高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用WRF-Chem模式模拟分析人为气溶胶对台风Fitow(1323) 强度及降水的影响

沈新勇 姜晓岑 柳笛 祖繁 樊曙先

沈新勇, 姜晓岑, 柳笛, 祖繁, 樊曙先. 利用WRF-Chem模式模拟分析人为气溶胶对台风Fitow(1323) 强度及降水的影响[J]. 大气科学, 2017, 41(5): 960-974. doi: 10.3878/j.issn.1006-9895.1703.16216
引用本文: 沈新勇, 姜晓岑, 柳笛, 祖繁, 樊曙先. 利用WRF-Chem模式模拟分析人为气溶胶对台风Fitow(1323) 强度及降水的影响[J]. 大气科学, 2017, 41(5): 960-974. doi: 10.3878/j.issn.1006-9895.1703.16216
Xinyong SHEN, Xiaocen JIANG, Di LIU, Fan ZU, Shuxian FAN. Simulations of Anthropogenic Aerosols Effects on the Intensity and Precipitation of Typhoon Fitow (1323) Using WRF-Chem Model[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(5): 960-974. doi: 10.3878/j.issn.1006-9895.1703.16216
Citation: Xinyong SHEN, Xiaocen JIANG, Di LIU, Fan ZU, Shuxian FAN. Simulations of Anthropogenic Aerosols Effects on the Intensity and Precipitation of Typhoon Fitow (1323) Using WRF-Chem Model[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(5): 960-974. doi: 10.3878/j.issn.1006-9895.1703.16216

利用WRF-Chem模式模拟分析人为气溶胶对台风Fitow(1323) 强度及降水的影响

doi: 10.3878/j.issn.1006-9895.1703.16216
基金项目: 

科技部国家大气污染专项项目 2016YFC0203301

国家重点基础研究发展计划(973计划)项目 2015CB453201

国家自然科学基金项目 41375058

国家自然科学基金项目 41530427

江苏省自然科学基金重点项目 BK20150062

详细信息
    作者简介:

    沈新勇, 男, 1964年出生, 教授, 博士生导师, 主要从事中尺度气象学和大气污染分析研究。E-mail:shenxy@nuist.edu.cn

  • 中图分类号: P444

Simulations of Anthropogenic Aerosols Effects on the Intensity and Precipitation of Typhoon Fitow (1323) Using WRF-Chem Model

Funds: 

National Key Project of Ministry of Science and Technology of China 2016YFC0203301

National Key Basic Research and Development Project of China 2015CB453201

National Natural Science Foundation of China 41375058

National Natural Science Foundation of China 41530427

Jiangsu Natural Science Key Project BK20150062

  • 摘要: 利用气象与化学模块在线耦合的模式WRF-Chem V3.5(Weather Research and Forecasting Model coupled to Chemistry Version 3.5) 对1323号台风Fitow进行了模拟,设计无人为排放源、含人为排放源和人为排放源增加的三组模拟试验,对比分析了人为气溶胶对台风的影响。结果表明:人为气溶胶对台风移动路径影响较小。人为气溶胶增加,台风强度减弱,台风主体总累积降水量减少,靠近陆地阶段台风主体降水率减少。气溶胶的增多可提供更多的凝结核,台风外围云水增加,更多的云水可上升至冻结层以上形成过冷水,促进冰相粒子的形成,释放的潜热增加,使外围对流增强,降水增加。台风外围对流的发展,使低层入流的暖湿空气更多的在外围上升,向台风中心的入流减弱,眼墙的发展减弱,降水减少,台风强度减弱。台风外围的对流发展弱于眼墙的对流,降水仍以眼墙区为主,使累积降水量和降水率整体上表现为减少。
  • 图  1  2013年10月3日18时至7日06:00 CMA及三组模拟试验的(a)台风Fitow路径、(b)引导气流纬向分量Cx(单位:m s-1)和(c)经向分量Cy(单位:m s-1)的变化

