高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高原切变线的客观识别与时空分布的统计分析

刘自牧 李国平

刘自牧, 李国平. 高原切变线的客观识别与时空分布的统计分析[J]. 大气科学, 2019, 43(1): 13-26. doi: 10.3878/j.issn.1006-9895.1704.17209
引用本文: 刘自牧, 李国平. 高原切变线的客观识别与时空分布的统计分析[J]. 大气科学, 2019, 43(1): 13-26. doi: 10.3878/j.issn.1006-9895.1704.17209
Zimu LIU, Guoping LI. Objective Identification of the Tibetan Plateau Shear Line and Statistical Analysis of Its Spatiotemporal Evolution Features[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(1): 13-26. doi: 10.3878/j.issn.1006-9895.1704.17209
Citation: Zimu LIU, Guoping LI. Objective Identification of the Tibetan Plateau Shear Line and Statistical Analysis of Its Spatiotemporal Evolution Features[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(1): 13-26. doi: 10.3878/j.issn.1006-9895.1704.17209

高原切变线的客观识别与时空分布的统计分析

doi: 10.3878/j.issn.1006-9895.1704.17209
基金项目: 

国家重点研究发展计划项目 2018YFC1507200

国家自然科学基金项目 41675057

国家自然科学基金项目 41675042

国家自然科学基金项目 41765003

详细信息
    作者简介:

    刘自牧, 1991年出生, 男, 硕士研究生, 主要从事天气动力学、高原天气方面的研究。E-mail:495067026@qq.com

    通讯作者:

    李国平, E-mail:liguoping@cuit.edu.cn

  • 中图分类号: P445

Objective Identification of the Tibetan Plateau Shear Line and Statistical Analysis of Its Spatiotemporal Evolution Features

Funds: 

National Key R & D Program of China 2018YFC1507200

National Natural Science Foundation of China 41675057

National Natural Science Foundation of China 41675042

National Natural Science Foundation of China 41765003

  • 摘要: 本文利用计算机客观识别技术,稳定地识别出高原切变线并分析了高原切变线的气候特征。通过对比三套常用的高分辨率再分析资料(ERA-Interim、NCEP CFSR和JRA-55)在高原地区中低层大气的适用性,筛选出与高原地区500 hPa风场较为吻合的NCEP CFSR(National Centers for Environmental Prediction Climate ForecastSystem Reanalysis)再分析资料作为基础数据,根据人工判识切变线的基本标准与计算机几何学知识,定义了高原切变线的客观识别标准。对客观识别出的2005~2015年高原切变线与《青藏高原低涡切变线年鉴》中的结果进行对比分析与验证,并在此基础上统计分析了近11年高原切变线的气候特征。高原切变线年均生成49.4条,其中东部型切变线年均38条,是高原切变线的基本型;高原切变线维持时间多为6 h;切变线两侧的水平散度、垂直涡度和总变形三个物理量的大值区均出现在94°~95°E。客观识别高原切变线的方法可以较为高效地识别高原切变线,为高原切变线研究提供了新的途径。
  • 图  1  高原切变线切变点类型

    Figure  1.  Types of shear point of the TPSL (Tibetan Plateau shear line)

    图  2  客观识别高原切变线流程图

    Figure  2.  The flow chart of objective TPSL identification

    图  3  2005~2015年运用CFSR资料客观识别各类高原切变线所占比例。绿、浅蓝、蓝、黄分别代表西部竖切变线、西部横切变线、东部竖切变线、东部横切变线占总切变线比例

    Figure  3.  Percentages of the total TPSLs accounted for by individual types based on application of the objective method on the CFSR data from 2005 to 2015. Green, light blue, blue, and yellow represent the western perpendicular shear line, western transverse shear line, eastern perpendicular shear line, and eastern transverse shear line, respectively

    图  4  2005~2015年客观识别的切变线、东部型切变线和《年鉴》中的切变线生成频数(柱)及客观识别切变线与《年鉴》中切变线的吻合率(折线)

    Figure  4.  Frequency (bars) of generation shear lines, eastern type shear lines identified by the objective method, the TPSLs derived from Tibetan Plateau Vortex and Shear Line Yearbook and coincidence rate (curve line) between shear lines identified by the objective method and the TPSLs derived from Tibetan Plateau Vortex and Shear Line Yearbook during 2005–2015

