高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

边界层参数化方案在“灰色区域”尺度下的适用性评估

刘梦娟 张旭 陈葆德

刘梦娟, 张旭, 陈葆德. 边界层参数化方案在“灰色区域”尺度下的适用性评估[J]. 大气科学, 2018, 42(1): 52-69. doi: 10.3878/j.issn.1006-9895.1704.16269
引用本文: 刘梦娟, 张旭, 陈葆德. 边界层参数化方案在“灰色区域”尺度下的适用性评估[J]. 大气科学, 2018, 42(1): 52-69. doi: 10.3878/j.issn.1006-9895.1704.16269
Mengjuan LIU, Xu ZHANG, Baode CHEN. Assessment of the Suitability of Planetary Boundary Layer Schemes at 'Grey Zone' Resolutions[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(1): 52-69. doi: 10.3878/j.issn.1006-9895.1704.16269
Citation: Mengjuan LIU, Xu ZHANG, Baode CHEN. Assessment of the Suitability of Planetary Boundary Layer Schemes at "Grey Zone" Resolutions[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(1): 52-69. doi: 10.3878/j.issn.1006-9895.1704.16269

边界层参数化方案在“灰色区域”尺度下的适用性评估

doi: 10.3878/j.issn.1006-9895.1704.16269
基金项目: 

国家自然科学基金项目 41505087

国家自然科学基金项目 41575101

国家重点研发计划“政府间科技合作项目”重点专项 2016YFE0109700

详细信息
    作者简介:

    刘梦娟, 女, 1987年出生, 助理工程师, 主要从事边界层观测资料、数值模拟研究。E-mail:mengjuan.liu@gmail.com

    通讯作者:

    张旭, E-mail:zhangx@mail.typhoon.gov.cn

  • 中图分类号: P456.7

Assessment of the Suitability of Planetary Boundary Layer Schemes at "Grey Zone" Resolutions

Funds: 

National Natural Science Foundation of China 41505087

National Natural Science Foundation of China 41575101

National Key Research and Development Program of China 2016YFE0109700

  • 摘要: 随着数值预报模式分辨率的提高,当模式网格距与含能湍涡的长度尺度相当时,模式动力过程可解析一部分湍流运动,而剩余的湍流运动仍需参数化,此时便产生了湍流参数化的“灰色区域”问题。对传统的PBL(Planetary Boundary Layer)方案在“灰色区域”下的适用性评估,是改进PBL方案以使其能够适应分辨率变化的前提和基础。本研究基于干对流边界层的大涡模拟试验,比较了WRF(Weather Research and Forecast Model)模式中四种常用的边界层参数化方案[YSU(Yonsei University)、MYJ(Mellor-Yamada-Janjic)、MYNN2.5(Mellor-Yamada-Nakanishi-Niino Level 2.5)、MYNN3)]在“灰色区域”尺度下的表现。研究表明,混合层内总热通量对所使用的参数化方案和水平分辨率均不敏感。不同参数化方案中次网格与网格通量的比例表现出对水平网格距不同的依赖性。局地PBL方案(MYJ、MYNN2.5)在混合层内的平均位温随网格距减小而增大,次网格通量随网格距减小而减小,较参考湍流场对次网格通量有所低估。YSU方案的非局地项几乎不随水平格距改变而变化,对次网格通量的表征并未表现出较强的分辨率依赖性,且过强的非局地次网格输送使混合层内温度层结呈弱稳定,抑制了可分辨湍流输送,不易于激发次级环流。MYNN3方案的非局地次网格通量(负梯度输送项)随网格距减小而减小,使其对次网格通量的表征具有较好的分辨率依赖性。PBL方案在“灰色区域”尺度下的适用性与具体分辨率有关。以分辨率500 m为例,四种PBL方案中不存在一种最佳方案,能对边界层的热力结构和湍流统计特征均有准确的描述。
  • 图  1  从LES(Large-Eddy Simulation)试验构造参考湍流变量示意图

    Figure  1.  Schematic diagram illustrating the construction of REF (reference) from LES (Large-Eddy Simulation)

    图  2  模式积分4小时后PBL(Planetary Boundary Layer)方案及LES(黑色实线)的平均位温垂直廓线

    Figure  2.  Vertical profiles of domain-averaged potential temperature after 4 h integration simulated by PBL (Planetary Boundary Layer) schemes and LES. The black solid lines indicate results from LES

