The Numerical Study of Terrain Dynamic Influence on Warm Area Heavy Rainfall of Convergence Lines in South China Coast
-
摘要: 华南沿海暖区暴雨是单一暖气团降水。本文采用客观分析方法确定暖区暴雨主要影响系统为两类辐合线低值系统:偏南向辐合线与西南向辐合线;此类辐合线系统具有强烈的辐合上升层次与暖心结构,是一类强烈的暖区暴雨天气系统。偏南向辐合线多出现在粤西沿海,而西南向辐合线多出现于粤东沿岸,分别具有短时团状与持续带状两类强降水。华南沿海地区山脉河口众多,其中珠江口以西的团状云雾山正面阻挡偏南向辐合线,河口以东的带状莲花山侧面阻挡西南向辐合线。利用WRF数值模式分别研究粤东和粤西山脉对两类辐合线及其暴雨的地形影响,包括正面阻挡和侧面摩擦。结果显示,将偏南向型辐合线所遇云雾山范围地形降低80%后,因正面阻挡缺失,辐合线及其降水向北推进,雨带强度减弱,形状改变。地形的正面阻挡促使低层辐合气流迅速抬升触发强降水。降水释放的凝结潜热,又加强系统的上升运动和暖心结构强度与层厚,进而增强暴雨。填充偏南向型狭管地形的试验显示,狭管效应构成对强降水位置和强度的直接强迫影响,加之与云雾山正面阻挡配合,两项作用造成粤西暴雨频繁特征。测试粤东西南向莲花山脉对西南向辐合线的侧向阻挡与摩擦效应,通过对比莲花山两种地表粗糙度环境模拟效果,获得显著的局地垂直上升速度差,显示粤东沿海山脉的侧向摩擦不仅增强西南辐合线强度也加强垂直上升运动强度,由于西南气流的持续,山脉走向与气流的配置,维持了降雨时长及雨带范围。同时对粤西近海西南辐合气流及河口的暴雨雨带也有连带增强与维持作用。进一步地山脉地形抬升以其抬升迅速,范围集中,层次深厚,而有别于锋面气团抬升。加之近海水汽充沛,抬升后中层凝结释放的配合,增强了辐合线低值系统强度,造成暖区降水雨强远高于华南锋面降水。Abstract: Heavy rainstorms in the coastal region of South China are often caused by single warm air mass. Based on objective analysis by computational program, two types of convergence line, i.e. the southerly convergence line and southwesterly convergence line, are determined to be the major systems affecting the warm area heavy rainstorms. The structure of such convergence lines is characterized by a strong and deep warm center and ascending motions. The convergence line is essentially a strong synopticstorm system in warm air mass area. The southerly convergence line often occurs at the western coast of Guangdong Province of South China, which can induce short-term heavy precipitation clusters. The southwesterly convergence line often appears at the eastern coast of Guangdong and results in continuous heavy precipitation belts. Terrain in coastal region of South China is complex with various mountains and estuaries. Mountain Yunwu at the western coast of Guangdong can block the southerly convergence line at a right angle, while Mountain Lianhua at the eastern coast of Guangdong curves laterally to meet the southwesterly convergence line and imposes significant frictional effects on it. The numerical model WRF3.5 is applied to investigate the influence of mountainous terrain on the two types of convergence line with a focus on the effects of blocking at the right angle and the lateral friction. The results show that after the height of Mountain Yunwu is reduced by 80%, the southerly convergence line and the accompanied rainstorm move northward without the mountain blocking. Rainfall pattern and location also change, and the intensity decreases. The mountain blocking forces the low convergence flow to rise fast and triggers heavy rainstorm, while the latent heat release caused by condensation strengthens the convergence line. The depth and intensity of the warm center and the ascending motion all intensify, which in turn increases precipitation. The experiment with the narrow valley between Mountain Yunwu and the Mountain Tianlu to its southeast filled shows that the tunneling effect of the valley can determine the rainfall location and intensity. Due to thejoint effects of the valley tunneling and the blocking of Mountain Yunwu, the storm happens frequently in the western coast of Guangdong. In the southwesterly convergence line experiment, a comparison between two kind of roughness coefficients of Mountain Lianhua surface were made. A remarkable difference of vertical velocity appeared; the result showed that the lateral friction of Mountain Lianhua can enhance southwesterly convergence line and its ascending motions. Due to the shape of mountain is the southwest wards, it leads southwester jet flowing along the mountain. They maintain the longer rainstorm duration and belt shape of rainfall location. Meanwhile, it can influence the rainstorm at west coast and the estuary to become narrow and slightly move southward. The influence of mountain terrain is different from the synoptic systems because mountain can cause local faster lifting and can make thick upwards motion. Especially there is plentiful moisture vapor along the coast, the moisture condenses and releases latent heat at high level, then it enhances convergence line systems. The process causes the rainstorm intensity in single warm airmass is larger than that of front rainfall in South China.
