An Analysis on the Relationship between Ground-Level Ozone and Particulate Matter in an Industrial Area in the Yangtze River Delta during Summer Time
-
摘要: 利用2013年5月15日到8月31日南京江北工业区(长三角典型工业区)同步的观测资料分析了近地层臭氧(O3)和细颗粒物(PM2.5)、气溶胶光学厚度(AOD)的变化特征及相互间的关系,并结合光化学箱模式分析了AOD对近地层O3生成的影响。结果表明,观测期间PM2.5平均质量浓度为56.2±20.1 μg m-3;AOD(500 nm)均值为1.4±0.9;波长指数α(440~870 nm)均值为1.0±0.3。PM2.5质量浓度24 h均值超国家二级标准20.2%,超标时AOD均值增加14.7%,α平均值增加23.9%,O3体积分数均值减少12.3%。O3超国家二级标准10.1%,超标时段AOD增加34.9%,α变化不显著。高温低湿条件下,O3日变化峰值(y)和PM2.5质量浓度(x)存在较高的线性相关。相对湿度<60%时,两者拟合曲线为y=0.97x+43.96(拟合度R2=0.60),温度>32°C时,两者拟合方程为y=1.24x+30.61(R2=0.64)。夏季长三角工业区呈现高浓度O3与高浓度PM2.5叠加的大气复合污染。O3日变化峰值和AOD变化呈显著负相关。模拟结果显示,O3日变化峰值(y)和AOD(x)呈现极高的负相关[y=-34.28x+181.62,R2 = 0.93或y=220.62·exp (-x/3.17)-19.50,R2=0.99]。Abstract: Based on the data collected from May 15th to August 31st 2013 in an industrial area of Nanjing (a representative industrial area in the Yangtze River delta), characteristics of ozone (O3), PM2.5 and aerosol optical depth (AOD), and the relationships between O3 and PM2.5 and between O3 and AOD were analyzed. The effect of AOD on ozone formation was evaluated by the application of a detailed chemical mechanism model (NCAR MM). The average concentration of PM2.5 was 56.2±20.1 μg m-3, and the average AOD (500 nm) and Angstrom exponent α (440-870 nm) were 1.4±0.9 and 1.0±0.3, respectively. PM2.5 and O3 exceeded NAAQS-Ⅱ (the National Ambient Air Quality Standard Ⅱ) by 20.2% and 10.1%, respectively. When PM2.5 exceeded the NAAQS-Ⅱ, the average AOD (500 nm) and α (440-870 nm) increased by 14.7% and 23.91%, respectively, and O3 fell by 12.3%. When O3 exceeded the NAAQS-Ⅱ, the average AOD (500 nm) increased by 34.9%, and the average α (440-870 nm) did not vary significantly. There existed a significant linear correlation between daily ozone maximum concentration (y) and PM2.5 concentration (x) under the condition of high temperature and low relative humidity. When the relative humidity was less than 60%, the linear regression function was y=0.97x+43.96 [R2=0.60 (R2 denotes the degree of fitting)]. When the temperature was over 32°C, the linear regression function was y=1.24x+30.61 (R2=0.64). There existed a negative correlation between daily ozone maximum concentration (y) and ground-observed AOD (x) in general. There existed a good negative correlation between simulated daily ozone maximum concentration (y) and ground-observed AOD (x), and the regression functions could be written as y=-34.28x+181.62 (R2=0.93) and/or y=220.62·exp (-x/3.17)-19.50 (R2=0.99).
