1007/s00376-010-0052-x.
    [25] Li L J, Lin P F, Yu Y Q, et al. 2013a. The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2 [J]. Adv. Atmos. Sci., 30(3): 543-560, doi: 10.1007/s00376-012-2140-6.
    [26] Li L J, Wang B, Dong L, et al. 2013b. Evaluation of grid-point atmospheric model of IAP LASG version 2 (GAMIL2) [J]. Adv. Atmos. Sci., 30 (3): 855-867, doi: 10.1007/s00376-013-2157-5.
    [27] Liu B H, Xu M, Henderson M, et al. 2004. Taking China's temperature: Daily range, warming trends, and regional variations, 1955-2000 [J]. J. Climate, 17 (22): 4453-4462, doi: 10.1175/3230.1.
    [28] 刘昌波, 纪潇潇, 许吟隆, 等. 2015.SRES A1B情景下中国区域21世纪最高、最低气温及日较差变化的模拟分析[J].气候与环境研究, 20 (1): 89-96. doi: 10.3878/j.issn.1006-9585.2014.13190

    Liu C B, Ji X X, Xu Y L, et al. 2015. Analysis of changes in the maximum and minimum temperature and diurnal temperature range from PRECIS model under the SRES A1B scenario for China [J]. Climatic and Environmental Research (in Chinese), 20 (1): 89-96, doi: 10.3878/j.issn.1006-9585.2014.13190.
    [29] Liu H L, Lin P F, Yu Y Q, et al. 2012. The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2 [J]. Acta Meteor. Sinica, 26 (3): 318-329, doi: 10.1007/s13351-012-0305-y.
    [30] Liu J P. 2010. Sensitivity of sea ice and ocean simulations to sea ice salinity in a coupled global climate model [J]. Science China: Earth Sciences, 53 (6): 911-918, doi: 10.1007/s11430-010-0051-x.
    [31] Liu S Y, Gao W, Liang X Z. 2013. A regional climate model downscaling projection of China future climate change [J]. Climate Dyn., 41 (7-8): 1871-1884, doi: 10.1007/s00382-012-1632-5.
    [32] Liu X D, Yin Z Y, Shao X M, et al. 2006. Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961-2003 [J]. J. Geophys. Res. Atmos., 111 (D19), doi: 10.1029/2005JD006915
    [33] Niu X R, Wang S Y, Tang J P, et al. 2015. Projection of Indian summer monsoon climate in 2041-2060 by multiregional and global climate models [J]. J. Geophys. Res. Atmos., 120 (5): 1776-1793, doi: 10.1002/2014JD022620.
    [34] Oleson K W, Lawrence D M, Bonan G B, et al. 2010. Technical description of version 4.0 of the Community Land Model (CLM) [R]. NCAR Technical Note NCAR/TN-478+STR, doi:10.5065/D6FB50WZ.
    [35] Pal J S, Small E E, Eltahir E A B. 2000. Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM [J]. J. Geophys. Res. Atmos., 105 (D24): 29579-29594, doi: 10.1029/2000JD900415.
    [36] Pal J S, Giorgi F, Bi X Q, et al. 2007. Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET [J]. Bull. Amer. Meteor. Soc., 88 (9): 1395-1409, doi: 10.1175/BAMS-88-9-1395.
    [37] Park C Y, Min S K, Lee D Y, et al. 2014. Evaluation of multiple regional climate models for summer climate extremes over East Asia [J]. Climate Dyn., 46 (7): 2469-2486, doi: 10.1007/s00382-015-2713-z.
    [38] Riahi K, Rao S, Krey V, et al. 2011. RCP8.5—A scenario of comparatively high greenhouse gas emissions [J]. Climatic Change, 109 (1-2): 33-57, doi: 10.1007/s10584-011-0149-y.
    [39] Tang J P, Wang S Y, Niu X R, et al. 2016. Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF [J]. Climate Dyn., doi: 10.1007/s00382-016-3208-2.
    [40] Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram [J]. J. Geophys. Res. Atmos., 106 (D7): 7183-7192, doi: 10.1029/2000JD900719.
    [41] Tebaldi C, Hayhoe K, Arblaster J M, et al. 2006. Going to the extremes [J]. Climatic Change, 79 (3-4): 185-211, doi: 10.1007/s10584-006-9051-4.
    [42] Thomson A M, Calvin K V, Smith S J, et al. 2011. RCP4.5: A pathway for stabilization of radiative forcing by 2100 [J]. Climatic Change, 109 (1-2): 77-94, doi: 10.1007/s10584-011-0151-4.
    [43] Wang H J, Sun J Q, Chen H P, et al. 2012. Extreme climate in China: Facts, simulation and projection [J]. Meteor. Z., 21 (3): 279-304, doi: 10.1127/0941-2948/2012/0330.
    [44] 吴佳, 高学杰. 2013.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报, 56 (4): 1102-1111. doi: 10.6038/cjg20130406