-
图 1 两类华南沿海暖区辐合线暴雨合成的平均降水分布与客观分析的辐合线系统轴线(850 hPa):(a)偏南向型;(b)西南向型。阴影为典型个例最强降水时刻合成降水量,单位:mm;红色箭头为客观判定的辐合线,虚线为研究区域的南北边界
Figure 1. Distribution of precipitation and convergence axes of the two types of convergence lines that induce warm area heavy rainfall along South China coastal region (850hPa): (a) Southerly pattern; (b) southwesterly pattern. Shaded areas indicate precipitation, units: mm. Red arrows are the convergence axes, dashed lines indicate the south-north border lines of research area
图 3 两种类型(a、c)实况与(b、d)对照试验降水量(填色;单位:mm)与850 hPa风场分布:(a、b)偏南向型(2013年5月7日19:00至8日06:00 12 h累积降水量和5月8日00:00风场分布);(c、d)西南向型(2013年5月21日06:00至22日12:00 30 h累积降水量及5月21日18:00风场分布)
Figure 3. Precipitation distribution (units: mm) and streamline (wind field at 850 hPa) patterns from (a, c) observations and (b, d) numerical simulations: (a, b) Southerly patterns (12-h cumulative precipitations from1900 UTC 7 May 2013 to 0600 UTC 8 May 2013 and wind at 0000 UTC8 May 2013); (c, d) southeasterly patterns (30-h cumulative precipitations from 0600 UTC 21 May 2013 to 1200 UTC 22 May 2013 and wind at 1800 UTC 21 May 2013)
图 4 偏南向型对照试验与RM0.2试验的地形与辐合线及雨带配置:(a、b)对照试验;(c、d)RM0.2试验。填色为海拔高度,单位:m;实线表示2013年5月8日01:00至06:00大于50 mm的6 h累积降水量,单位:mm;流线为925 hPa上5月8日02:00的风场辐合线,点线为925 hPa上大于12 m s-1等风速线, (单位:m s-1)
Figure 4. Terrain height, convergence line, and precipitation in the (a, b) control experiment and (c, d) RM0.2 experiment for the southerly pattern. Shaded area indicates terrain height, units: m; solid lines show 6-h accumulated precipitation of greater than 50mm during 0100-0600 UTC 8 May 2013, units: mm; streamlines show the wind field convergence lines, and dashed lines display wind speed of greater than 12 m s-1 at 925 hPa at 0200 UTC 8 May 2013, units: m s-1
图 5 2013年5月8日(a-f)00:00~05:00偏南向型辐合线暴雨过程最强6个时刻的TCTL(对照试验)与RM0.2试验垂直速度差沿111.8°E的垂直剖面(填色;单位:m s-1)
Figure 5. Vertical cross sections of vertical velocity differences (units: m s-1) along 111.8°E between TCTL (control experiment) and RM0.2 experiment at six times of strongest precipitation for the southerly pattern. (a-f) From 0000 to 0500 UTC 8 May 2013, respectively
图 6 2013年5月8日偏南向型FILL试验地形与辐合线及雨带配置:(a)925 hPa上03:00风场辐合线(流线;虚线为大于12 m s-1等风速线,单位:m s-1);(b)01:00~06:00 大于50 mm的6 h累积降水(实线,单位:mm)。阴影为海拔高度,单位:m。图中矩形区为地形修改研究区
Figure 6. Terrain height, convergence line, and precipitation in the FILL experiment for the southerly pattern. (a) Streamlines show the wind field convergence line, dashed lines are for wind speed of greater than 12 m s-1 at 925 hPa at 0300 UTC 8 May 2013, units: m s-1; (b) solid lines are for 6-h accumulated precipitation of greater than 50 mm (units: mm) during 0100-0600 UTC 8 May 2013.Shaded area indicates height, units: m. The rectangle indicates the terrain change area
图 7 西南向型(a、b)对照试验TCTL和(c、d)敏感性试验RM50的地形与辐合线及雨带配置。阴影为海拔高度,单位:m;流线为925 hPa上2013年5月21日20:00风场辐合线,虚线为大于12 m s-1等风速线,单位:m s-1;实线表示2013年5月21日19:00至22日00:00大于50 mm的6 h累积降水量(单位:mm)
