Influence of Offshore Initial Moisture Field and Convection on the Development of Coastal Convection in a Heavy Rainfall Event over South China during the Pre-summer Rainy Season
-
摘要: 本研究在对华南季风降水试验(SCMREX)观测资料分析的基础上,采用数值模拟试验探讨南海北部区域湿度场初值误差和海上对流对2014年5月8日华南沿海地区的一次强降雨过程的中尺度对流系统(MCS)的发展和移动的影响。加密探空和风廓线观测分析表明在珠江口地区有西南风和偏东风急流形成的辐合区,为对流在该地区增强发展提供了条件。增加和减少近海湿度以及关闭积云和微物理过程潜热释放,所造成的温度场以及风场的变化对广东沿海地区的对流的强度和移动路径都有明显的影响。特别是增加海上关键区的湿度,由于海上对流的发展改变了整个区域的环流,抑制了陆地上对流的发展。关闭海上关键区对流过程潜热的释放,导致低空急流到达更加偏北的位置,对流系统在模拟的后期向东北移动。通过这些试验表明,海上的湿度等要素场和对流活动对沿海地区的降雨预报有着十分重要的影响,需要进一步加强海上观测及其资料同化方法。Abstract: This paper utilizes observation data from the SCMREX (Southern China Monsoon Rainfall Experiment) and numerical sensitive simulation experiments to investigate the influence of moisture amount and convection development over the northern South China Sea on MCS (Mesoscale Convective System) of a heavy rainfall event in coastal South China on May 8, 2014.Intensive soundings and wind profiler data reveal that there existed a convergence region formed by the southwesterly and easterly jet in the Pearl River delta, which provided a favorable condition for the development of convection.When the initial relative humidity was increased or decreased in the offshore area, or latent heat released from the cumulus and microphysical processes were turned off, significant effects could be found on the intensity and movement of convection in the coastal area of Guangdong owing to the adjustment of temperature and wind fields.In particular, when increasing offshore initial humidity, prosperous sea convection modified the circulation in the entire simulation area, and suppressed the development of convection over the land.Moreover, if latent heat from cumulus and microphysical processes were turned off, the low-level jet could reach further north, and the convective system moved to the northeast in the later stage.These experiments indicate that the offshore initial moisture field and convection are indeed important for precipitation forecast in the coastal area.Therefore it is necessary to enhance offshore observation and data assimilation method in the future.
-
图 1 2014年5月8日(a)00时(协调世界时,下同)至9日00时24小时观测降雨量(单位:mm),以及(b)05、10、15、20时雷达组合反射率(单位:dBZ)。(a)图中蓝色和红色方块分别表示阳江和珠海观测站位置
Figure 1. (a) Observed accumulative precipitation from 0000 UTC 8 to 0000 UTC 9 May 2014 (units: mm) and (b) composite radar reflectivity at 0500 UTC, 1000 UTC, 1500 UTC, 2000 UTC 8 May (units: dBZ). The blue and red squares in figure (a) indicate the locations of Yangjiang and Zhuhai observation stations, respectively
图 3 2014年5月8日12时的环流形势:(a)500 hPa位势高度(黑色等值线,单位:dagpm)和整层可降水量(阴影,单位:mm);(b) 850 hPa位势高度(黑色等值线,单位:dagpm)和风场(风标,风向杆全风速为4 m s-1)以及对流有效位能(CAPE;阴影,单位:J kg-1)
Figure 3. Synoptic weather pattern at 1200 UTC 8 May 2014: (a) Geopotential height (black isoline, units: dagpm) at 500 hPa and precipitable water (shaded, units: mm); (b) geopotential height (black isoline, units: dagpm), wind field (barbs, full bar represents wind speed of 4 m s-1) at 850 hPa, and convective available potential energy (CAPE; shaded, units: J kg-1)
