Differences in Intraseasonal Summer Rainfall Oscillation between the Middle and Lower Reaches of the Yangtze River
-
摘要: 利用1979~2013年中国站点逐日降水资料和NCEP/NCAR再分析资料,对长江中下游夏季降水的季节内振荡最显著周期进行了分析研究。结果表明长江中游最显著周期为10~30天,长江下游最显著周期为30~60天。为了揭示这种差异产生的物理原因,进一步利用位相合成的方法对这两个区域不同周期的季节内振荡降水、高低空风场和高度场以及垂直结构和水汽等循环过程的演变特征进行分析。在200 hPa环流场上,长江中游的降水主要受到高纬度自西向东传播的波列影响,而长江下游的降水与鄂霍次克海的高度场的变化相关。在风场的垂直涡度和散度的位相结构演变过程中,10~30天的垂直涡度和散度有自北向南的移动,30~60天的垂直涡度和散度在长江以南地区有自南向北的传播。水汽输送的位相发展过程表明,长江中游的水汽分别来自于南海的向北输送和长江以北地区向南的水汽输送;长江下游地区的水汽则主要来自于热带东印度洋经孟加拉湾的向东输送并在南海的北向输送,以及西太平洋水汽向西输送到南海再向长江下游的输送。从高层大尺度环流场和整层积分的水汽通量输送上解释了长江中游10~30天降水的自北向南移动,和长江下游30~60天降水自南向北传播的原因。Abstract: The most significant climatological intraseasonal oscillation (ISO) periods of summer rainfall over the middle and lower reaches of the Yangtze River (M-LYR) are investigated by using the gauge-based daily precipitation analysis data of China and the NCAR/NCEP reanalysis data from 1979 to 2013. It is found that the oscillation periods of summer rainfall at the intraseasonal timescale show remarkable difference between the MYR and LYR. The 10-30-day oscillation is the primary mode over the MYR, while the longer period of 30-60-day dominates the LYR. The phase composite analysis is applied to reveal evolutions of intraseasonal circulation and vertical structure associated with these two periods of climatological ISO precipitation over the Yangtze River. In the upper troposphere at 200 hPa, it shows that a wave train over the mid-high latitudes propagates eastward, affecting the summer rainfall over MYR, while the southwestward propagation of the weakened Okhotsk blocking high is associated with the 30-60-day rainfall oscillation over LYR. The vertical structures of wind vorticity and divergence/convergence exhibit different features during their moving toward the Yangtze River. 10-30-day anomalous vorticity and divergence/convergence move southward toward the MYR; however, the 30-60-day anomalies move northward from the tropics. Atmospheric moisture from the South China Sea and from north of the Yangtze River converges over MYR, leading to favorable condition for the occurrence of rainfall. In contrast, the moisture in the LYR primarily comes from the tropics. Large amounts of atmospheric moisture originate from the eastern Indian Ocean, move through the Bay of Bengal and the South China Sea, converge with moisture transported westward from the western tropical Pacific, and then move northward, reaching the LYR. The results explain from the perspective of upper-level circulation and vertically integrated moisture flux why the 10-30-day oscillation mode of rainfall over MYR propagates southward, while the 30-60-day oscillation mode of rainfall over LYR propagates northward.
-
图 1 1979~2013年长江中下游区域夏季降水季节内振荡最显著周期分布,其中红色方框区域为本文选取的长江中游(27°~32°N,106°~115°E)和长江下游地区(27°~32°N,115°~123°E)
Figure 1. Distribution of the most significant intraseasonal oscillation periods of summer rainfall over the middle reaches of the Yangtze River (MYR) (the left red box; 27°–32°N, 106°–115°E) and the lower reaches of the Yangtze River (LYR) (the right red box; 27°–32°N, 115°–123°E)
图 4 1979~2013年5~10月降水原始序列(直方图,单位:mm)和标准化的滤波序列(红色曲线,单位:mm):(a)长江中游地区(10~30天滤波);(b)长江下游地区(30~60天滤波)。黑线为正/负1倍标准差,数值表示准双周振荡位相
Figure 4. Time series of daily rainfall in summer (gray bars; units: mm) and standardized series of the filtered rainfall anomaly (red solid line; units: mm): (a) Over the MYR (10–30-day filtered); (b) over the LYR from 1979 to 2013 (30–60-day filtered). Black lines represent±1.0 times of standard deviation of the ISO rainfall, numbers represent the phase of the biweekly oscillation