-
Key words:
- Industrial area /
- Ozone /
- PM2.5 /
- Aerosol optical depth (AOD) /
- Complex air pollution /
- Ozone photochemical formation
-
表 1 观测仪器基本参数及标定方法
Table 1. Basic parameters and calibration methods of monitoring instruments
NO-NO2-NOx分析仪 CO分析仪 O3分析仪 检测限 0.5×10−9 min 0.04×10−6 min 1.0×10−9 min 零漂 <0.5×10−9 (24 h)−1 <0.1×10−6 (24 h)−1 <1.0×10−9(24h)−1 跨漂(满度值) ±1% (24 h) −1 ±1% (24 h) −1 ±1% (24 h) −1,±2% (7 d)−1 标定仪器 动态气体校准器(Thermo 146i)零空气发生器(Thermo model 111) 动态气体校准器(Thermo146i)零空气发生器(Thermo model 111) 49iPS臭氧标定仪零空气发生器(Thermo model 111) 标准气体 中国国家标准物质中心制作(体积分数56.8×10−6,有效期至2016年12月) 中国国家标准物质中心制作(体积分数56.8×10−6,有效期至2016年12月) — 表 2 各污染物浓度、气溶胶光学厚度、波长指数 (α) 及气象参数统计描述
Table 2. Summary statistics of air pollutants concentrations, AOD, Angstrom exponent (α), and meteorological elements during the observational period
NO (×10-9) NO2(×10-9) NOx(×10-9) CO (×10-6) TVOCs (×10-9) O3(×10-9) O3_1h_max(×10-9) O3_8h_max(×10-9) PM2.5/μg m-3 AOD α 温度/℃ 相对湿度 风速/m s-1 平均值±标准偏差 4.4±3.3 17.1±11.2 21. 5±14.0 0.7±0.44 33.2±25.2 32.1±15.2 64.8±28.9 - 56.2±20.0 1.4±0.9 1.0±0.3 28.0±4.2 66.8%±10.4% 2.4±1.4 最大值 19.8 59.4 69.9 2.1 326.7 89.9 146.4 110.3 114.9 4.3 1.7 34.4 93.4% 7.8 最小值 0.6 2.1 3.1 0.1 5.1 4.2 18.7 14.1 14.4 0.3 0.3 16.6 45.5% 0.6 国家二级标准阈值 - 106.0 - 3.5 - - 102.0 81.6 75 - - - - - 超标天数 (有效天数) - 0 - 0 - - 10(99) 14(99) 20(99) - - - - - 超标率 - 0 - 0 - - 10.1% 14.1% 20.2% - - - - - 注:“-”表示没有针对该项的数值;表头给出的单位是指“平均值±标准偏差”、“最大值”、“最小值”和“国家二级标准阈值”所在行数值的单位。 表 3 所选的7个观测日的环境参量统计描述
Table 3. Summary statistics of the environmental parameters in the selected days
AOD O3_1h_max(×10−9) 温度/℃ 相对湿度 风速/m s−1 各物种浓度 烷烃(×10−9) 烯烃(×10−9) 芳香烃(×10−9) 炔烃(×10−9) CO(×10−6) NOx(×10−9) 5月19日 2.9 72.9 24.9 62.5% 1.6 19.7 6.7 10.1 3.6 0.9 17.9 5月20日 2.2 93.1 24.5 58.4% 1.2 18.8 6.6 12.9 5.3 0.7 21.4 6月15日 3.4 50.0 25.8 61.9% 2.2 17.7 7.2 10.9 3.7 0.9 20.7 6月28日 2.8 56.7 27.2 62.8% 2.0 20.2 7.6 11.6 3.4 0.7 19.4 7月12日 1.3 127.5 28.6 57.5% 1.2 19.5 7.4 14.1 4.5 0.9 22.0 8月12日 1.3 125.4 29.0 58.0% 2.5 24.8 6.6 12.4 3.6 1.2 23.6 8月17日 0.8 139.8 30.3 63.8% 2.4 19.5 7.0 12.5 3.5 0.8 16.9 -
[1] An J L, Zou J N, Wang J X, et al. 2015. Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China [J]. Environmental Science and Pollution Research, 22 (24): 19607-19617, doi: 10.1007/s11356-015-5177-0. [2] Burney J, Ramanathan V. 2014. Recent climate and air pollution impacts on Indian agriculture [J]. Proceedings of the National Academy of Sciences of the United States of America, 111 (46): 16319-16324, doi: 10.1073/pnas.1317275111. [3] 蔡彦枫, 王体健, 谢旻, 等. 2013.南京地区大气颗粒物影响近地面臭氧的个例研究[J].气候与环境研究, 18 (2): 251-260. doi: 10.3878/j.issn.1006-9585.2012.11111Cai Yanfeng, Wang Tijian, Xie Min, et al. 2013. Impacts of atmospheric particles on surface ozone in Nanjing [J]. Climatic and Environmental Research (in Chinese), 18 (2): 251-260, doi: 10.3878/j.issn.1006-9585.2012.11111. [4] 邓雪娇, 铁学熙, 吴兑, 等. 2006.大城市气溶胶对光化辐射通量及臭氧的影响研究 (Ⅱ)——数值试验分析[J].