图 4 (a)2014年5月8日12时阳江站的T-logp图(黑色实线表示温度曲线,蓝色实线为露点温度曲线,单位:℃),(b)2014年5月7日18时至5月9日18时阳江站的探空风廓线(单位:m s-1)
Figure 4. (a) Skew-T/logp diagram at Yangjiang station at 1200 UTC 8 May 2014 (the black line represents the temperature profile while the blue line represents the dew point profile, units: ℃), (b) wind profiles at Yangjiang station from 1800 UTC 7 May to 1800 UTC 9 May, 2014 (units: m s-1)
图 6 2014年5月8日所有试验的模拟日降雨量(黑色实线,单位: mm)和观测的日降雨量(阴影,单位:mm):(a)CNTL试验;(b)CLS试验;(c)RH90试验;(d)RH80试验;(e)RH110试验;(f)RH120试验
Figure 6. Comparisons of simulated daily precipitation (black solid lines, units: mm) for all experiments and observed daily precipitation (shaded, units: mm) on 8 May 2014: (a) CNTL experiment; (b) CLS experiment; (c) RH90 experiment; (d) RH80 experiment; (e) RH110 experiment; (f) RH120 experiment
图 7 014年5月8日所有试验模拟的雷达组合反射率(阴影,单位:dBZ)、地面10 m风场(风标,大于8 m s-1)以及小时雨量(蓝色等值线:间隔10 mm):(a)CNTL试验;(b)RH90试验;(c)RH80试验;(d)RH110试验;(e)RH120试验;(f)CLS试验
Figure 7. Composite radar reflectivity (shaded, units: dBZ), hourly rainfall (blue lines, interval: 10 mm), and surface wind at 10 m (barbs, > 8m s-1) simulated by all experiments on 8 May 2014 : (a) CNTL; (b) RH90; (c) RH80; (d) RH110; (e) RH120; (f) CLS
图 8 5月8日07时对照试验与RH90(左列)、RH80(右列)试验的(a、b)925 hPa及(c、d)850 hPa温度场(阴影,单位:℃)、风场(风标,单位:m s-1)差值。紫色等值线表示RH90、RH80试验与对照试验散度差负值(间隔3×10-5 s-1)
Figure 8. Differences (CNTL-RH90/80) in temperature (shaded, units: ℃) and wind (barbs, units: m s-1) between CNTL and RH90 (RH80) experiments at 0700 UTC 8 May. Left panel represents RH90, and right panel represents RH80. Top and bottom panels are for (a, b) 925 hPa and (c, d) 850 hPa, respectively. Purple contours represent the convergence regions of RH90 and RH80 experiments relative to that of the control experiment (intervals: 3×10-5 s-1)
图 9 5月8日07时对照试验与RH110(左列)、RH120(右列)试验的(a、b)925 hPa及(c、d)400 hPa温度场(阴影,单位:℃)和风场(风标,单位:m s-1)差值,925 hPa紫色等值线同图 8,表示敏感试验相对于对照试验的辐合区,400 hPa则为对应的辐散区
Figure 9. Differences (CNTL-RH110/120) in temperature (shaded, units: ℃) and wind (barbs, units: m s-1) between CNTL and RH110 (RH120) experiments at 0700 UTC 8 May. Left panel represents RH90, and right panel represents RH80. The top and bottom panels depict results at (a, b) 925 hPa and (c, d) 400 hPa, respectively. Purple contours at 925 hPa are the same as in Fig. 8, while those at 400 hPa represent divergence regions
图 10 5月8日09时对照试验与CLS试验的温度(阴影,单位:℃)、风场(风标,单位:m s-1)差值以及对照试验与CLS试验差值的相对辐合区(等值线,等值线间隔:3×10-5 s-1):(a)925 hPa;(b)500 hPa。模拟的SLP(阴影,单位:hPa),CNTL-CLS试验SLP之差(等值线, 单位: hPa):(c)8日09时, 叠加CLS试验SLP;(d)8日16时,叠加CNTL试验SLP