图 7 长江中游(红色方框)降水10~30天振荡各位相合成的850 hPa低频位势高度场(阴影,单位:gpm)与850 hPa低频风场(矢量,单位:m s-1),只画出大于0.1 m s-1的风矢量,黑线代表青藏高原高度大于3000 m的部分
Figure 7. Composite 10–30-day filtered 850 hPa geopotential height (shading; units: gpm) and wind (vectors; units: m s-1) over the MYR (the red box). Only wind speeds larger than 0.1 m s-1 are shown. The black contour indicates the Tibet Plateau region with elevations exceeding 3000 m
图 9 长江下游(红色方框)降水30~60天振荡各位相合成的850 hPa的低频位势高度场(阴影,单位:gpm)与低频风场(矢量,单位:m s-1),只画出大于0.15 m s-1的风矢量,黑线代表青藏高原高度大于3000 m的部分
Figure 9. Composite 30–60-day filtered 850 hPa geopotential height (shading; units: gpm) and wind (vectors; units: m s-1) over the LYR (the red box). Only wind speeds larger than 0.15 m s-1 are shown. The black contour indicates the Tibet Plateau region with elevations exceeding 3000 m
图 11 经过(106°~115°E平均)剖面的10~30天滤波的涡度场(阴影,单位:10-6 s-1)和散度场(等值线,实线为正值,虚线为负值,单位:10-6 s-1,等值线间隔为10-7 s-1)的各位相合成
Figure 11. Composite vertical cross sections of 10–30-day filtered vorticity (shading; units: 10-6 s-1) and divergence (contours; solid lines represent divergence and dotted lines represent convergence; units: 10-6 s-1.The contour interval is 10-7 s-1.) averaged over the region of 106°–115°E
图 12 经过(115°~123°E平均)剖面的30~60天滤波的涡度场(阴影,单位:10-6 s-1)和散度场(等值线,实线为正值,虚线为负值,单位:10-6 s-1,等值线间隔为10-7 s-1)的各位相合成
Figure 12. Composite vertical cross sections of 30–60-day filtered vorticity (shading; units: 10-6 s-1) and divergence (contours; solid lines represent divergence and dotted lines represent convergence; units: 10-6 s-1.The contour interval is 10-7 s-1.) averaged over the region of 115°–123°E
图 13 位相合成的整层积分的低频水汽通量输送(矢量,单位:kg s-1 cm-1)及其散度(阴影,单位:10-5 kg s-1 cm-2):(a、b)长江中游地区;(c、d)长江下游地区。红色方框表示所讨论区域;只画出大于图右上角标值10%的水汽通量输送矢量
Figure 13. Composite vertically integrated moisture fluxes (vectors; units: kg s-1 cm-1) and their divergence (shading; units: kg s-1 cm-1): (a, b) Over the MYR region (the red box); (c, d) over the LYR region (the red box). Integrated moisture fluxes larger than 10% of the vector scale are shown
-
[1] 曹鑫, 任雪娟, 杨修群, 等. 2012.中国东南部5~8月持续性强降水和环流异常的准双周振荡[J].气象学报, 70 (4):766-778. doi: 10.11676/qxxb2012.062Cao Xin, Ren Xuejuan, Yang Xiuqun, et al. 2012. The quasi-biweekly oscillation characteristics of persistent severe rain and its general circulation anomaly over Southeast China from May to August[J]. Acta Meteorologica Scinica, 70(4):766-778, doi: 10.11676/qxxb2012.062. [2] Chen L X, Zhu C W, Wang W, et al. 2001. Analysis of the characteristics of 30-60 day low-frequency oscillation over Asia during 1998 SCSMEX[J]. Adv. Atmos. Sci., 18 (4):623-638, doi: 10.1007/s00376-001-0050-0. [3] 陈尚锋, 温之平, 陈文. 2011.南海地区大气30~60天低频振荡及其对南海夏季风的可能影响[J].大气科学, 35 (5):982-992. doi: 10.3878/j.issn.1006-9895.2011.05.17Chen Shangfeng, Wen Zhiping, Chen Wen. 2011. Tropical low frequency oscillations with 30-60 day period and its possible influence on the South China Sea summer monsoon[J]. Chinese Journal of Atmospheric Sciences, 35 (5):982-992, doi:10.3878/j.issn.1006-9895. 2011.05.17. [4] 韩荣青, 李维京, 董敏. 2006.北半球副热带-中纬度太平洋大气季节内振荡的纬向传播与东亚夏季旱涝[J].气象学报, 64 (2):149-163. doi: 10.3321/j.issn:0577-6619.2006.02.003Han Rongqing, Li Weijing, Dong Min. 2006. The impact of 30-60 day oscillations over the subtropical Pacific on the East Asian summer rainfall[J]. Acta Meteorologica Sinica, 64 (2):149-163, doi: 10.3321/j.issn:0577-6619.2006.02.003. [5] 何金海, 智协飞, Nakazawa T. 1995.中国东部地区降水季内变化的季节锁相[J].热带气象学报, 11 (4):370-374. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX199504009.htmHe Jinhai, Zhi Xiefei, Nakazawa T. 1995. Seasonal interlock of the intraseasonal variations of rainfall in East China[J]. Journal of Tropical Meteorology, 11 (4):370-374. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX199504009.htm [6] Hong Wei, Ren Xuejuan. 2013. Persistent heavy rainfall over South China during May-August:Subseasonal anomalies of circulation and sea surface temperature[J]. Acta Meteorologica Sinica, 27 (6):769-787, doi: 10.1007/s13351-013-0607-8. [7] 胡娅敏, 翟盘茂, 罗晓玲, 等. 2014. 2013年华南前汛期持续性强降水的大尺度环流与低频信号特征[J].气象学报, 72 (3):465-477. doi: 10.11676/qxxb2014.042Hu Yamin, Zhai Panmao, Luo Xiaoling, et al. 2014. Large scale circulation and low frequency signal characteristics for the persistent extreme precipitation in the first rainy season over South China in 2013[J]. Acta Meteorologica Sinica, 72 (3):465-477, doi: 10.11676/qxxb2014.042. [8] 黄嘉佑, 符长锋. 1993.黄河中下游地区夏季逐候降水量的低频振荡特征[J].大气科学, 17 (3):379-383. doi: 10.3878/j.issn.1006-9895.1993.03.16Huang Jiayou, Fu Changfeng. 1993. The representations of the low-frequency fluctuation for the pentad precipitation in summer in the middle-lower reaches of the Yellow River valley[J]. Chinese Journal of Atmospheric Sciences, 17 (3):379-383, doi: 10.3878/j.issn.1006-9895.1993.03.16. [9] Huang R H, Zhou L T, Chen W. 2003. The progresses of recent studies on the variabilities of the East Asian monsoon and their causes[J]. Adv. Atmos. Sci., 20 (1):55-69, doi: 10.1007/BF03342050. [10] 纪忠萍, 胡丽甜, 谷德军, 等. 2011.西江流域致洪暴雨的准双周振荡及大气环流模型[J].热带气象学报, 27 (5):775-784. doi: 10.3969/j.issn.1004-4965.2011.05.021Ji Zhongping, Hu Litian, Gu Dejun, et al. 2011. The quasi-biweekly oscillation of flood-causing torrential rain in Xijiang River region and its atmospheric circulation models[J]. Journal of Tropical Meteorology, 27 (5):775-784, doi: 10.3969/j.issn.1004-4965.2011.05.021. [11] 琚建华, 赵尔旭. 2005.东亚夏季风区的低频振荡对长江中下游旱涝的影响[J].热带气象学报, 21 (2):163-171. doi: 10.3969/j.issn.1004-4965.2005.02.006Jü Jianhua, Zhao Erxu. 2005. Impacts of the low frequency oscillation in East Asian summer monsoon on the drought and flooding in the middle and lower valley of the Yangtze River[J]. Journal of Tropical Meteorology, 21 (2):163-171, doi: 10.3969/j.issn.1004-4965.2005.02.006. [12] Krishnamurti T N, Ardanuy P. 1980. The 10 to 20-day westward propagating mode and "Breaks in the Monsoons"[J]. Tellus, 32 (1):15-26, doi: 10.1111/j.2153-3490.1980.tb01717.x. [13] Lau K M, Chan P H. 1986. Aspects of the 40-50 day oscillation during the northern summer as inferred from outgoing longwave radiation[J]. Mon. Wea. Rev., 114 (7):1354-1367, doi:10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2. [14] Lau K H, Lau N C. 1990. Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances[J]. Mon. Wea. Rev., 118 (9):1888-1913, doi:10.1175/1520-0493(1990)118<1888:OSAPCO>2.0.CO;2. [15] Lau K M, Yang G J, Shen S H. 1988. Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia[J]. Mon. Wea. Rev., 116 (1):18-37, doi:10.1175/1520-0493(1988)116<0018:SAICOS>2.0.CO;2. [16] 李丽平, 许冠宇, 柳艳菊. 2014. 2010年华南前汛期低频水汽输送对低频降水的影响[J].热带气象学报, 30 (3):423-431. doi: 10.3969/j.issn.1004-4965.2014.03.003Li Liping, Xu Guanyu, Liu Yanju. 2014. Influences of low-frequency moisture transportation on low frequency precipitation anomalies in the annually first rain season of South China in 2010[J]. Journal of Tropical Meteorology, 30 (3):423-431, doi: 10.3969/j.issn.1004-4965.2014.03.003. [17] 刘慧斌, 温敏, 何金海, 等. 2012.东北冷涡活动的季节内振荡特征及其影响[J].