    图  3  模式积分4小时后PBL方案及LES(黑色实线)的平均位温梯度垂直廓线

    Figure  3.  Vertical profiles of domain-averaged potential temperature gradient after 4 h integration simulated by PBL schemes and LES. The black solid lines indicate results from LES

    图  4  模式积分4小时后PBL方案(彩色)与参考湍流场(灰色)总热通量垂直廓线

    Figure  4.  Vertical profiles of total heat fluxes simulated by PBL schemes (colored lines) and from REF (grey lines) after 4 h integration

    图  5  模式积分4小时后PBL方案的总热通量相对误差随均一化水平网格距的变化

    Figure  5.  Relative errors of the total heat fluxes simulated by PBL schemes as a function of Δx/zi after 4 h integration

    图  6  模式积分4小时后PBL方案(红、蓝点线)与REF(红、蓝实线)在混合层内网格(红色)与次网格(蓝色)热通量的比例随均一化水平网格距的变化

    Figure  6.  Ratios of the resolved-scale heat fluxes (REF: red solid lines; PBL: red dotted lines) and sub-grid heat fluxes (REF: blue solid lines; PBL: blue dotted lines) to the total against the dimensionless mesh in the mixing layer after 4 h integration

    图  7  模式积分4小时后PBL方案及REF在Δ=500 m时z=0.1zi位温扰动(上)及垂直速度(下)的水平分布

    Figure  7.  Horizontal distributions of perturbation of potential temperature (θ', top panel) and vertical velocity (w, bottom panel) at z=0.1zi with grid interval of Δ=500 m after 4 h integration simulated by PBL schemes and REF

    图  8  模式积分4小时后PBL方案(彩色)与REF(灰色)次网格热通量垂直廓线

    Figure  8.  Vertical profiles of sub-grid heat fluxes simulated by PBL schemes (colored lines) and from REF (grey lines) after 4 h integration

    图  9  YSU(上)和MYNN3(下)方案的(a、c)局地次网格和(b、d)非局地次网格热通量垂直廓线

    Figure  9.  Vertical profiles of (a, c) local and (b, d) nonlocal sub-grid heat fluxes simulated by YSU (top panel) and MYNN3 (bottom panel) schemes

    图  10  z=500 m处可分辨湍流动能的时间序列。PBL方案积分8小时,LES积分4小时

    Figure  10.  Time series of resolved-scale turbulent kinetic energy (TKE) at z=500 m. PBL schemes are integrated for 8 hours. LES simulation covers a period of four hours

    图  11  PBL方案积分1小时与8小时后的区域平均位温垂直廓线

    Figure  11.  Vertical profiles of domain-averaged potential temperature after 1 h and 8 h integrations simulated by PBL schemes

    图  12  PBL方案积分(a)1小时与(b)8小时后在z=0.1 zi处的垂直速度(w)水平分布

    Figure  12.  orizontal distributions of vertical velocity (w) at z=0.1 zi from simulations of YSU, MYJ, MYNN2.5, and MYNN3 schemes after (a) 1 h and (b) 8 h integrations simulated by PBL schemes

    图  13  YSU敏感性试验中z=100 m处可分辨湍流动能的时间序列

    Figure  13.  Time series of resolved-scale turbulent kinetic energy at z=100 m from YSU sensitivity experiments

    图  14  模式积分4小时后Δ=500 m的PBL方案及LES的平均位温垂直廓线

    Figure  14.  Vertical profiles of domain-averaged potential temperature simulated by PBL schemes and LES (black solid line) at Δ=500 m after 4 h integration

    图  15  模式积分4小时后Δ=500 m的PBL方案与REF(a)总热通量、(b)次网格、(c)网格热通量垂直廓线

    Figure  15.  Vertical profiles of (a) total, (b) sub-grid, and (c) resolved-scale heat fluxes simulated by PBL schemes and from REF at Δ=500 m after 4 h integration

    表  1  PBL(Planetary Boundary Layer)试验设计参数(模式层高均为2 km,积分8小时)

    Table  1.   List of model settings in PBL (Planetary Boundary Layer) test (model depth: 2 km; integration length: 8 h)