    Figure  1.  (a) The tracks of typhoon Fitow from CMA (China Meteorological Administration) and three simulations, (b) zonal and (c) meridional components of the steering flow (units: m s-1) during the period from 1800 UTC 3 to 0600 UTC 7 Oct 2013

    图  2  2013年10月3日18时至10月7日06时CMA及三组模拟试验的台风Fitow(a)近中心最低气压(单位:hPa)、(b)近中心最大风速(单位:m s-1

    Figure  2.  (a) The minimum sea level pressure (units: hPa) and (b) maximum surface wind speed (units: m s-1) of typhoon Fitow from CMA and three simulations during the period from 1800 UTC 3 to 0600 UTC 7 Oct 2013

    图  3  2013年10月6日00时至10月7日00时三组模拟试验及观测的累积降水量(单位:mm)

    Figure  3.  Accumulated precipitation (units: mm) from observations (Obs) and three simulations during the period from 0000 UTC 6 to 0000 UTC 7 Oct 2013

    图  4  三组试验模拟的(a)19~84 h台风主体区域平均每小时累积降水量(单位:mm h-1)随时间变化和(b)60~63 h累积降水量(单位:mm)的方位角平均分布

    Figure  4.  The time-dependence of (a) hourly accumulated precipitation (units: mm h-1) averaged over the typhoon main body from 19 to 84 hours and (b) azimuthally averaged accumulated precipitation (units: mm) from 60 to 63 hours simulated by three experiments

    图  5  三组试验模拟的60~63 h平均的水平10 m风速(单位:m s-1)的方位角平均分布

    Figure  5.  Time and azimuthally averaged wind speed at 10 m (units: m s-1) from 60 to 63 hours simulated by three experiments

    图  6  (a、d)0Anth、(b、e)Ctrl和(c、f)3Anth试验模拟的60~63 h平均的垂直速度(左列,填色,单位:m s-1;红色等值线为方位角平均的0℃等温线)、切向风速(右列,等值线,单位:m s-1)和径向风速(右列,填色,单位:m s-1)的方位角平均垂直分布

    Figure  6.  The vertical–radial cross sections of time and azimuthally averaged vertical velocity (left column, shaded, units: m s-1; red lines are 0℃ isotherms), tangential velocity (right column, contours, units: m s-1) and radial velocity (right column, shaded, units: m s-1) simulated by (a, d) 0Anth, (b, e) Ctrl and (c, f) 3Anth experiments from 60 to 63 hours

    图  7  19~84 h(a)Ctrl试验台风主体区域平均的LWP和IWP、(b)Ctrl和3Anth试验模拟的LWP与0Anth试验的偏差以及(c)IWP与0Anth试验的偏差随时间的变化。单位:g m-2

    Figure  7.  (a) Time series of LWP (liquid water path) and IWP (ice water path) averaged over typhoon main body simulated by Ctrl test, (b) LWP deviations between experiments Ctrl and 0Anth, and 3Anth and 0Anth, and (c) LWP deviations between experiments Ctrl and 0Anth, and 3Anth and 0Anth from 19 to 84 hours. Units: g m-2

    图  8  三组试验模拟的60~63 h平均的近地面铵盐气溶胶浓度水平分布(单位:μg kg-1):(a)0Anth;(b)Ctrl;(c)3Anth

    Figure  8.  Horizontal distributions of surface ammonium salt aerosols concentration averaged over 60 to 63 hours (units: μg kg-1) in experiments (a) 0Anth, (b) Ctrl, and (c) 3Anth

    图  9  (a、d)0Anth、(b、e)Ctrl和(c、f)3Anth试验模拟的60~63 h平均的铵盐气溶胶浓度(左列,单位:μg kg-1)、云滴数浓度(右列,红色等值线为方位角平均的0℃等温线,单位:106 kg-1)的方位角平均垂直分布

    Figure  9.  The vertical–radial cross sections of time and azimuthally averaged ammonium salt aerosols concentration (left column, units: μg kg-1) and cloud droplet number concentration(right column, red lines are 0℃ isotherm, units: 106 kg-1) simulated by (a, d) 0Anth, (b, e) Ctrl and (c, f) 3Anth experiments from 60 to 63 hours