Figure 10. Differences (CNTL-CLS) in temperature (shaded, units: ℃), wind (barbs, units: m s-1) between CNTL and CLS experiments and convergence regions of CLS relative to CNTL experiment (contours, intervals: 3×10-5 s-1) at 0900 UTC 8 May: (a) 925 hPa; (b) 500 hPa. SLP (shaded, units: hPa) and SLP differences between CLS and CNTL (CNTL-CLS, contours, units: hPa): (c) 0900 UTC 8 May (shaded areas indicate SLP in CLS); (d) 1600 UTC 8 May (shaded areas indicate SLP in CNTL)
表 1 试验方案
Table 1. Configuration of the numerical experiments
试验名称 试验方案 CNTL 对照试验 RH90 海上关键区内初始场水汽整层降低10% RH80 海上关键区内初始场水汽整层降低20% RH110 海上关键区内初始场水汽整层增加10% RH120 海上关键区内初始场水汽整层增加20% CLS 关闭海上关键区内积云与微物理过程潜热和感热释放 -
[1] Anthes R A, Kuo Y H, Baumhefner D P, et al. 1985. Predictability of mesoscale atmospheric motions[J]. Adv. Geophys., 28:159-202, doi: 10.1016/S0065-2687(08)60188-0. [2] Bei N F, Zhang F Q. 2007. Impacts of initial condition errors on mesoscale predictability of heavy precipitation along the Mei-Yu front of China[J]. Quart. J. Roy. Meteor. Soc., 133 (622):83-99, doi: 10.1002/qj.20. [3] Charney J G, Eliassen A. 1964. On the growth of the hurricane depression[J]. J. Atmos. Sci., 21 (1):68-75, doi:10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2. [4] Ciesielski P E, Johnson R H. 2006. Contrasting characteristics of convection over the northern and southern South China Sea during SCSMEX[J]. Mon. Wea. Rev., 134 (4):1041-1062, doi: 10.1175/MWR3113.1. [5] Cintineo R M, Stensrud D J. 2013. On the predictability of supercell thunderstorm evolution[J]. J. Atmos. Sci., 70 (7):1993-2011, doi: 10.1175/JAS-D-12-0166.1. [6] 丁治英, 刘彩虹, 沈新勇. 2011. 2005~2008年5、6月华南暖区暴雨与高、低空急流和南亚高压关系的统计分析[J].热带气象学报, 27 (3):307-316. doi: 10.3969/j.issn.1004-4965.2011.03.003Ding Zhiying, Liu Caihong, Shen Xinyong. 2011. Statistical analysis of the relationship among warm sector heavy rainfall, upper and lower tropospheric jet stream and South Asia high in May and June from 2005 to 2008[J]. Journal of Tropical Meteorology (in Chinese), 27 (3):307-316, doi: 10.3969/j.issn.1004-4965.2011.03.003. [7] 广东气象局《广东省天气预报技术手册》编写组. 2006.广东省天气预报技术手册[M].北京:气象出版社.Guangdong Meteorological Bureau, "The Weather Forecast Technical Manuals in Guangdong Province" Writing Group. 2006. The Weather Forecast Technical Manuals in Guangdong Province (in Chinese)[M]. Beijing:China Meteorological Press. [8] 黄士松, 《华南前汛期暴雨》编写组. 1986.华南前汛期暴雨[M].广州:广东科技出版社.Huang Shisong, "Heavy Rainfall during Pre-rainy Season in South China" Writing Group. 1986. Heavy Rainfall during Pre-rainy Season in South China (in Chinese)[M]. Guangzhou:Guangdong Science and Technology Press. [9] 梁必骐. 1997. "94.6"珠江流域特大暴雨洪涝特征分析[J].中国减灾, 7 (4):21-24. https://mall.cnki.net/lunwen-1016195036.htmlLiang Biqi. 1997. Characteristics analysis of "94.6" heavy rainstorm and flood over Pearl River basin[J]. Disaster Reduction in China (in Chinese), 7 (4):21-24. https://mall.cnki.net/lunwen-1016195036.html [10] 柳艳菊, 丁一汇. 2005. 1998年南海季风爆发时期中尺度对流系统的研究Ⅱ:中尺度对流系统对大尺度场的作用[J].气象学报, 63 (4):443-454. doi: 10.11676/qxxb2005.044Liu Yanju, Ding Yihui. 