    湍流参数化方法 Δx, y / m Δt/ s nz nx, y
    LES(Large-Eddy Simulation) 50 0.2 100 600
    PBL(LYSU, MYJ, MYNN2.5, MYNN3) 250 1 100 360
    500 2 100 180
    1000 4 100 180
    3000 10 100 180
    9000 30 100 180
    注:Δx, y为水平网格距,Δt为时间步长,nz为垂直方向格点数,nx, y为水平方向格点数。
    下载: 导出CSV

    表  2  Δ=500 m时各PBL方案近地层及浮力特征值

    Table  2.   Summary of surface and bulk PBL parameters when distance of model grid (Δ) is 500 m

    方案 w*/ m s-1 u*/m s-1 zi/ m ζ RE R
    REF 2.08 0.50 1160 -28.55 -0.24 -
    YSU 2.06 0.58 1140 -18.27 -0.25 0.36
    MYJ 2.03 0.53 1080 -22.85 -0.12 1.13
    MYNN2.5 2.05 0.54 1120 -21.41 -0.19 -0.01
    MYNN3 2.03 0.56 1080 -18.57 -0.14 0.50
    注:w*为对流特征速度,u*为地表摩擦速度,zi边界层高度,R为混合层总热通量相对误差,无量纲数$\zeta ={z_i}/L$(其中,L为奥布霍夫长度),夹卷率${R_E}={\left\langle {w'\theta '} \right\rangle _{{z_i}}}/{\left\langle {w'\theta '} \right\rangle _{{\rm{SFC}}}}$为边界层高度容量与地面热通量之比。
    下载: 导出CSV

    表  3  YSU敏感性试验设计

    Table  3.   List of parameters used in YSU sensitivity experiments

    试验名 边界层参数化方案 Δ / m 负梯度项倍数 夹卷项倍数 运行时间
    CRTL 试验 YSU 1000 1 1 8
    2CT (Counter-gradient Term) 试验 YSU 1000 2 0 8
    1CT 试验 YSU 1000 1 0 8
    0CT 试验 YSU 1000 0 0 8
    下载: 导出CSV
  • [1] Baldauf M, Seifert A, Förstner J, et al. 2011. Operational convective-scale numerical weather prediction with the COSMO model:Description and sensitivities[J]. Mon. Wea. Rev., 139 (12):3887-3905, doi: 10.1175/MWR-D-10-05013.1.
    [2] Benjamin S G, Weygandt S S, Brown J M, et al. 2016. A North American hourly assimilation and model forecast cycle:The rapid refresh[J]. Mon. Wea. Rev., 144 (4):1669-1694, doi: 10.1175/MWR-D-15-0242.1.
    [3] Charles M E, Colle B A. 2009. Verification of extratropical cyclones within the NCEP operational models. Part Ⅰ:Analysis errors and short-term NAM and GFS forecasts[J]. Wea. Forecasting, 24 (5):1173-1190, doi: 10.1175/2009WAF2222169.1.
    [4] 陈葆德, 王晓峰, 李泓, 等. 2013.快速更新同化预报的关键技术综述[J].气象科技进展, 3 (2):29-35. doi: 10.3969/j.issn.2095-1973.2013.02.003

    Chen Baode, Wang Xiaofeng, Li Hong, et al. 2013. An overview of the key techniques in rapid refresh assimilation and forecast[J]. Advances in Meteorological Science and Technology (in Chinese), 3 (2):29-35, doi:10.3969/j.issn.2095-1973. 2013.02.003.
    [5] 陈敏, 范水勇, 郑祚芳, 等. 2011.基于BJ-RUC系统的临近探空及其对强对流发生潜势预报的指示性能初探[J].气象学报, 69 (1):181-194. doi: 10.11676/qxxb2011.016