    图  5  2005~2015年客观识别高原切变线生成频数的空间分布:(a)全年;(b)夏季;(c)冬季

    Figure  5.  Spatial distributions of the TPSL occurrecne freqnecy identifed by the objective method during 2005–2015: (a) Annual; (b) summer; (c) winter

    图  6  2005~2015年区域(28°~38°N,85°~105°E)内客观识别高原切变线生成频数(柱)及特征量强度(折线)的纬向变化。频数为对应经度切变线生成数量的总和;总变形、水平散度(×-1)、垂直涡度是各经度切变线所对应要素的平均值

    Figure  6.  Zonal variations of the TPSL occurrence frequency (bars) and intensities (curve lines) of the associated physical quantities over region (28°–38°N, 85°–105°E) based on results of the objective identification method during 2005–2015. The TPSL frequency shows the total number of TPSLs along the corresponding longitude. The total deformation, horizontal divergence (×-1), and vertical vorticity associated with the TPSL are their corresponding averages along the given longitude

    图  7  2005~2015年区域(28°~38°N,85°~105°E)内逐月客观识别高原切变线生成频数(柱)及特征量强度(折线)变化。频数为对应月份生成切变线数量的总和;总变形、散度、涡度是各月份生成切变线上对应要素的平均值

    Figure  7.  Monthly changes of the TPSL occurrence frequency (bars) and intensities (curve lines) of associated physical quantities averaged over region (28°–38°N, 85°–105°E) during 2005–2015. The frequency shows the total number of TPSLs in the given month; the total deformation, horizontal divergence, and vertical vorticity associated with the TPSL represent their corresponding averages in the given the month

    图  8  2005~2015年客观识别的高原切变线维持时间概率分布。红色、绿色、浅蓝色、蓝色、黄色分别代表切变线维持时间6 h、12 h、18~24 h、30~36 h、42 h以上所占总切变线的比例

    Figure  8.  Probability distribution of the TPSL maintenance time identified by the objective method during 2005–2015. Red, green, light blue, blue, and yellow represent the percentages of TPSLs with maintenance time of 6 h, 12 h, 18–24 h, 30–36 h and 42 h in the total TPSLs, respectively

    图  9  (a)2005~2015年使用时间分辨率为12 h CFSR资料的客观识别高原切变线维持时间概率分布;(b)2005~2015年《年鉴》中高原切变线维持时间概率分布。灰色、红色、黄色、蓝色、紫色分别代表切变线维持时间12 h、24 h、36 h、48 h、60 h及以上所占切变线的比例

    Figure  9.  (a) Probability distributions of the maintenance time identified by the objective method based on CFSR data at the temporal resolution of 12 h during 2005–2015; (b) probability distributions of the maintenance time of the TPSLs derived from Tibetan Plateau Vortex and Shear Line Yearbook during 2005–2015. Gray, red, yellow, blue, and purple represent percentages of TPSLs with maintenance time of 12 h, 24 h, 36 h, 48 h, 60 h, and above in the total TPSLs, respectively

    图  10  2005~2015年各移动方向的高原切变线占总切变线比例

    Figure  10.  Proportion of TPSLs for different moving directions in the total TPSLs during 2005–2015

    表  1  2005~2015年再分析资料风速与实况对照表

    Table  1.   Comparison of wind speeds between reanalysis data and observations during 2005–2015