    图  10  (a、d)0Anth、(b、e)Ctrl和(c、f)3Anth试验模拟的60~63 h平均的冰雪粒子(左列,等值线)、云水(左列,阴影)、霰粒子(右列,等值线)和雨水(右列,阴影)混合比的方位角平均垂直分布(单位:g kg-1)。红色等值线为方位角平均的0℃等温线

    Figure  10.  The vertical–radial cross sections of time and azimuthally averaged ice and snow particle (left column, contours), cloud water (left column, shaded), graupel particle (right column, contours), and rain water (right column, shaded) mixing ratio (units: g kg-1) simulated by (a, d) 0Anth, (b, e) Ctrl and (c, f) 3Anth tests from 60 to 63 hours. Red lines are 0℃ isotherms)

    图  11  (a、d)0Anth、(b、e)Ctrl和(c、f)3Anth试验模拟的60~63 h平均的温度距平(左列,单位:℃)和微物理潜热加热(右列,红色等值线为方位角平均的0℃等温线,单位:K h-1)的方位角平均垂直分布

    Figure  11.  The vertical–radial cross sections of time and azimuthally averaged temperature anomalies (left column, units: ℃) and microphysics latent heating (right column, red lines are 0℃ isotherms, units: K h-1) simulated by (a, d) 0Anth, (b, e) Ctrl, and (c, f) 3Anth tests from 60 to 63 hours

  • [1] Ackermann I J, Hass H, Memmesheimer M, et al. 1998. Modal aerosol dynamics model for Europe:Development and first applications[J]. Atmos. Environ., 32 (17):2981-2999, doi:10.1016/S1352-2310(98) 00006-5.
    [2] Bell T L, Rosenfeld D, Kim K M, et al. 2008. Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms[J]. J. Geophys. Res., 113 (D2):D02209, doi: 10.1029/2007JD008623.
    [3] Carrió G G, Cotton W R. 2011. Investigations of aerosol impacts on hurricanes:Virtual seeding flights[J]. Atmos. Chem. Phys., 11 (6):2557-2567, doi: 10.5194/acp-11-2557-2011.
    [4] Cotton W R, Krall G M, Carrió G G. 2012. Potential indirect effects of aerosol on tropical cyclone intensity:Convective fluxes and cold-pool activity[J]. Trop. Cyclone Res. Rev., 1 (3):293-306, doi: 10.6057/2012TCRR03.05.
    [5] Fan J W, Zhang R Y, Li G H, et al. 2007. Effects of aerosols and relative humidity on cumulus clouds[J]. J. Geophys. Res., 112 (D14):D14204, doi: 10.1029/2006JD008136.
    [6] Grell G A, Freitas S R. 2013. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling[J]. Atmos. Chem. Phys., 14 (10):5233-5250, doi: 10.5194/acp-14-5233-2014.
    [7] Guenther A B, Zimmerman P R, Harley P C, et al. 1993. Isoprene and monoterpene emission rate variability:Model evaluations and sensitivity analyses[J]. J. Geophys. Res., 98 (D7):12609-12617, doi: 10.1029/93JD00527.
    [8] Hazra A, Mukhopadhyay P, Taraphdar S, et al. 2013. Impact of aerosols on tropical cyclones:An investigation using convection-permitting model simulation[J]. J. Geophys. Res. Atmos., 118 (13):7157-7168, doi:10. 1002/jgrd.50546.
    [9] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon. Wea. Rev., 134 (9):2318-2341, doi: 10.1175/MWR3199.1.
    [10] Iacono M J, Delamere J S, Mlawer E J, et al. 2008. Radiative forcing by long-lived greenhouse gases:Calculations with the AER radiative transfer models[J]. J. Geophys. Res., 113 (D13):D13103, doi: 10.1029/2008JD009944.
    [11] Jiang B L, Huang B, Lin W S, et al. 2016. Investigation of the effects of anthropogenic pollution on typhoon precipitation and microphysical processes using WRF-Chem[J]. J. Atmos. Sci., 73 (4):1593-1610, doi: 10.1175/JAS-D-15-0202.1.
    [12] Khain A, Rosenfeld D, Pokrovsky A. 2005. Aerosol impact on the dynamics and microphysics of deep convective clouds[J]. Quart. J. Roy. Meteor. Soc., 131 (611):2639-2663, doi: 10.1256/qj.04.62.
    [13] Khain A, Cohen N, Lynn B, et al. 2008. Possible aerosol effects on lightning activity and structure of hurricanes[J]. J. Atmos. Sci., 65 (12):3652-3677, doi: 10.1175/2008JAS2678.1.
    [14] Khain A, Lynn B, Dudhia J. 2010. Aerosol effects on intensity of landfalling hurricanes as seen from simulations with the WRF model with spectral bin microphysics[J]. J. Atmos. Sci., 67 (2):365-384, doi: 10.1175/2009JAS3210.1.
    [15] Koren I, Kaufman Y J, Rosenfeld D, et al. 2005. Aerosol invigoration and restructuring of Atlantic convective clouds[J]. Geophys. Res. Lett., 32 (14):L14828, doi: 10.1029/2005GL023187.
    [16] Lee S S, Donner L J, Phillips V T J, et al. 2008. The dependence of aerosol effects on clouds and precipitation on cloud-system organization, shear and stability[J]. J. Geophys. Res., 113 (D16):D16202, doi: 10.1029/2007JD009224.
    [17] Lin J C, Matsui T, Pielke R A Sr, et al. 2006. Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin:A satellite-based empirical study[J]. J. Geophys. Res., 111 (D19):D19204, doi: 10.1029/2005JD006884.
    [18] Lynn B H, Khain A P, Dudhia J, et al. 2005. Spectral (Bin) microphysics coupled with a mesoscale model (MM5). Part Ⅱ:Simulation of a CaPE rain event with a squall line[J]. Mon. Wea. Rev., 133 (1):59-71, doi: 10.1175/MWR-2841.1.
    [19] 马贤芳, 刘长海, 刘晓东, 等. 2010.气溶胶对北京中尺度对流系统影响的数值试验[J].气象科学, 30 (1):21-26. doi: 10.3969/j.issn.1009-0827.2010.01.004

