Estimation of Minimum Canopy Resistance by EC Data and Its Application in the Interpolation of Latent Heat Flux
-
摘要: 准确估计水热通量对于认识和理解地气交换与水循环变化过程具有重要意义。利用Penman-Monteith(P-M)模型计算季节尺度水热通量变化的不确定性很大程度上依赖于与冠层变化相关的最小冠层阻力参数,但模型中通常将其设为定值。为此,本文基于多年通量观测采用分段与整体相结合的迭代算法拟合出最小冠层阻力的季节分布。以湖南省宁乡通量观测站为例,针对2012~2015年观测拟合计算最小冠层阻力的季节分布曲线,并利用2016年通量数据进行独立数据验证。结果表明:最小冠层阻力曲线具有鲜明夏低冬高的季节变化特征;利用拟合的具有季节分布的最小冠层阻力改进潜热通量计算,独立数据验证表明其该方法的合理性;相比于原阻力方案得出的潜热模拟结果,其在相关系数、均方根误差和一致性指数都有改进;此外,将该估计方法应用于水热通量的数据插补,较常规统计插补方法,其插补稳定性不随连续缺失数据的增加而降低,而且还能通过模型的微分误差分析量化由于数据输入带来的插补不确定性,在保持通量数据完整性的同时也为数据应用场景提供科学依据。
-
关键词:
- Penman-Monteith模型 /
- 最小冠层阻力 /
- 潜热通量 /
- 数据插补
Abstract: Accurate latent heat flux estimation is important for land-atmosphere exchange and water cycle research. The seasonal uncertainty of latent heat flux simulation by Penman-Monteith equation is caused by the minimum canopy resistance, which varies with various canopy conditions but is often set to a fixed value in present modeling studies. To solve the problem, the seasonal curve of the minimum canopy resistance is fitted based on an integral and piecewise fitting method which velies on multi-year measurements of EC (Eddy Covariance) flux. The Ningxiang flux station is taken as an example. Flux data from 2012-2015 are used to fit the seasonal curve of the minimum canopy resistance, and data from 2016 is used to verify the simulated results. It is found that the minimum canopy resistance has a seasonal variation, which is lower in the summer and higher in the winter. The modified simulation shows better results by applying seasonally varying minimum canopy resistance. Also the correlation coefficient, root mean square error and agreement of index are better than those using the original canopy resistance scheme. The modified scheme is then used to interpolate the missing data. Results indicate that the modified scheme is more stable than the traditional interpolating method, and the uncertainty of the input data can be determined by the differential equation. This research is helpful to keep flux data complete, and to provide scientific basis for the data application.-
Key words:
- Penman-Monteith model /
- Minimum canopy resistance /
- Latent heat flux /
- Data interpolation
-
图 6 改进前后潜热通量实测与模拟值比较:(a)原始模拟与实测1:1线;(b)改进后模拟值与实测1:1线。红线为所有模拟值的回归线,蓝线为1:1线;黑点为2012~2015年模拟点,蓝点为2016年数据验证点;whole、day、night分别表示全天、白天和夜间
Figure 6. Latent heat flux comparison between measurements and simulations: (a) 1:1 line diagram between raw simulated data and measured data; (b) 1:1 line diagram between corrected simulated data and measured data. The red line is for the regression line of all data, the blue line is for 1:1 line; black dots indicate simulated data 2012–2015 and blue dots indicate data verified in 2016; whole, day, night each represent the wole day, the daytime and nighttime
表 1 参数初值及限制区间
Table 1. Initial parameters and their limitation ranges
参数 初值 限制区间 参数拟合值 a1 500 [0, 1000] 42.67 a2 0.1 [0, 1] 1.00 a3 0.1 [0, 1] 0.99 a4 0.1 [0, 3] 1.31 表 2 改进前后模拟与实测的统计量
Table 2. Statistics of simulations and measurements
相关系数(R) 均方根误差(RMSE) 一致性指数(IA) 全天 昼 夜 全天 昼 夜 全天 昼 夜 2012~2015年 改进前 0.81 0.78 -0.13 62.01 76.00 31.26 0.89 0.86 -0.3 改进后 0.86 0.83 0.1 58.46 71.80 28.65 0.91 0.89 0.26 2016年 改进前 0.77 0.76 -0.07 75.58 89.25 46.14 0.89 0.83 0.09 改进后 0.84 0.77 0.20 70.22 88.93 17.99 0.90 0.83 0.17 表 3 插补方案描述