    平均值/m s-1 平均偏差/m s-1 平均绝对偏差/m s-1 相关系数
    年份 观测资料 ERA-Interim CFSR JRA-55 ERA-Interim CFSR JRA-55 ERA-Interim CFSR JRA-55 ERA-Interim CFSR JRA-55
    2005 7.86 7.72 7.99 7.48 -0.14 0.13 -0.38 0.75 0.96 1.28 0.92 0.92 0.91
    2006 8.07 7.76 7.8 8.55 -0.31 -0.27 0.48 0.89 0.935 1.87 0.95 0.96 0.93
    2007 7.55 7.68 7.61 7.79 0.13 0.06 0.24 0.83 0.74 0.85 0.93 0.94 0.92
    2008 8.48 8.33 8.75 8.95 -0.15 0.27 0.47 0.72 0.91 1.73 0.96 0.91 0.9
    2009 7.14 7.46 7.56 6.96 0.32 0.42 -0.18 1.22 1.08 0.87 0.92 0.91 0.94
    2010 8.41 8.15 8.54 8.11 -0.26 0.13 -0.3 0.97 0.89 0.95 0.93 0.95 0.93
    2011 8.36 8.08 7.94 7.44 -0.28 -0.42 -0.92 0.69 0.88 1.54 0.95 0.92 0.9
    2012 7.93 8.14 7.99 7.74 0.21 0.06 -0.19 0.94 0.58 0.71 0.93 0.95 0.91
    2013 8.34 8.22 8.59 7.53 -0.12 0.25 -0.81 0.73 0.96 1.71 0.94 0.93 0.92
    2014 8.25 8.14 8.49 7.94 -0.11 0.24 -0.31 0.81 0.97 1.43 0.96 0.95 0.91
    2015 8.16 7.95 8.54 7.74 -0.21 0.38 -0.42 0.84 0.93 1.07 0.95 0.95 0.93
    下载: 导出CSV

    表  2  2005 ~ 2015年再分析资料风向与实况对照。记北风风向为0°,并沿顺时针方向风向度数逐渐增大

    Table  2.   Comparison of wind directions between reanalysis data and observations during 2005–2015. The northerly wind direction is 0°, the values of wind direction increase clockwise

    年平均风向
    年份 观测资料 ERA-Interim CFSR JRA-55
    1982 254.3° 256.1° 254.6° 258.1°
    1983 255.1° 258.5° 254.7° 260.7°
    1984 256.2° 254.3° 254.8° 262.7°
    1985 254.6° 249.9° 257.7° 261.5°
    1986 254.4° 251.8° 253.0° 258.1°
    1987 252.9° 257.8° 254.8° 259.0°
    1988 253.1° 257.2° 255.4° 260.7°
    1989 251.7° 255.2° 249.1° 257.5°
    1990 255.7° 259.1° 254.9° 257.2°
    1991 250.9° 251.3° 254.6° 251.8°
    1992 254.2° 256.4° 253.3° 258.3°
    下载: 导出CSV
  • [1] 池艳珍, 刘丹妮, 何金海, 等. 2013.东亚-太平洋地区环流场和热力场由冬向夏转换的过程特征及其可能机制[J].高原气象, 32 (4):983-992. doi: 10.7522/j.issn.1000-0534.2012.00094

    Chi Yanzhen, Liu Danni, He Jinhai, et al. 2013. Features of transformation on circulation and thermal fields over East Asia-Pacific regions from winter to summer and its possible mechanism[J]. Plateau Meteorology (in Chinese), 32 (4):983-992, doi: 10.7522/j.issn.1000-0534.2012.00094.
    [2] Farrell B F. 1989. Transient development in confluent and diffluent flow[J]. J. Atmos. Sci., 46 (21):3279-3288, doi:10.1175/1520-0469(1989)046<3279:TDICAD>2.0.CO;2.
    [3] Feng Xinyuan, Liu Changhai, Rasmussen R, et al. 2014. A 10-yr climatology of Tibetan Plateau vortices with NCEP climate forecast system reanalysis[J]. Journal of Applied Meteorology & Climatology, 53 (1):34-46, doi: 10.1175/JAMC-D-13-014.1.
    [4] Feng Xinyuan, Liu Changhai, Fan Guangzhou, et al. 2016. Climatology and structures of Southwest vortices in the NCEP climate forecast system reanalysis[J]. J. Climate, 26 (21):7675-7701, doi: 10.1175/JCLI-D-15-0813.
    [5] 高守亭. 2007.大气中尺度运动的动力学基础及预报方法[M].北京:气象出版社, 169-176.

    Gao Shouting. 2007. Dynamical Foundation and Prediction Methods of Mesoscale Motions in Atmosphere (in Chinese)[M]. Beijing:China Meteorological Press, 169-176.
    [6] 高守亭, 冉令坤, 李小凡. 2015.大气中尺度动力学基础及暴雨动力预报方法[M].气象出版社, 78-81.