    Chen Min, Fan Shuiyong, Zheng Zuofang, et al. 2011. The performance of the proximity sounding based on the BJ-RUC system and its preliminary implementation in the convective potential forecast[J]. Acta Meteor. Sinica (in Chinese), 69 (1):181-194, doi:10.11676/qxxb2011. 016.
    [6] Cheng A N, Xu K M, Stevens B. 2010. Effects of resolution on the simulation of boundary-layer clouds and the partition of kinetic energy to subgrid scales[J]. J. Adv. Model. Earth Syst., 2 (1):3, doi: 10.3894/JAMES.2010.2.3.
    [7] Ching J, Rotunno R, LeMone M, et al. 2014. Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models[J]. Mon. Wea. Rev., 142 (9):3284-3302, doi: 10.1175/MWR-D-13-00318.1.
    [8] Cohen A E, Cavallo S M, Coniglio M C, et al. 2015. A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments[J]. Wea. Forecasting, 30 (3):591-612, doi: 10.1175/WAF-D-14-00105.1.
    [9] Davies T, Cullen M J P, Malcolm A J, et al. 2005. A new dynamical core for the Met Office's global and regional modelling of the atmosphere[J]. Quart. J. Roy. Meteor. Soc., 131 (608):1759-1782, doi: 10.1256/qj.04.101.
    [10] Deardorff J W. 1972. Numerical investigation of neutral and unstable planetary boundary layers[J]. J. Atmos. Sci., 29 (1):91-115, doi:10. 1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2.
    [11] Deardorff J W. 1980. Stratocumulus-capped mixed layers derived from a three-dimensional model[J]. Bound.-Layer Meteor., 18 (4):495-527, doi: 10.1007/BF00119502.
    [12] 邓国, 周玉淑, 李建通. 2005.台风数值模拟中边界层方案的敏感性试验Ⅰ.对台风结构的影响[J].大气科学, 29 (3):417-428. doi: 10.3878/j.issn.1006-9895.2005.03.09

    Deng Guo, Zhou Yushu, Li Jiantong. 2005. The experiments of the boundary layer schemes on simulated typhoon. Part Ⅰ. The effect on the structure of typhoon[J]. Chinese J. Atmos. Sci. (in Chinese), 29 (3):417-428, doi: 10.3878/j.issn.1006-9895.2005.03.09.
    [13] Dorrestijn J, Crommelin D T, Siebesma A P, et al. 2013. Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data[J]. Theor. Comput. Fluid Dyn., 27 (1-2):133-148, doi: 10.1007/s00162-012-0281-y.
    [14] Dudhia J. 2014. A history of mesoscale model development[J]. Asia-Pac. J. Atmos. Sci., 50 (1):121-131, doi: 10.1007/s13143-014-0031-8.
    [15] 高笃鸣, 李跃清, 蒋兴文, 等. 2016. WRF模式多种边界层参数化方案对四川盆地不同量级降水影响的数值试验[J].大气科学, 40 (2):371-389. doi: 10.3878/j.issn.1006-9895.1503.14323

    Gao Duming, Li Yueqing, Jiang Xingwen, et al. 2016. Influence of planetary boundary layer parameterization schemes on the prediction of rainfall with different magnitudes in the Sichuan Basin using the WRF model[J]. Chinese J. Atmos. Sci. (in Chinese), 40 (2):371-389, doi: 10.3878/j.issn.1006-9895.1503.14323.
    [16] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon. Wea. Rev., 134 (9):2318-2341, doi: 10.1175/MWR3199.1.
    [17] Hong S Y, Dudhia J. 2012. Next-generation numerical weather prediction:Bridging parameterization, explicit clouds, and large eddies[J]. Bull. Amer. Meteor. Soc., 93 (1):ES6-ES9, doi: 10.1175/2011BAMS3224.1.
    [18] Honnert R, Masson V, Couvreux F. 2011. A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale[J]. J. Atmos. Sci., 68 (12):3112-3131, doi: 10.1175/JAS-D-11-061.1.
    [19] Hu Xiaoming, Nielsen-Gammon J W, Zhang Fuqing. 2010. Evaluation of three planetary boundary layer schemes in the WRF model[J]. J. Appl. Meteor. Climatol., 49 (9):1831-1844, doi: 10.1175/2010JAMC2432.1.
    [20] 黄文彦, 沈新勇, 王卫国, 等. 2014.边界层参数化方案对边界层热力和动力结构特征影响的比较[J].地球物理学报, 57 (5):1399-1414. doi: 10.6038/cjg20140505