Table 3. Description of different interpolation methods
插补方法 方案描述 非线性差值法 采用包含缺失数据在内的相邻11个数据点3次样条差值,插补缺失数据 日变化趋势插补法 基于单日数据,采用7次线性拟合通量日变化特征,缺失数据采用拟合值替代 查表法 采用辐射与温度相近原则,从已知数据中遴选最相近的数据以替代缺失数据 -
[1] Alapaty K, Pleim J E, Raman S, et al. 1997. Simulation of atmospheric boundary layer processes using local-and nonlocal-closure schemes[J]. J. Appl. Meteor., 36 (3):214-233, doi:10.1175/1520-0450(1997)036<0214:SOABLP>2.0.CO;2. [2] Alfieri J G, Niyogi D, Blanken P D, et al. 2008. Estimation of the minimum canopy resistance for croplands and grasslands using data from the 2002 international H2O project[J]. Mon. Wea. Rev., 136 (11):4452-4469, doi: 10.1175/2008MWR2524.1. [3] Bie W, Casper M C, Reiter P, et al. 2015. Surface resistance calibration for a hydrological model using evapotranspiration retrieved from remote sensing data in Nahe catchment forest area[J]. Proceedings of the International Association of Hydrological Sciences, 368:81-86, doi: 10.5194/piahs-368-81-2015. [4] Chen Fei, Dudhia J. 2001. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part Ⅰ:Model implementation and sensitivity[J]. Mon. Wea. Rev., 129 (4):569-585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2. [5] 陈志忠. 2016.焉耆盆地冬小麦生育期蒸散量估算研究[J].水利技术监督, 24 (5):74-76, 115. doi: 10.3969/j.issn.1008-1305.2016.05.026Chen Zhizhong. 2016. Evapotranspiration estimation of growing period of winter wheat in Yan Qi basin[J]. Technical Supervision in Water Resources (in Chinese), 24 (5):74-76, 115, doi: 10.3969/j.issn.1008-1305.2016.05.026. [6] Cooter E J, Schwede D B. 2000. Sensitivity of the National Oceanic and Atmospheric Administration multilayer model to instrument error and parameterization uncertainty[J]. J. Geophys. Res., 105 (D5):6695-6707, doi: 10.1029/1999JD901080. [7] Douglas E M, Jacobs J M, Sumner D M, et al. 2009. A comparison of models for estimating potential evapotranspiration for Florida land cover types[J]. J. Hydrol., 373 (3-4):366-376, doi: 10.1016/j.jhydrol.2009.04.029. [8] Ershadi A, McCabe M F, Evans J P, et al. 2015. Impact of model structure and parameterization on Penman-Monteith type evaporation models[J]. J. Hydrol., 525:521-535, doi: 10.1016/j.jhydrol.2015.04.008. [9] Fang Q X, Ma L, Flerchinger G N, et al. 2014. Modeling evapotranspiration and energy balance in a wheat-maize cropping system using the revised RZ-SHAW model[J]. Agricultural and Forest Meteorology, 194:218-229, doi: 10.1016/j.agrformet.2014.04.009. [10] Foken T, Wichura B. 1996. Tools for quality assessment of surface-based flux measurements[J]. Agricultural and Forest Meteorology, 78 (1-2):83-105, doi: 10.1016/0168-1923(95)02248-1. [11] Irmak S, Kilic A, Chatterjee S. 2014. On the equality assumption of latent and sensible heat energy transfer coefficients of the Bowen ratio theory for evapotranspiration estimations:Another look at the potential causes of inequalities[J]. Climate, 2(3):181-205, doi: 10.3390/cli2030181. [12] Jarvis P G. 