    Ma Xianfang, Liu Changhai, Liu Xiaodong, et al. 2010. A numerical study of impacts of aerosol concentration on a mesoscale convective system observed in Beijing[J]. Scientia Meteor. Sinica (in Chinese), 30 (1):21-26, doi: 10.3969/j.issn.1009-0827.2010.01.004.
    [20] Morrison H, Thompson G, Tatarskii V. 2009. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line:Comparison of one-and two-moment schemes[J]. Mon. Wea. Rev., 137 (3):991-1007, doi: 10.1175/2008MWR2556.1.
    [21] Rosenfeld D. 1999. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall[J]. Geophys. Res. Lett., 26 (20):3105-3108, doi: 10.1029/1999GL006066.
    [22] Rosenfeld D, Khain A, Lynn B, et al. 2007. Simulation of hurricane response to suppression of warm rain by sub-micron aerosols[J]. Atmos. Chem. Phys., 7 (13):3411-3424, doi: 10.5194/acp-7-3411-2007.
    [23] Schell B, Ackermann I J, Hass H. 2001. Modeling the formation of secondary organic aerosol within a comprehensive air quality model system[J]. J. Geophys. Res., 106 (D22):28275-28293, doi: 10.1029/2001JD000384.
    [24] 沈新勇, 黄伟, 陈明诚, 等. 2014.人为气溶胶的直接辐射效应及其对南亚冬季风的影响[J].气候与环境研究, 19 (4):393-406. doi: 10.3878/j.issn.1006-9585.2013.13058