广东气象, (4): 5-11. doi: 10.3969/j.issn.1007-6190.2006.04.002Deng Xuejiao, Tie Xuexi, Wu Dui, et al. 2006. Study on the effect of atmospheric aerosol on actinic flux and ozone in large city. Part Ⅱ: Numerical test analyses [J]. Guangdong Meteorology (in Chinese), (4): 5-11, doi: 10.3969/j.issn.1007-6190.2006.04.002. [5] Geng F H, Zhao C S, Tang X, et al. 2007. Analysis of ozone and VOCs measured in Shanghai: A case study [J]. Atmos. Environ., 41 (5): 989-1001, doi: 10.1016/j.atmosenv.2006.09.023. [6] Geng F H, Tie X X, Xu J M, et al. 2008. Characterizations of ozone, NOx, and VOCs measured in Shanghai, China [J]. Atmos. Environ., 42 (29): 6873-6883, doi: 10.1016/j.atmosenv.2008.05.045. [7] Gryparis A, Forsberg B, Katsouyanni K, et al. 2004. Acute effects of ozone on mortality from the "Air pollution and health: A European approach" project [J]. American Journal of Respiratory and Critical Care Medicine, 170 (10): 1080-1087, doi: 10.1164/rccm.200403-333OC. [8] He S, Carmichael G R. 1999. Sensitivity of photolysis rates and ozone production in the troposphere to aerosol properties [J]. J. Geophys. Res., 104 (D21): 26307-26324, doi: 10.1029/1999JD900789. [9] Ichoku C, Levy R, Kaufman Y J, et al. 2002. Analysis of the performance characteristics of the five-channel Microtops Ⅱ Sun photometer for measuring aerosol optical thickness and precipitable water vapor [J]. J. Geophys. Res., 107 (D13), doi: 10.1029/2001JD001302. [10] IPCC. 2013. Climate Change 2013: The Physical Science Basis [M]: Stocker T F, Qin D, Plattner G K, et al., Eds. Cambridge, UK and New York, USA: Cambridge University Press, 595pp. [11] Li J, Wang Z, Wang X, et al. 2011. Impacts of aerosols on summertime tropospheric photolysis frequencies and photochemistry over central eastern China [J]. Atmos. Environ., 45 (10): 1817-1829, doi:10.1016/j. atmosenv.2011.01.016. [12] Li J W, Han Z W, Zhang R J. 2014. Influence of aerosol hygroscopic growth parameterization on aerosol optical depth and direct radiative forcing over East Asia [J]. Atmos. Res., 140-141: 14-27, doi: 10.1016/j.atmosres.2014.01.013. [13] 李用宇, 朱彬, 安俊琳, 等. 2013.南京北郊秋季VOCs及其光化学特征观测研究[J].环境科学, 34 (8): 2933-2942. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201308001.htmLi Yongyu, Zhu Bin, An Junlin, et al. 2013. Characteristics of VOCs and their photochemical reactivity in autumn in Nanjing northern suburb [J]. Environmental Science (in Chinese), 34 (8): 2933-2942. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201308001.htm [14] Lou S J, Liao H, Zhu B. 2014. Impacts of aerosols on surface-layer ozone concentrations in China through heterogeneous reactions and changes in photolysis rates [J]. Atmos. Environ., 85: 123-138, doi:10.1016/j. atmosenv.2013.12.004. [15] Madronich S, Calvert J G. 1990. Permutation reactions of organic peroxy radicals in the troposphere [J]. Journal of Geophysical Research, 95 (D5): 5697-5715, doi: 10.1029/JD095iD05p05697. [16] Morys M, Mims Ⅲ F M, Hagerup S, et al. 2001. Design, calibration, and performance of MICROTOPS Ⅱ handheld ozone monitor and Sun photometer [J]. J. Geophys. Res., 106 (D13): 14573-14582, doi: 10.1029/2001JD900103. [17] Pope C A, Dockery D W, Schwartz J. 1995. Review of epidemiological evidence of health effects of particulate air pollution [J]. Inhalation Toxicology, 7 (1): 1-18, doi: 10.3109/08958379509014267. [18] Pozzoli L, Janssens-Maenhout G, Diehl T, et al. 2011. Re-analysis of tropospheric sulfate aerosol and ozone for the period 1980-2005 using the aerosol-chemistry-climate model ECHAM5-HAMMOZ [J]. Atmospheric Chemistry and Physics, 11 (18): 9563-9594, doi: 10.5194/acp-11-9563-2011. [19] Qu W J, Wang J, Zhang X Y, et al. 2015. Influence of relative humidity on aerosol composition: Impacts on light extinction and visibility impairment at two