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J]. Philos. Trans. Roy. Soc. London, 273(927):593-610, doi: 10.1098/rstb.1976.0035. [13] Jia B H, Xie Z H, Zeng Y J, et al. 2015. Diurnal and seasonal variations of CO2 fluxes and their climate controlling factors for a subtropical forest in Ningxiang[J]. Advances in Atmospheric Sciences, 32 (4):553-564, doi: 10.1007/s00376-014-4069-4. [14] Kişi Ö. 2006. Daily pan evaporation modelling using a neuro-fuzzy computing technique[J]. J. Hydrol., 329 (3-4):636-646, doi: 10.1016/j.jhydrol.2006.03.015. [15] Kumar A, Chen Fei, Barlage M, et al. 2014. Assessing impacts of integrating MODIS vegetation data in the weather research and forecasting (WRF) model coupled to two different canopy-resistance approaches[J]. Journal of Applied Meteorology and Climatology, 53 (6):1362-1380, doi: 10.1175/JAMC-D-13-0247.1. [16] Lee X H, William M, Beverly L. 2004. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis[M]. New York: Spring-Verlag, 250pp. [17] 李俊, 韩凤明, 同小娟, 等. 2014.麦田蒸散模型的改进及其对阻力参数的敏感性分析[J].中国农业气象, 35 (6):635-643. doi: 10.3969/j.issn.1000-6362.2014.06.005Li Jun, Han Fengming, Tong Xiaojuan, et al. 2014. Evapotranspiration models for a winter wheat field:The improvements and analyses on their sensitivities to the resistance parameters[J]. Chinese Journal of Agrometeorology (in Chinese), 35 (6):635-643, doi: 10.3969/j.issn.1000-6362.2014.06.005. [18] 刘斌, 胡继超, 张雪松, 等. 2014.稻田逐时蒸散量的测定及其模拟方法的比较[J].灌溉排水学报, 33 (4):369-373. doi: 10.13522/j.cnki.ggps.2014.04/05.079Liu Bin, Hu Jichao, Zhang Xuesong, et al. 2014. Measurement simulation of hourly evapotranspiration in paddy field with different methods[J]. Journal of Irrigation and Drainage (in Chinese), 33 (4):369-373, doi: 10.13522/j.cnki.ggps.2014.04/05.079. [19] 刘斌, 胡继超, 赵秀兰, 等. 2015.应用Penman-Monteith模型估算稻田蒸散的误差分析[J].中国农业气象, 36 (1):24-32. doi: 10.3969/j.issn.1000-6362.2015.01.004Liu Bin, Hu Jichao, Zhao Xiulan, et al. 2015. Error analysis on evapotranspiration estimation of paddy rice field by Penman-Monteith model[J]. Chinese Journal of Agrometeorology (in Chinese), 36 (1):24-32, doi: 10.3969/j.issn.1000-6362.2015.01.004. [20] 刘春伟, 曾勰婷, 邱让建. 2016.用分时段修正双源模型估算南京地区冬小麦生育期蒸散量[J].农业工程学报, 32 (S1):80-87. doi: 10.11975/j.issn.1002-6819.2016.z1.012Liu Chunwei, Zeng Xieting, Qiu Rangjian. 2016. Simulated total evapotranspiration of winter wheat with modified Shuttle worth-Wallace model in different stages in Nanjing[J]. Transactions of the Chinese Society of Agricultural Engineering (in Chinese), 32(S1):80-87, doi: 10.11975/j.issn.1002-6819.2016.z1.012. [21] Meesters A G C A, Vugts H F. 1996. Calculation of heat storage in stems[J]. Agricultural and Forest Meteorology, 78 (3-4):181-202, doi: 10.1016/0168-1923(95)02251-1. [22] Mu Qiaozhen, Zhao Maosheng, Running S W. 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115 (8):1781-1800, doi:10.1016/j.rse. 2011.02.019. [23] Ortega-Farias S, Carrasco M, Olioso A, et al. 2007. Latent heat flux over Cabernet Sauvignon vineyard using the Shuttleworth and Wallace model[J]. Irrigation Science, 25 (2):161-170, doi: 10.1007/s00271-006-0047-7. [24] Shi C X, Jiang L P, Zhang T, et al. 2014. Status and plans of CMA land data assimilation system (CLDAS) project[C]//EGU General Assembly Conference Abstracts. Vienna, Austria: EGU, 5671. [25] Shuttleworth W J, Wallace J S. 1985. Evaporation from sparse crops-an energy combination theory[J]. Quart. J. Roy. Meteor. Soc., 111 (469):839-855, doi: 10.1002/qj.49711146910. [26] Xie Zhenghui, Wang Linying, Jia Binghao, et al. 2016. Measuring and modeling the impact of a severe drought on terrestrial ecosystem CO2 and water fluxes in a subtropical forest[J]. J. Geophys. Res., 121 (10):2576-2587, doi: 10.1002/2016JG003437. -