    Shen Xinyong, Huang Wei, Chen Mingcheng, et al. 2014. Direct radiative effects of anthropogenic aerosols and their effects on the South Asian winter monsoon[J]. Climatic and Environmental Research (in Chinese), 19 (4):393-406, doi: 10.3878/j.issn.1006-9585.2013.13058.
    [25] 沈新勇, 梅海霞, 王卫国, 等. 2015.双参数微物理方案的冰相过程模拟及冰核数浓度的影响试验[J].大气科学, 39 (1):83-99. doi: 10.3878/j.issn.1006-9895.1405.13310

    Shen Xinyong, Mei Haixia, Wang Weiguo, et al. 2015. Numerical simulation of ice-phase processes using a double-moment microphysical scheme and a sensitivity test of ice nuclei concentration[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39 (1):83-99, doi:10.3878/j.issn. 1006-9895.1405.13310.
    [26] 盛裴轩, 毛节泰, 李建国, 等. 2003.大气物理学[M].北京:北京大学出版社, 25-28.

    Sheng Peixuan, Mao Jietai, Li Jianguo, et al. 2003. Atmospheric Physics (in Chinese)[M]. Beijing:Peking University Press, 25-28.
    [27] 石广玉, 王标, 张华, 等. 2008.大气气溶胶的辐射与气候效应[J].大气科学, 32 (4):826-840. doi: 10.3878/j.issn.1006-9895.2008.04.11

    Shi Guangyu, Wang Biao, Zhang Hua, et al. 2008. The radiative and climatic effects of atmospheric aerosols[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32 (4):826-840, doi: 10.3878/j.issn.1006-9895.2008.04.11.
    [28] 石荣光, 刘奇俊, 马占山. 2015.利用GRAPES模式研究气溶胶对云和降水过程的影响[J].气象, 41 (3):272-285. doi: 10.7519/j.issn.1000-0526.2015.03.002

    Shi Rongguang, Liu Qijun, Ma Zhanshan. 2015. Numerical simulation of aerosol effects on cloud and precipitation using GRAPES model[J]. Meteorological Monthly (in Chinese), 41 (3):272-285, doi:10.7519/j.issn.1000-0526. 2015.03.002.
    [29] Stockwell W R, Middleton P, Chang J S, et al. 1990. The second generation regional acid deposition model chemical mechanism for regional air quality modeling[J]. J. Geophys. Res., 95 (D10):16343-16367, doi: 10.1029/JD095iD10p16343.
    [30] 唐孝炎, 张远航, 邵敏. 2006.大气环境化学[M]. 2版.北京:高等教育出版社, 40-44.

    Tang Xiaoyan, Zhang Yuanhang, Shao Min. 2006. Atmospheric Environmental Chemistry (in Chinese)[M]. 2nd ed. Beijing:Higher Education Press, 40-44.
    [31] Tao W K, Li X W, Khain A, et al. 2007. Role of atmospheric aerosol concentration on deep convective precipitation:Cloud-resolving model simulations[J]. J. Geophys. Res., 112 (D24):D24S18, doi: 10.1029/2007JD008728.
    [32] Wild O, Zhu X, Prather M J. 2000. Fast-J:Accurate simulation of in-and below-cloud photolysis in tropospheric chemical models[J]. J. Atmos. Chem., 37 (3):245-282, doi: 10.1023/A:1006415919030.
    [33] 肖辉, 银燕. 2011.污染气溶胶对山西一次降水过程影响的数值模拟[J].大气科学, 35 (2):235-246. doi: 10.3878/j.issn.1006-9895.2011.02.04

    Xiao Hui, Yin Yan. 2011. A numerical study of polluted aerosol effects on precipitation in Shanxi Province[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35 (2):235-246, doi: 10.3878/j.issn.1006-9895.2011.02.04.
    [34] 杨慧玲, 肖辉, 洪延超. 2011.气溶胶对云宏微观特性和降水影响的研究进展[J].气候与环境研究, 16 (4):525-542. doi: 10.3878/j.issn.1006-9585.2011.04.13