    Gao Shouting, Ran Lingkun, Li Xiaofan. 2015. Dynamical Foundation of Mesoscale Motions in Atmosphere and Dynamical Prediction Methods of Rainstorm (in Chinese)[M]. Beijing:China Meteorological Press, 78-81.
    [7] 何光碧, 高文良, 屠妮妮. 2009. 2000~2007年夏季青藏高原低涡切变线观测事实分析[J].高原气象, 28 (3):549-555. http://d.old.wanfangdata.com.cn/Periodical/gyqx200903009

    He Guangbi, Gao Wenliang, Tu Nini. 2009. The observational analysis of shear line and low vortex over the Tibetan Plateau in summer from 2000 to 2007[J]. Plateau Meteorology (in Chinese), 28 (3):549-555. http://d.old.wanfangdata.com.cn/Periodical/gyqx200903009
    [8] 何光碧, 师锐. 2014.三次高原切变线过程演变特征及其对降水的影响[J].高原气象, 33 (3):615-625. doi: 10.7522/j.issn.1000-0534.2013.00023

    He Guangbi, Shi Rui. 2014. Analysis on evolution characteristics of three Plateau shearlines and their effect on precipitation[J]. Plateau Meteorology (in Chinese), 33 (3):615-625, doi: 10.7522/j.issn.1000-0534.2013.00023.
    [9] 李国平, 赵福虎, 黄楚惠, 等. 2014.基于NCEP资料的近30年夏季青藏高原低涡的气候特征[J].大气科学, 38 (4):756-769. doi: 10.3878/j.issn.1006-9895.2013.13235

    Li Guoping, Zhao Fuhu, Huang Chuhui, et al. 2014. Analysis of 30-year climatology of the Tibetan Plateau vortex in summer with NCEP reanalysis data[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38 (4):756-769, doi: 10.3878/j.issn.1006-9895.2013.13235.
    [10] 李山山, 李国平, 2017a.一次鞍型场环流背景下高原东部切变线降水的湿Q矢量诊断分析[J].高原气象, 36 (2):317-329. http://d.old.wanfangdata.com.cn/Periodical/gyqx201702004

    Li Shanshan, Li Guoping, 2017a. Diagnostic analysis based on wet Q-vector of a shear line with rain on the east side of Qinghai-Xizang Plateau under the saddle pattern circulation background field[J]. Plateau Meteor, 36 (2):317-329, dio:10.7522/j.issn.1000-0534.2016.00025 http://d.old.wanfangdata.com.cn/Periodical/gyqx201702004
    [11] 李山山, 李国平. 2017b.一次高原低涡与高原切变线演变过程与机理分析[J].大气科学, 41 (4):713-726. doi: 10.3878/j.issn.1006-9895.1611.16179

    Li Shanshan, Li Guoping. 2017b. Evolution and mechanism analysis of a plateau vortex and plateau shear line[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41 (4):713-726, doi: 10.3878/j.issn.1006-9895.1611.16179.
    [12] Lin Zhiqiang. 2015. Analysis of Tibetan Plateau vortex activities using ERA-Interim data for the period 1979-2013[J]. J. Meteor. Res., 29 (5):720-734, doi: 10.1007/s13351-015-4273-x.
    [13] 林志强. 2015南支槽的客观识别方法及其气候特征[J].高原气象, 34 (3):684-689. doi: 10.7522/j.issn.1000-0534.2014.00016

    Lin Zhiqiang. 2015. Objective identify method and climatic characteristics of southern branch trough[J]. Plateau Meteorology (in Chinese), 34 (3):684-689, doi: 10.7522/j.issn.1000-0534.2014.00016.
    [14] 林志强, 周振波, 假拉. 2013.高原低涡客观识别方法及其初步应用[J].高原气象, 32 (6):1580-1588. doi: 10.7522/j.issn.1000-0534.2012.00153

    Lin Zhiqiang, Zhou Zhenbo, Jia La. 2013. Objective identifying method of Qinghai-Xizang Plateau vortex using NCEP/NCAR reanalysis dataset[J]. Plateau Meteorology (in Chinese), 32 (6):1580-1588, doi: 10.7522/j.issn.1000-0534.2012.00153.
    [15] 刘小红, 洪钟祥. 1996.北京地区一次特大强风过程边界层结构的研究[J].大气科学, 20 (2):223-228. doi: 10.3878/j.issn.1006-9895.1996.02.12