Figure 7. Terrain height, convergence lines, and precipitation (greater than 50 mm) in (a, b) TCTL (control experiment) and (c, d) RM50 experiment for the southwesterly pattern. Shaded area shows terrain height, units: m; streamlines show the wind field convergence lines, dashed lines are wind speed of greater than 12 m s-1 at 925 hPa at 2000 UTC 21 May 2013, units: m s-1; solid lines show 6-h accumulated precipitation of greater than 50 mm from 1900 UTC 21 May 2013 to 0000 UTC 22 May2013
图 8 2013年5月西南向型辐合线暴雨过程降水区(a)控制实验与(b)敏感实验22日01:00垂直速度沿114°E经向—垂直剖面(单位:m s-1)和(c、d)21日23:00 925 hPa层比湿差水平分布(单位:g kg-1):(a、c)TCTL;(b、d)CHANGE(低粗糙度试验)
Figure 8. Vertical cross sections of vertical velocity along 114°E for the southwesterly patterns between (a) the control and (b) the sensitive tests (0100 UTC 22 May 2013, units: m s-1) and (c, d) specific humidity distribution at 925 hPa (2300 UTC 21 May 2013, units: g kg-1) in (a, c)TCTL and (b, d) CHANGE (low roughness experiment)
-
[1] Colle B A. 2004. Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries:An idealized modeling perspective[J]. J. Atoms. Sci., 61 (5):588-606, doi:10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2. [2] 董海萍, 赵思雄, 曾庆存. 2008. 低纬高原地区一次强降水过程的中尺度雨团数值模拟研究[J]. 大气科学, 32 (5):1159-1173. doi: 10.3878/j.issn.1006-9895.2008.05.14Dong Haiping, Zhao Sixiong, Zeng Qingcun. 2008. A numerical simulation study of mesoscale rainy-cluster producing heavy rainfall in lower latitude plateau during early summer[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32 (5):1159-1173, doi: 10.3878/j.issn.1006-9895.2008.05.14. [3] Estoque M A. 1961. A theoretical investigation of the sea breeze[J]. Quart. J. Roy. Meteor. Soc., 87 (372):136-146, doi: 10.1002/qj.49708737203. [4] 古志明, 冯瑞权, 吴池胜, 等. 2000. 一次华南暴雨过程的数值模拟及结果分析[J]. 热带气象学报, 16 (2):173-179. doi: 10.3969/j.issn.1004-4965.2000.02.010Gu Zhiming, Fong Soikun, Wu Chisheng, et al. 2000. A modeling case study of heavy rain event over South China in May L994[J]. Journal of Tropical Meteorology (in Chinese), 16 (2):173-179, doi: 10.3969/j.issn.1004-4965.2000.02.010. [5] 郭欣, 郭学良, 付丹红, 等. 2013. 钟形地形动力抬升和重力波传播与地形云和降水形成关系研究[J]. 大气科学, 37 (4):786-800. doi: 10.3878/j.issn.1006-9895.2012.12114Guo Xin, Guo Xueliang, Fu Danhong, et al. 2013. Relationship between bell-shaped terrain dynamic forcing, mountain wave propagation, and orographic clouds and precipitation[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37 (4):786-800,doi: 10.3878/j.issn.1006-9895.2012.12114. [6] 何建军, 余晔, 刘娜, 等. 2014. 复杂地形区陆面资料对WRF模式模拟性能的影响[J]. 大气科学, 38 (3):484-498. doi: 10.3878/j.issn.1006-9895.2013.13186He Jianjun, Yu Ye, Liu Na, et al. 2014. Impact of land surface information on WRF's performance in complex terrain area[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38 (3):484-498, doi: 10.3878/j.issn.1006-9895.2013.13186. [7] 李博, 刘黎平, 赵思雄, 等. 2013. 局地低矮地形对华南暴雨影响的数值试验[J]. 高原气象, 32 (6):1638-1650. doi: 10.7522/j.issn.1000-0534.2012.00156Li Bo, Liu Liping, Zhao Sixiong, et al. 2013. Numerical experiment of the effect of local low terrain on heavy rainstorm of South China[J]. Plateau Meteor. (in Chinese), 32 (6):1638-1650, doi: 10.7522/j.issn.1000-0534.2012.00156. [8] 林良勋, 冯业荣, 黄忠, 等. 2006. 广东省天气预报技术手册[M]. 