    Yang Huiling, Xiao Hui, Hong Yanchao. 2011. Progress in impacts of aerosol on cloud properties and precipitation[J]. Climatic and Environmental Research (in Chinese), 16 (4):525-542, doi: 10.3878/j.issn.1006-9585.2011.04.13.
    [35] 杨玉华, 陈葆德, 王斌, 等. 2015.背景场云凝结核浓度对理想热带气旋强度的影响[J].高原气象, 34 (5):1379-1390. doi: 10.7522/j.issn.1000-0534.2014.00095

    Yang Yuhua, Chen Baode, Wang Bin, et al. 2015. Numerical study of background cloud condensation nuclei effects on the intensity of idealized tropical cyclone[J]. Plateau Meteorology (in Chinese), 34 (5):1379-1390, doi:10.7522/j. issn.1000-0534.2014.00095.
    [36] 余贞寿, 王红雷. 2010. 微物理过程和对流参数化对台风"莫拉克"(0908) 路径模拟影响研究[C]//第七届长三角气象科技论坛论文集. 杭州: 浙江省气象学会, 148-155. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZJDX201011001029.htm

    Yu Zhenshou, Wang Honglei. 2010. A numerical study of the effect of various microphysics and cumulus parameterization schemes on typhoon Morakot (0908) track[C]//The Proceeding of 7th Yangtze River Delta Science and Technology Forum (in Chinese). Hangzhou:Zhejiang Meteorological Society, 148-155. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZJDX201011001029.htm
    [37] Yuan T L, Li Z Q, Zhang R Y, et al. 2008. Increase of cloud droplet size with aerosol optical depth:An observation and modeling study[J]. J. Geophys. Res., 113(D4):D04201, doi: 10.1029/2007JD008632.
    [38] 岳治国, 刘晓东, 梁谷. 2011.气溶胶对北京地区不同类型云降水影响的数值模拟[J].高原气象, 30 (5):1356-1367. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201105023.htm

    Yue Zhiguo, Liu Xiaodong, Liang Gu. 2011. Numerical simulation of influence of aerosols on different cloud precipitation types in Beijing area[J]. Plateau Meteorology (in Chinese), 30 (5):1356-1367. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201105023.htm
    [39] Zhang H N, McFarquhar G M, Saleeby S M, et al. 2007. Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone[J]. Geophys. Res. Lett., 34 (14):L14812, doi: 10.1029/2007GL029876.
    [40] Zhang H N, McFarquhar G M, Cotton W R, et al. 2009a. Direct and indirect impacts of Saharan dust acting as cloud condensation nuclei on tropical cyclone eyewall development[J]. Geophys. Res. Lett., 36 (6):L06802, doi: 10.1029/2009GL037276.
    [41] 张兰, 张宇飞, 林文实, 等. 2015.空气污染对珠江三角洲一次大暴雨影响的数值模拟[J].热带气象学报, 31 (2):264-272. doi: 10.16032/j.issn.1004-4965.2015.02.013

    Zhang Lan, Zhang Yufei, Lin Wenshi, et al. 2015. Numerical simulation of air pollution impact on heavy rainfall over the Pearl River Delta[J]. Journal of Tropical Meteorology (in Chinese), 31 (2):264-272, doi:10.16032/j. issn.1004-4965.2015.02.013.
    [42] Zhang Q, Streets D G, Carmichael G R, et al. 2009b. Asian emissions in 2006 for the NASA INTEX-B mission[J]. Atmos. Chem. Phys., 9 (14):5131-5153, doi: 10.5194/acp-9-5131-2009.
    [43] 张小曳. 2007.中国大气气溶胶及其气候效应的研究[J].地球科学进展, 22 (1):12-16. doi: 10.11867/j.issn.1001-8166.2007.01.0012

    Zhang Xiaoye. 2007. Aerosol over China and their climate effect[J]. Advances in Earth Science (in Chinese), 22 (1):12-16, doi: 10.11867/j.issn.1001-8166.2007.01.0012.
  • 加载中
图(11)
计量
  • 文章访问数:  1835
  • HTML全文浏览量:  2
  • PDF下载量:  2159
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-16
  • 网络出版日期:  2017-04-08
  • 刊出日期:  2017-09-15

目录

    /

    返回文章
    返回