    Liu Xiaohong, Hong Zhongxiang. 1996. A study of the structure of a strong wind event in the atmospheric boundary layer in Beijing area[J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 20 (2):223-228, doi: 10.3878/j.issn.1006-9895.1996.02.12.
    [16] 马嘉理, 姚秀萍. 2015. 1981~2013年6~7月江淮地区切变线及暴雨统计分析[J].气象学报, 73 (5):883-894. doi: 10.11676/qxxb2015.065.R

    Ma Jiali, Yao Xiuping. 2015. Statistical analysis of the shear lines and torrential rains over the Yangtze-Huaihe River region during June-July in 1981-2013[J]. Acta Meterologica Sinica (in Chinese), 73 (5):883-894, doi: 10.11676/qxxb2015.065.R
    [17] 彭广, 李跃清, 郁淑华.等. 2005-2015.青藏高原低涡、切变线年鉴[M].北京:科学出版社.

    Peng Guang, Li Yueqing, Yu Shuhua, et al. 2005-2015. The Tibetan Plateau Vortex and Shear Line Yearbook (in Chinese)[M]. Beijing:China Meteorological Press.
    [18] 青藏高原气象科学研究拉萨会战组. 1981.夏半年青藏高原500毫巴低涡切变线的研究[M].北京:科学出版社, 1-122.

    Lhasa Group of Tibetan Plateau Meteorology Research. 1981. Research of 500 mb Vortex and Shear Lines Over the Tibetan Plateau in Summer (in Chinese)[M]. Beijing:Science Press, 1-122.
    [19] 师锐, 何光碧. 2011.移出与未移出高原的高原切变线背景环流对比分析[J].高原气象, 30 (6):1453-1461. http://d.old.wanfangdata.com.cn/Periodical/gyqx201106005

    Shi Rui, He Guangbi. 2011. Contrast analysis on background circulation of plateau shear line moving out and not moving out of the Tibetan Plateau[J]. Plateau Meteorology (in Chinese), 30 (6):1453-1461. http://d.old.wanfangdata.com.cn/Periodical/gyqx201106005
    [20] 宋丽莉, 吴战平, 秦鹏, 等. 2009.复杂山地近地层强风特性分析[J].气象学报, 67 (3):452-460. doi: 10.11676/qxxb2009.045

    Song Lili, Wu Zhanping, Qin Peng, et al. 2009. An analysis of the characteristics of strong winds in the surface layer over a complex terrain[J]. Acta Meterologica Sinica (in Chinese), 67 (3):452-460, doi: 10.11676/qxxb2009.045.
    [21] 杨成芳, 阎丽凤, 周雪松. 2012.利用加密探测资料分析冷式切变线类大暴雨的动力结构[J].气象, 38 (7):819-827. http://d.old.wanfangdata.com.cn/Conference/8930350

    Yang Chengfang, Yan Lifeng, Zhou Xuesong. 2012. Analysis on dynamic structure of cold wind shear heavy rainstorm by intensified observational data[J]. Meteorological Monthly (in Chinese), 38 (7):819-827. http://d.old.wanfangdata.com.cn/Conference/8930350
    [22] 杨伟愚, 叶笃正, 吴国雄. 1992.夏季青藏高原热力场和环流场的诊断分析. Ⅲ:环流场稳定维持的物理机制[J].大气科学, 16 (4):409-426. doi: 10.3878/j.issn.1006-9895.1992.04.04

    Yang Weiyu, Ye Duzheng, Wu Guoxiong. 1992. The influence of the Tibetan Plateau on the summer thermal and circulation fields over East Asia. Ⅲ:Physical mechanisms of maintaining the stable circulation fields[J]. Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 16 (4):409-426, doi: 10.3878/j.issn.1006-9895.1992.04.04.
    [23] 姚秀萍, 孙建元, 康岚, 等. 2014.高原切变线研究的若干进展[J].高原气象, 33 (1):294-300. doi: 10.7522/j.issn.1000-0534.2013.00164

    Yao Xiuping, Sun Jianyuan, Kang Lan, et al. 2014. Advances on research of shear convergence line over Qinghai-Xizang Plateau[J]. Plateau Meteorology (in Chinese), 33 (1):294-300, doi: 10.7522/j.issn.1000-0534.2013.00164.
    [24] 叶笃正, 高由禧. 1979.青藏高原气象学[M].北京:科学出版社, 122-126.