2005. A study on the meso-scale convective systems during summer monsoon onset over the South China Sea in 1998 Ⅱ:Effect of the meso-scale convective systems on large-scale fields[J]. Acta Meteor. Sinica (in Chinese), 63 (4):443-454, doi: 10.11676/qxxb2005.044. [11] 柳艳菊, 丁一汇, 赵南. 2005. 1998年南海季风爆发时期中尺度对流系统的研究Ⅰ:中尺度对流系统发生发展的大尺度条件[J].气象学报, 63 (4):431-442. doi: 10.11676/qxxb2005.043Liu Yanju, Ding Yihui, Zhao Nan. 2005. A study on the meso-scale convective systems during summer monsoon onset over the South China Sea in 1998 Ⅰ:Analysis of large-scale fields for occurrence and development of meso-scale convective systems[J]. Acta Meteor. Sinica (in Chinese), 63 (4):431-442, doi:10.11676/qxxb2005. 043. [12] Luo Y L, Chen Y R X. 2015. Investigation of the predictability and physical mechanisms of an extreme-rainfall-producing mesoscale convective system along the Meiyu front in East China:An ensemble approach[J]. J. Geophys. Res., 120 (20):10593-10618, doi: 10.1002/2015JD023584. [13] Luo Y L, Zhang R H, Wan Q L, et al. 2017. The southern China monsoon rainfall experiment (SCMREX)[J]. Bull. Amer. Meteor. Soc., 98 (5):999-1013, doi: 10.1175/BAMS-D-15-00235.1. [14] 麦健华, 于玲玲, 方宇凌, 等. 2016. 2014年5月广东连续两次暴雨过程对比分析[J].广东气象, 38 (2):1-5. doi: 10.3969/j.issn.1007-6190.2016.02.001Mai Jianhua, Yu Lingling, Fang Yuling, et al. 2016. Comparing and analyzing two consecutive heavy rains over Guangdong Province in May 2014[J]. Guangdong Meteorology (in Chinese), 38 (2):1-5, doi:10.3969/j.issn.1007-6190. 2016.02.001. [15] Ooyama K. 1964. A dynamical model for the study of tropical cyclone development[J]. Geophys. Int., 4:187-198. http://www.oalib.com/references/13163939 [16] Stensrud D J, Wicker L J. 2004. On the predictability of mesoscale convective systems[C]//Preprints, AMOS 11th National Conference. Brisbane, Australia: Australian Meteorological and Oceanographic Society (AMOS), 62-67. https://ams.confex.com/ams/12meso/techprogram/paper_125995.htm [17] 孙健, 赵平, 周秀骥. 2002.一次华南暴雨的中尺度结构及复杂地形的影响[J].气象学报, 60 (3):333-342. doi: 10.11676/qxxb2002.040Sun Jian, Zhao Ping, Zhou Xiuji. 2002. The mesoscale structure of a South China rainstorm and the influence of complex topography[J]. Acta Meteor. Sinica (in Chinese), 60 (3):333-342, doi: 10.11676/qxxb2002.040. [18] 孙建华, 赵思雄. 2000.一次罕见的华南大暴雨过程的诊断与数值模拟研究[J].大气科学, 24 (3):381-392. doi: 10.3878/j.issn.1006-9895.2000.03.10Sun Jianhua, Zhao Sixiong. 2000. A diagnosis and simulation study of a strong heavy rainfall in South China[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 24 (3):381-392, doi: 10.3878/j.issn.1006-9895.2000.03.10. [19] 孙建华, 赵思雄. 2002.华南"94.6"特大暴雨的中尺度对流系统及其环境场研究Ⅰ.引发暴雨的β中尺度对流系统的数值模拟研究[J].大气科学, 26 (4):541-557. doi: 10.3878/j.issn.1006-9895.2002.04.11Sun Jianhua, Zhao Sixiong. 2002. A study of mesoscale convective systems and its environmental fields during the June 1994 record heavy rainfall of South China. Part Ⅰ:A numerical simulation study of meso-β convective system inducing heavy rainfall[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26 (4):541-557, doi:10.3878/j.issn. 1006-9895.2002.04.11. [20] 孙建华, 郑淋淋, 赵思雄. 2014.