    Wu J, Gao X J. 2013. A gridded daily observation dataset over China region and comparison with the other datasets [J]. Chinese J. Geophys. (in Chinese), 56 (4): 1102-1111, doi: 10.6038/cjg20130406.
    [45] Wu J, Gao X J, Xu Y L, et al. 2015. Regional climate change and uncertainty analysis based on four regional climate model simulations over China [J]. Atmos. Oceanic Sci. Lett., 8 (3): 147-152. doi: 10.1080/16742834.2015.11447252
    [46] Xu C H, Xu Y. 2012. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble [J]. Atmos. Oceanic Sci. Lett., 5 (6): 527-533. http://www.cnki.com.cn/Article/CJFDTOTAL-AOSL201206017.htm
    [47] Xu J Y, Shi Y, Gao X J, et al. 2013. Projected changes in climate extremes over China in the 21st century from a high resolution regional climate model (RegCM3) [J]. Chinese Science Bulletin, 58 (12): 1443-1452, doi: 10.1007/s11434-012-5548-6.
    [48] Xu Y, Gao X J, Shen Y, et al. 2009. A daily temperature dataset over China and its application in validating a RCM simulation [J]. Adv. Atmos. Sci., 26 (4): 763-772, doi: 10.1007/s00376-009-9029-z.
    [49] 姚隽琛, 周天军, 邹立维. 2015.区域耦合模式FROALS模拟的西北太平洋热带气旋潜势分布与年际变率:耦合与非耦合试验比较[J].大气科学, 39 (4): 802-814. doi: 10.3878/j.issn.1006-9895.1411.14209

    Yao J C, Zhou T J, Zou L W. 2015. Distribution and interannual variability of tropical cyclone genesis over the western North Pacific simulated by a regional coupled model—FROALS: Comparison with an uncoupled model [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39 (4): 802-814, doi: 10.3878/j.issn.1006-9895.1411.14209.
    [50] Zeng X B, Zhao M, Dickinson R E. 1998. Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data [J]. J. Climate, 11 (10): 2628-2644, doi:10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2.
    [51] 翟盘茂, 任福民. 1997.中国近四十年最高最低温度变化[J].气象学报, 55 (4): 418-429. doi: 10.11676/qxxb1997.042

    Zhai P M, Ren F M. 1997. On changes of China's maximum and minimum temperatures in the recent 40 years [J]. Acta Meteor. Sinica (in Chinese), 55 (4): 418-429, doi:10.11676/qxxb1997. 042.
    [52] Zhai P M, Pan X H. 2003. Trends in temperature extremes during 1951-1999 in China [J]. Geophys. Res. Lett., 30 (17): 1913, doi: 10.1029/2003GL018004.
    [53] Zhang X B, Alexander L, Hegerl G C, et al. 2011. Indices for monitoring changes in extremes based on daily temperature and precipitation data [J]. Wiley Interdisciplinary Reviews: Climate Change, 2 (6): 851-870, doi: 10.1002/wcc.147.
    [54] Zhou B T, Wen Q H, Xu Y, et al. 2014. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles [J]. J. Climate, 27 (17): 6591-6611, doi: 10.1175/JCLI-D-13-00761.1.
    [55] Zhou T J, Yu R C. 2006. Twentieth-century surface air temperature over China and the globe simulated by coupled climate models [J]. J. Climate, 19 (22): 5843-5858, doi: 10.1175/JCLI3952.1.
    [56] Zhou T J, Yu Y Q, Liu Y M, et al. 2013. Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community [M]. Berlin, Heidelberg: Springer Science & Business Media, 483pp.
    [57] 周雅清, 任国玉. 2010.中国大陆1956~2008年极端气温事件变化特征分析[J].气候与环境研究, 15 (4): 405-417. doi: 10.3878/j.issn.1006-9585.2010.04.08

    Zhou Y Q, Ren G Y. 2010. Variation characteristics of extreme temperature indices in mainland China during 1956-2008 [J]. Climatic and Environmental Research (in Chinese), 15 (4): 405-417, doi:10.3878/j.issn.1006-9585. 2010.04.08.
    [58] Zou L W, Zhou T J. 2013. Can a regional ocean-atmosphere coupled model improve the simulation of the interannual variability of the western North Pacific summer monsoon? [J] J. Climate, 26 (7): 2353-2367, doi: 10.1175/JCLI-D-11-00722.1.
    [59] Zou L W, Zhou T J, Peng D D. 2016. Dynamical downscaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean-atmosphere coupled model to stand-alone RCM simulations [J]. J. Geophys. Res. Atmos., 121 (4): 1442-1458, doi: 10.1002/2015JD023912.
    [60] Zou L W, Zhou T J. 2016a. A regional ocean-atmosphere coupled model developed for CORDEX East Asia: Assessment of Asian summer monsoon simulation [J]. Climate Dyn., doi: 10.1007/s00382-016-3032-8.
    [61] Zou L W, Zhou T J. 2016b. Future summer precipitation changes over CORDEX-East Asia domain downscaled by a regional ocean-atmosphere coupled model: A comparison to the stand-alone RCM [J]. J. Geophys. Res. Atmos., 121 (6): 2691-2704, doi: 10.1002/2015JD024519.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  2236
  • HTML全文浏览量:  0
  • PDF下载量:  1949
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-30
  • 网络出版日期:  2016-07-21
  • 刊出日期:  2017-05-15

目录

    /

    返回文章
    返回