sites in coastal area of China [J]. Atmos. Res., 153: 500-511, doi: 10.1016/j.atmosres.2014.10.009. [20] Ramanathan V, Crutzen P J, Kiehl J T, et al. 2001. Aerosols, climate, and the hydrological cycle [J]. Science, 294 (5549): 2119-2124, doi: 10.1126/science.1064034. [21] Ran L, Zhao C S, Geng, F H, et al. 2009. Ozone photochemical production in urban Shanghai, China: Analysis based on ground level observations [J]. J. Geophys. Res., 114 (D15), doi: 10.1029/2008JD010752. [22] Shao P, An J L, Xin J Y, et al. 2016. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China [J]. Atmos. Res., 176-177: 64-74, doi: 10.1016/j.atmosres.2016.02.015. [23] Shi C Z, Wang S S, Liu R, et al. 2015. A study of aerosol optical properties during ozone pollution episodes in 2013 over Shanghai, China [J]. Atmos. Res., 153: 235-249, doi: 10.1016/j.atmosres.2014.09.002. [24] Sillman S. 1995. The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations [J]. J. Geophys. Res., 100 (D7): 14175-14188, doi: 10.1029/94JD02953. [25] Sun Y L, Wang Z F, Fu P Q, et al. 2013. The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China [J]. Atmos. Environ., 77: 927-934, doi:10.1016/j.atmosenv.2013. 06.019. [26] Tie X, Brasseur G P, Zhao C S, et al. 2006. Chemical characterization of air pollution in eastern China and the eastern United States [J]. Atmos. Environ., 40 (14): 2607-2625, doi: 10.1016/j.atmosenv.2005.11.059. [27] Tie X X, Madronich S, Walters S, et al. 2003. Effect of clouds on photolysis and oxidants in the troposphere [J]. J. Geophys. Res., 108 (D20): 4642, doi: 10.1029/2003JD003659. [28] 辛金元, 王跃思, 李占清, 等. 2006.中国地区太阳分光辐射观测网的建立与仪器标定[J].环境科学, 27 (9): 1697-1702. doi: 10.3321/j.issn:0250-3301.2006.09.001Xin Jinyuan, Wang Yuesi, Li Zhanqing, et al. 2006. Introduction and calibration of the Chinese Sun Hazemeter Network [J]. Environmental Science (in Chinese), 27 (9): 1697-1702, doi: 10.3321/j.issn:0250-3301.2006.09.001. [29] Xin J Y, Wang Y S, Li Z Q, et al. 2007. Aerosol optical depth (AOD) and Ångström exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005 [J]. J. Geophys. Res., 112 (D5): D05203, doi: 10.1029/2006JD007075. [30] Xin J Y, Wang Y S, Pan Y P, et al. 2015. The campaign on atmospheric aerosol research network of China: CARE-China [J]. Bull. Amer. Meteor. Soc., 96 (7): 1137-1155, doi: 10.1175/BAMS-D-14-00039.1. [31] Xu J, Zhang Y H, Zheng S Q, et al. 2012. Aerosol effects on ozone concentrations in Beijing: A model sensitivity study [J]. J. Environ. Sci., 24 (4): 645-656, doi: 10.1016/S1001-0742(11)60811-5. [32] Zhang Y L, Cao F.Cao F. 2015. Fine particulate matter (PM2.5) in China at a city level [J]. Sci. Rep., 5: 14884, doi: 10.1038/srep14884. [33] 中国气象局. 2013. QX/T 174-2012大气成分站选址要求[S]. 北京: 气象出版社.China Meteorological Administration. 2013. QX/T 174-2012 Guideline for Site Selection of Atmospheric Composition Monitoring Station [S]. Beijing: China Meteorological Press. [34] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2012. GB 3095-2012环境空气质量标准[S]. 北京: 中国环境科学出版社.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. 2012.GB 3095-2012 Ambient Air Quality Standard [S]. Beijing: China Environmental Science Press. [35] Zhuang B L, Wang T J, Li S, et al. 2014. Optical properties and radiative forcing of urban aerosols in Nanjing, China [J]. Atmos. Environ., 83: 43-52, doi: 10.1016/j.atmosenv.2013.10.052. -