    Huang Wenyan, Shen Xinyong, Wang Weiguo, et al. 2014. Comparison of the thermal and dynamic structural characteristics in boundary layer with different boundary layer parameterizations[J]. Chinese J. Geophys. (in Chinese), 57 (5):1399-1414, doi: 10.6038/cjg20140505.
    [21] Ito J, Niino H, Nakanishi M, et al. 2015. An extension of the Mellor-Yamada model to the terra incognita zone for dry convective mixed layers in the free convection regime[J]. Bound.-Layer Meteor., 157 (1):23-43, doi: 10.1007/s10546-015-0045-5.
    [22] Janjić Z I. 2001. Nonsingular implementation of the Mellor Yamada level 2. 5 scheme in the NCEP meso model[R]. NCEP Office Note #437, 61pp. https://www.researchgate.net/publication/228749162_Nonsingular_implementation_of_the_MellorYamada_level_2.5_scheme_in_the_NCEP_Meso_model
    [23] LeMone M A. 1973. The structure and dynamics of horizontal roll vortices in the planetary boundary layer[J]. J. Atmos. Sci., 30 (6):1077-1091, doi:10.1175/1520-0469(1973)030<1077:TSADOH>2.0.CO;2.
    [24] 刘辉志, 冯健武, 王雷, 等. 2013.大气边界层物理研究进展[J].大气科学, 37 (2):467-476. doi: 10.3878/j.issn.1006-9895.2012.12315

    Liu Huizhi, Feng Jianwu, Wang Lei, et al. 2013. Overview of recent studies on atmospheric boundary layer physics at LAPC[J]. Chinese J. Atmos. Sci. (in Chinese), 37 (2):467-476, doi:10. 3878/j.issn.1006-9895.2012.12315.
    [25] Mellor G L, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems[J]. Rev. Geophys., 20 (4):851-875, doi: 10.1029/RG020i004p00851.
    [26] Moeng C H, Sullivan P P. 1994. A comparison of shear-and buoyancy-driven planetary boundary layer flows[J]. J. Atmos. Sci., 51 (7):999-1022, doi:10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.
    [27] Moeng C H, Dudhia J, Klemp J, et al. 2007. Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model[J]. Mon. Wea. Rev., 135 (6):2295-2311, doi: 10.1175/MWR3406.1.
    [28] Muñoz-Esparza D, Sauer J A, Linn R R, et al. 2016. Limitations of one-dimensional mesoscale PBL parameterizations in reproducing mountain-wave flows[J]. J. Atmos. Sci., 73 (7):2603-2614, doi: 10.1175/JAS-D-15-0304.1.
    [29] Nakanishi M, Niino H. 2004. An improved Mellor-Yamada level-3 model with condensation physics:Its design and verification[J]. Bound.-Layer Meteor., 112 (1):1-31, doi: 10.1023/B:BOUN.0000020164.04146.98.
    [30] Nakanishi M, Niino H. 2006. An improved Mellor-Yamada level-3 model:Its numerical stability and application to a regional prediction of advection fog[J]. Bound.-Layer Meteor., 119 (2):397-407, doi: 10.1007/s10546-005-9030-8.
    [31] Nakanishi M, Niino H. 2009. Development of an improved turbulence closure model for the atmospheric boundary layer[J]. J. Meteor. Soc. Japan, 87 (5):895-912, doi: 10.2151/jmsj.87.895.
    [32] 邱贵强, 李华, 张宇, 等. 2013.高寒草原地区边界层参数化方案的适用性评估[J].高原气象, 32 (1):46-55. doi: 10.7522/j.issn.1000-0534.2012.00006