北京:气象出版社, 138.Lin Liangxun, Feng Yerong, Huang Zhong, et al. 2006. Technical Guidance on Weather Forecasting in Guangdong Province (in Chinese)[M]. Beijing:China Meteorological Press, 138. [9] 蒙伟光, 王安宇, 李江南, 等. 2004. 华南暴雨中尺度对流系统的形成及湿位涡分析[J]. 大气科学, 28 (3):330-341. doi: 10.3878/j.issn.1006-9895.2004.03.02Meng Weiguang, Wang Anyu, Li Jiangnan, et al. 2004. Moist potential vorticity analysis of the heavy rainfall and mesoscale convective systems in South China[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28 (3):330-341, doi: 10.3878/j.issn.1006-9895.2004.03.02. [10] 蒙伟光, 张艳霞, 戴光丰, 等. 2007. 华南沿海一次暴雨中尺度对流系统的形成和发展过程[J]. 热带气象学报, 23 (6):521-530. doi: 10.3969/j.issn.1004-4965.2007.06.001Meng Weiguang, Zhang Yanxia, Dai Guangfeng, et al. 2007. The formation and development of a heavy rainfall mesoscale convective system along southern China coastal area[J]. Journal of Tropical Meteorology (in Chinese), 23 (6):521-530, doi: 10.3969/j.issn.1004-4965.2007.06.001. [11] 苗春生, 杨艺亚, 王坚红, 等, 2017, 两类华南沿海暖区暴雨特征及热力发展机制对比研究[J]. 热带气象学报, 33 (1):53-63. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201701006.htmMiao Chunsheng, Yang Yiya, Wang Jianhong, et al. 2017. Comparative study of characteristics and thermo-dynamical development mechanism on two types of warm-sector heavy rainfall in South China Coast[J]. Journal of Tropical Meteorology (in Chinese), 33 (1):53-63. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201701006.htm [12] 孙健, 赵平, 周秀骥. 2002. 一次华南暴雨的中尺度结构及复杂地形的影响[J]. 气象学报, 60 (3):333-342. doi: 10.11676/qxxb2002.040Sun Jian, Zhao Ping, Zhou Xiuji. 2002. The mesoscale structure of a South China rainstorm and the influence of complex topography[J]. Acta Meteor. Sinica (in Chinese), 60 (3):333-342, doi: 10.11676/qxxb2002.040. [13] 孙建华, 赵思雄. 2002. 华南"94·6"特大暴雨的中尺度对流系统及其环境场研究Ⅱ. 物理过程、环境场以及地形对中尺度对流系统的作用[J]. 大气科学, 26 (5):633-646. doi: 10.3878/j.issn.1006-9895.2002.05.05Sun Jianhua, Zhao Sixiong. 2002. A study of mesoscale convective systems and its environmental fields during the June 1994 record heavy rainfall in South China. Part Ⅱ:Effect ofphysical processes, initial environmental fields and topography on meso-β-convective system[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26 (5):633-646, doi: 10.3878/j.issn.1006-9895.2002.05.05. [14] Skamarock W C, Klemp J B, Dudhia J, et al. 2007. A Description of the Advanced Research WRF Version2[R].NCAR Technical Note, NCAR/TN-468+STR. [15] 王坚红, 徐碧裕, 刘刚, 等. 2014.华南前汛期广东暴雨分区动力特征及特大暴雨分析[J]. 气象与环境学报, 30 (6):43-51. doi: 10.3969/j.issn.1673-503X.2014.06.007Wang Jianhong, Xu Biyu, Liu Gang, et al. 2014. Dynamics characteristics of rainstorm division in Guangdong Province and analysis of a severe rainstorm process[J]. Journal of Meteorology and Environment (in Chinese), 30 (6):43-51, doi: 10.3969/j.issn.1673-503X.2014.06.007. [16] Wilson J W, Schreiber W E. 1986. Initiation of convective storms atradar-observed boundary-layer convergence lines[J]. Mon. Wea. Rev., 114 (12):2516-2536, doi:10.1175/1520-0493(1986)114<2516:IOCSAR> 2.0.CO;2. [17] Wilson J W, Mueller C K. 1993. Nowcasts of