    Ye Duzheng, Gao Youxi. 1979. The Qinghai-Xizang Plateau Meteorology (in Chinese)[M]. Beijing:China Meteorological Press, 122-126.
    [25] 郁淑华, 何光碧, 滕家谟. 1997.青藏高原切变线对四川盆地西部突发性暴雨影响的数值试验[J].高原气象, 16 (3):306-311. doi: 10.3321/j.issn:1000-0534.1997.03.011

    Yu Shuhua, He Guangbi, Teng Jiamo. 1997. The numerical experiments of influence of shear line over Qinghai-Xizang Plateau on a sharp heavy rain in west Sichuan basin[J]. Plateau Meteorology (in Chinese), 16 (3):306-311. doi: 10.3321/j.issn:1000-0534.1997.03.011
    [26] 郁淑华, 高文良, 彭骏. 2013.近13年青藏高原切变线活动及其对中国降水影响的若干统计[J].高原气象, 32 (6):1527-1537. doi: 10.7522/j.issn.1000-0534.2012.00149

    Yu Shuhua, Gao Wenliang, Peng Jun. 2013. Statistical analysis of shearline activity in QXP and its influence on rainfall in China in recent 13 years[J]. Plateau Meteorology (in Chinese), 32 (6):1527-1537, doi: 10.7522/j.issn.1000-0534.2012.00149.
    [27] Zhang Xia, Yao Xiuping, Ma Jiali, et al. 2016. Climatology of transverse shear lines related to heavy rainfall over the Tibetan Plateau during boreal summer[J]. J. Meteor. Res., 30 (6):915-926, doi: 10.1007/s13351-016-6952-7.
    [28] 张博, 李国平. 2017.基于CFSR资料的青藏高原低涡客观识别技术及应用[J].兰州大学学报(自然科学版), 53 (1):106-111. doi: 10.13885/j.issn.0455-2059.2017.01.016

    Zhang Bo, Li Guoping. 2017. An objective identification of the Tibetan Plateau vortex based on climate forecast system reanalysis data[J]. Journal of Lanzhou University (Natural Sciences) (in Chinese), 53 (1):106-111, doi:10. 13885/j.issn.0455-2059.2017.01.016.
    [29] 赵桂香, 程麟生, 李新生. 2007. "04.12"华北大到暴雪过程切变线的动力诊断[J].高原气象, 26 (3):615-623. doi: 10.3321/j.issn:1000-0534.2007.03.025

    Zhao Guixiang, Cheng Linsheng, Li Xinsheng. 2007. The dynamical diagnosis of snowstorm over North China in December 2004[J]. Plateau Meteorology (in Chinese), 26 (3):615-623, doi: 10.3321/j.issn:1000-0534.2007.03.025.
    [30] Zhong Rui, Zhong Linhao, Hua Lijuan, et al. 2014. A climatology of the southwest vortex during 1979-2008[J]. Atmospheric and Oceanic Science Letters, 7 (6):577-583, doi: 10.3878/AOSL20140042.
    [31] 朱乾根. 1992.天气学原理和方法[M].北京:气象出版社, 561-562.

    Zhu Qian'gen. 1992. Principles and Methods of Synoptic Meteorology (in Chinese)[M]. Beijing:China Meteorological Press, 561-562.
    [32] 荀学义, 胡泽勇, 吴学宏, 等. 2011.三套位势高度再分析资料在青藏高原地区的对比分析[J].高原气象, 30 (6):1444-1452. http://d.old.wanfangdata.com.cn/Periodical/gyqx201106004

    Xun Xueyi, Hu Zeyong, Wu Xuehong, et al. 2011. Comparative analyses of three geopotential height reanalysis data in Qinghai-Xizang Plateau[J]. Plateau Meteorology (in Chinese), 30 (6):1444-1452. http://d.old.wanfangdata.com.cn/Periodical/gyqx201106004
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1348
  • HTML全文浏览量:  87
  • PDF下载量:  1849
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-05
  • 网络出版日期:  2018-05-07
  • 刊出日期:  2019-01-15

目录

    /

    返回文章
    返回