    Qiu Guiqiang, Li Hua, Zhang Yu, et al. 2013. Applicability research of planetary boundary layer parameterization scheme in WRF model over the Alpine Grassland Area[J]. Plateau Meteorology (in Chinese), 32 (1):46-55, doi: 10.7522/j.issn.1000-0534.2012.00006.
    [33] Saito K, Fujita T, Yamada Y, et al. 2006. The operational JMA nonhydrostatic mesoscale model[J]. Mon. Wea. Rev., 134 (4):1266-1298, doi: 10.1175/MWR3120.1.
    [34] Seity Y, Brousseau P, Malardel S, et al. 2011. The AROME-France convective-scale operational model[J]. Mon. Wea. Rev., 139 (3):976-991, doi: 10.1175/2010MWR3425.1.
    [35] Shin H H, Hong S Y. 2013. Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions[J]. J. Atmos. Sci., 70 (10):3248-3261, doi: 10.1175/JAS-D-12-0290.1.
    [36] Shin H H, Hong S Y. 2015. Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions[J]. Mon. Wea. Rev., 143 (1):250-271, doi: 10.1175/MWR-D-14-00116.1.
    [37] Shin H H, Dudhia J. 2016. Evaluation of PBL parameterizations in WRF at subkilometer grid spacings:Turbulence statistics in the dry convective boundary layer[J]. Mon. Wea. Rev., 144 (3):1161-1177, doi: 10.1175/MWR-D-15-0208.1.
    [38] Skamarock W C, Klemp J B, Dudhia J, et al. 2008. A description of the advanced research WRF version 3[R]. NCAR Tech. Note NCAR/TN-475+STR, 113pp, doi: 10.5065/D68S4MVH.
    [39] Smagorinsky J. 1963. General circulation experiments with the primitive equations Ⅰ. The basic experiment[J]. Mon. Wea. Rev., 91 (3):99-164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.
    [40] Sun W Y, Chang C Z. 1986. Diffusion model for a convective layer. Part Ⅰ:Numerical simulation of convective boundary layer[J]. J. Climate Appl. Meteor., 25 (10):1445-1453, doi:10.1175/1520-0450(1986)025<1445:DMFACL>2.0.CO;2.
    [41] 王子谦, 段安民, 吴国雄. 2014.边界层参数化方案及海气耦合对WRF模拟东亚夏季风的影响[J].中国科学:地球科学, 44 (3):548-562. doi: 10.1007/s11430-013-4801-4

    Wang Z Q, Duan A M, Wu G X. 2014. Impacts of boundary layer parameterization schemes and air-sea coupling on WRF simulation of the East Asian summer monsoon[J]. Science China:Earth Sciences, 57 (7):1480-1493, doi: 10.1007/s11430-013-4801-4.
    [42] Wyngaard J C. 2004. Toward numerical modeling in the "terra incognita"[J]. J. Atmos. Sci., 61 (14):1816-1826, doi:10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.
    [43] 徐慧燕, 朱业, 刘瑞, 等. 2013.长江下游地区不同边界层参数化方案的试验研究[J].大气科学, 37 (1):149-159. doi: 10.3878/j.issn.1006-9895.2012.12021

    Xu Huiyan, Zhu Ye, Liu Rui, et al. 2013. Simulation experiments with different planetary boundary layer schemes in the lower reaches of the Yangtze River[J]. Chinese J. Atmos. Sci. (in Chinese), 37 (1):149-159, doi:10.3878/j.issn. 1006-9895.2012.12021.
    [44] 张小培, 银燕. 2013.复杂地形地区WRF模式四种边界层参数化方案的评估[J].大气科学学报, 36 (1):68-76. doi: 10.3969/j.issn.1674-7097.2013.01.008

    Zhang Xiaopei, Yin Yan. 2013. Evaluation of the four PBL schemes in WRF model over complex topographic areas[J]. Trans. Atmos. Sci. (in Chinese), 36 (1):68-76, doi: 10.3969/j.issn.1674-7097.2013.01.008.
    [45] Zhou Bowen, Simon J S, Chow F K. 2014. The convective boundary layer in the terra incognita[J]. J. Atmos. Sci., 71 (7):2545-2563, doi: 10.1175/JAS-D-13-0356.1.
    [46] 周强, 李国平. 2013.边界层参数化方案对高原低涡东移模拟的影响[J].高原气象, 32 (2):334-344. doi: 10.7522/j.issn.1000-0534.2012.00033

    Zhou Qiang, Li Guoping. 2013. Impact of the different boundary layer parameterization schemes on numerical simulation of plateau vortex moving eastward[J]. Plateau Meteorology (in Chinese), 32 (2):334-344, doi: 10.7522/j.issn.1000-0534.2012.00033.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  3074
  • HTML全文浏览量:  145
  • PDF下载量:  1910
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-24
  • 网络出版日期:  2017-04-25
  • 刊出日期:  2018-01-15

目录

    /

    返回文章
    返回