thunderstorm initiation and evolution[J]. Wea. Forecasting, 8 (1):113-131, doi:10.1175/1520-0434 (1993)008<0113:NOTIAE>2.0.CO;2. [18] Wilson J W, Megenhardt D L. 1997. Thunderstorm initiation, organization, and lifetime associated with Florida boundary layer convergence lines[J]. Mon. Wea. Rev., 125 (7):1507-1525, doi:10.1175/1520-0493(1997)125<1507:TIOALA>2.0.CO;2. [19] Wilson J W, Foote G B, Cŕook N A, et al. 1992. The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms:A case study[J]. Mon. Wea. Rev., 120 (9):1758-1815, doi:10.1175/1520-0493(1992)120<1785:TROBLC>2.0.CO;2. [20] Wilson J W, Weckwerth T M, Vivekanandan J, et al. 1994. Boundary layer clear-air radar echoes:Origin of echoes and accuracy of derived winds[J]. J. Atmos.Oceanic Technol., 11 (5):1184-1206, doi:10.1175/1520-0426 (1994)011<1184:BLCARE>2.0.CO;2. [21] 夏茹娣, 赵思雄, 孙建华. 2006. 一类华南锋前暖区暴雨β中尺度系统环境特征的分析研究[J]. 大气科学, 30 (5):988-1008. doi: 10.3878/j.issn.1006-9895.2006.05.26Xia Rudi, Zhao Sixiong, Sun Jianhua. 2006. A study of circumstances of meso-β-scale systems of strong heavy rainfall in warm sector ahead of fronts in South China[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30 (5):988-1008, doi: 10.3878/j.issn.1006-9895.2006.05.26. [22] 夏茹娣, 赵思雄. 2009. 2005年6月广东锋前暖区暴雨β中尺度系统特征的诊断与模拟研究[J]. 大气科学, 33 (3):468-488. doi: 10.3878/j.issn.1006-9895.2009.03.06Xia Rudi, Zhao Sixiong. 2009. Diagnosis and modeling of meso-β-scale systems of heavy rainfall in warm sector ahead of front in South China (middle part of Guangdong Province) in June 2005[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33 (3):468-488, doi:10.3878/j.issn.1006-9895. 2009.03.06. [23] 张立凤, 查石祥, 张铭. 2000. 一次华南暴雨过程的数值模拟和试验[J]. 气象科学, 20 (2):120-128. doi: 10.3969/j.issn.1009-0827.2000.02.002Zhang Lifeng, Cha Shixiang, Zhang Ming. 2000. The numerical simulation and experiments of a storm rainfall in South China[J]. Journal of the Meteorological Sciences (in Chinese), 20 (2):120-128, doi: 10.3969/j.issn.1009-0827.2000.02.002. [24] 张晓美, 蒙伟光, 张艳霞, 等. 2009. 华南暖区暴雨中尺度对流系统的分析[J]. 热带气象学报, 25 (5):551-560. doi: 10.3969/j.issn.1004-4965.2009.05.005Zhang Xiaomei, Meng Weiguang, Zhang Yanxia, et al. 2009. Analysis of mesoscale convective systems associated with a warm sector heavy rainfall event over South China[J]. Journal of Tropical Meteorology (in Chinese), 25 (5):551-560, doi:10. 3969/j.issn.1004-4965.2009.05.005. [25] 赵玉春, 李泽椿, 肖子牛, 等. 2007. 一次热带系统北上引发华南大暴雨的诊断分析和数值研究[J]. 气象学报, 65 (4):561-577. doi: 10.11676/qxxb2007.052Zhao Yuchun, Li Zechun, Xiao Ziniu, et al. 2007. A diagnostic and numerical study on a rainstorm in South China triggered by northward-moving tropical system[J]. Acta Meteor. Sinica (in Chinese), 65 (4):561-577, doi: 10.11676/qxxb2007.052. [26] 赵玉春, 李泽椿,肖子牛. 2008. 华南锋面与暖区暴雨个例对比分析[J]. 气象科技, 36 (1):47-54. doi: 10.3969/j.issn.1671-6345.2008.01.009Zhao Yuchun, Li Zechun, Xiao Ziniu. 2008. Comparison analysis of South China front and warm area heavy rain systems in June 2006[J]. Meteorological Science and Technology (in Chinese), 36 (1):47-54, doi: 10.3969/j.issn.1671-6345.2008.01.009. -