水汽含量对飑线组织结构和强度影响的数值试验[J].大气科学, 38 (4):742-755. doi: 10.3878/j.issn.1006-9895.2013.13187Sun Jianhua, Zheng Linlin, Zhao Sixiong. 2014. Impact of moisture on the organizational mode and intensity of squall lines determined through numerical experiments[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38 (4):742-755, doi: 10.3878/j.issn.1006-9895.2013.13187. [21] Wandishin M S, Stensrud D J, Mullen S L, et al. 2008. On the predictability of mesoscale convective systems:Two-dimensional simulations[J]. Wea. Forecasting, 23 (5):773-785, doi: 10.1175/2008WAF2007057.1. [22] Wandishin M S, Stensrud D J, Mullen S L, et al. 2010. On the predictability of mesoscale convective systems:Three-dimensional simulations[J]. Mon. Wea. Rev., 138 (3):863-885, doi: 10.1175/2009MWR2961.1. [23] Wang H, Luo Y L, Jou B J D. 2014. Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX:Observational analysis[J]. J. Geophys. Res., 119 (23):13206-13232, doi: 10.1002/2014JD022339. [24] Wu D C, Meng Z Y, Yan D C. 2013. The predictability of a squall line in South China on 23 April 2007[J]. Adv. Atmos. Sci., 30 (2):485-502, doi: 10.1007/s00376-012-2076-x. [25] Wu M W, Luo Y L. 2016. Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015[J]. J. Meteor. Res., 30 (5):719-736, doi: 10.1007/s13351-016-6089-8. [26] 夏茹娣, 赵思雄, 孙建华. 2006.一类华南锋前暖区暴雨β中尺度系统环境特征的分析研究[J].大气科学, 30 (5):988-1008. doi: 10.3878/j.issn.1006-9895.2006.05.26Xia Rudi, Zhao Sixiong, Sun Jianhua. 2006. A study of circumstances of meso-β-scale systems of strong heavy rainfall in warm sector ahead of fronts in South China[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30 (5):988-1008, doi: 10.3878/j.issn.1006-9895.2006.05.26. [27] Zhang F Q, Odins A M, Nielsen-Gammon J W. 2006. Mesoscale predictability of an extreme warm-season precipitation event[J]. Wea. Forecasting, 21 (2):149-166, doi: 10.1175/WAF909.1. [28] Zhang F Q, Bei N F, Rotunno R, et al. 2007. Mesoscale predictability of moist baroclinic waves:Convection-permitting experiments and multistage error growth dynamics[J]. J. Atmos. Sci., 64 (10):3579-3594, doi: 10.1175/JAS4028.1. [29] 张庆红, 刘启汉, 王洪庆, 等. 2000.华南梅雨锋上中尺度对流系统的数值模拟[J].科学通报, 45 (18):1988-1992. doi: 10.1007/BF03183534Zhang Qinghong, Lau K H, Wang Hongqing, et al. 2000. Numerical simulation on mesoscale convective system along Mei-Yu front in southern China[J]. Chinese Science Bulletin, 45 (22):2093-2096, doi: 10.1007/BF03183534. [30] Zhao S X, Bei N F, Sun J H. 2007. Mesoscale analysis of a heavy rainfall event over Hong Kong during a pre-rainy season in South China[J]. Adv. Atmos. Sci., 24 (4):555-572, doi: 10.1007/s00376-007-0555-2. [31] 周秀骥, 薛纪善, 陶祖钰, 等. 2003. 98华南暴雨科学试验研究[M].北京:气象出版社, 220pp.Zhou Xiuji, Xue Jishan, Tao Zuyu, et al. 2003. Heavy Rainfall Experiment in South China during Pre-summer Rainy Season (HUAMEX), 1998 (in Chinese)[M]. Beijing:China Meteorological Press, 220pp. -