大气科学, 36 (5):959-973. doi: 10.3878/j.issn.1006-9895.2012.11167Liu Huibin, Wen Min, He Jinhai, et al. 2012. Characteristics of the Northeast cold vortex at intraseasonal time scale and its impact[J]. Chinese Journal of Atmospheric Sciences, 36 (5):959-973, doi: 10.3878/j.issn.1006-9895.2012.11167. [18] Madden R A, Julian P R. 1971. Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific[J]. J. Atmos. Sci., 28 (5):702-708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2. [19] Madden R A, Julian P R. 1972. Description of global-scale circulation cells in the tropics with a 40-50 day period[J]. J. Atmos. Sci., 29 (6):1109-1123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2. [20] 毛江玉, 吴国雄. 2005. 1991年江淮梅雨与副热带高压的低频振荡[J].气象学报, 63 (5):762-770. doi: 10.3321/j.issn:0577-6619.2005.05.020Mao Jiangyu, Wu Guoxiong. 2005. Intraseasonal variability in the Yangtze-Huaihe River rainfall and subtropical high during the 1991 Meiyu period[J]. Acta Meteorologica Sinica, 63 (5):762-770, doi:10.3321/j.issn:0577-6619.2005. 05.020. [21] Murakami T, Nakazawa T. 1985. Tropical 45 day oscillations during the 1979 Northern Hemisphere summer[J]. J. Atmos. Sci., 42 (11):1107-1122, doi:10.1175/1520-0469(1985)042<1107:TDODTN>2.0.CO;2. [22] Nakazawa T. 1992. Seasonal phase lock of intraseasonal variation during the Asian summer monsoon[J]. J. Meteor. Soc. Japan, 1992, 70 (1B):597-611, doi: 10.2151/jmsj1965.70.1B_597. [23] 齐艳军, 张人禾, Li T. 2016. 1998年夏季长江流域大气季节内振荡的结构演变及其对降水的影响[J].大气科学, 40 (3):451-462. doi: 10.3878/j.issn.1006-9895.1507.15107Qi Yanjun, Zhang Renhe, Li T. 2016. Structure and evolution characteristics of atmospheric intraseasonal oscillation and its impact on the summer rainfall over the Yangtze River basin in 1998[J]. Chinese Journal of Atmospheric Sciences, 40 (3):451-462, doi: 10.3878/j.issn.1006-9895.1507.15107. [24] 唐天毅, 吴池胜, 王安宇, 等. 2007. 1999年广东汛期降水的季节内振荡[J].热带气象学报, 23 (6):683-689. doi: 10.3969/j.issn.1004-4965.2007.06.025Tang Tianyi, Wu Chisheng, Wang Anyu, et al. 2007. An observational study of interaseasonal variations over Guangdong Province China during the rainy season of 1999[J]. Journal of Tropical Meteorology, 23 (6):683-689, doi: 10.3969/j.issn.1004-4965.2007.06.025. [25] Wang B, Rui H. 1990. Synoptic climatology of transient tropical intraseasonal convection anomalies:1975-1985[J]. Meteor. Atmos. Phys., 44 (1-4):43-61, doi: 10.1007/BF01026810. [26] Wang B, Xu X H. 1997. Northern Hemisphere summer monsoon singularities and climatological intraseasonal oscillation[J]. J. Climate, 10 (5):1071-1085, doi:10.1175/1520-0442(1997)010<1071:NHSMSA>2.0.CO;2. [27] 王文, 李伟, 李耀辉. 2013.黄河中下游地区夏季旱涝年低频振荡特征分析[J].冰川冻土, 35 (4):1007-1014. doi: 10.7522/j.issn.1000-0240.2013.0113Wang Wen, Li Wei, Li Yaohui. 2013. Analysis of the LFO characteristics during summer drought/flood years over the middle and lower reaches of the Yellow River[J]. Journal of Glaciology and Geocryology, 35 (4):1007-1014, doi: 10.7522/j.issn.1000-0240.2013.0113. [28] 王遵娅, 丁一汇. 2008.中国雨季的气候学特征[J].大气科学, 32 (1):1-13. doi: 10.3878/j.issn.1006-9895.2008.01.01Wang Zunya, Ding Yihui. 2008. Climatic characteristics of rainy seasons in China[J]. Chinese Journal of Atmospheric Sciences, 32 (1):1-13, doi: 10.3878/j.issn.1006-9895.2008.01.01. [29] Wen M, Zhang R H. 2008. Quasi-biweekly oscillation of the convection around Sumatra and low-level tropical circulation in boreal spring[J]. Mon. Wea. Rev., 136 (1):189-205, doi: 10.1175/2007MWR1991.1. [30] Yang J, Wang B, Wang B, et al. 2010. Biweekly and 21-30-day variations of the subtropical summer monsoon rainfall over the lower reach of the Yangtze River basin[J]. J. Climate, 23 (5):1146-1159, doi: 10.1175/2009JCLI3005.1. -