高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

论东亚夏季风的特征、驱动力与年代际变化

丁一汇 司东 柳艳菊 王遵娅 李怡 赵亮 宋亚芳

丁一汇, 司东, 柳艳菊, 王遵娅, 李怡, 赵亮, 宋亚芳. 论东亚夏季风的特征、驱动力与年代际变化[J]. 大气科学, 2018, 42(3): 533-558. doi: 10.3878/j.issn.1006-9895.1712.17261
引用本文: 丁一汇, 司东, 柳艳菊, 王遵娅, 李怡, 赵亮, 宋亚芳. 论东亚夏季风的特征、驱动力与年代际变化[J]. 大气科学, 2018, 42(3): 533-558. doi: 10.3878/j.issn.1006-9895.1712.17261
Yihui DING, Dong SI, Yanju LIU, Zunya WANG, Yi LI, Liang ZHAO, Yafang SONG. On the Characteristics, Driving Forces and Inter-decadal Variability of the East Asian Summer Monsoon[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(3): 533-558. doi: 10.3878/j.issn.1006-9895.1712.17261
Citation: Yihui DING, Dong SI, Yanju LIU, Zunya WANG, Yi LI, Liang ZHAO, Yafang SONG. On the Characteristics, Driving Forces and Inter-decadal Variability of the East Asian Summer Monsoon[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(3): 533-558. doi: 10.3878/j.issn.1006-9895.1712.17261

论东亚夏季风的特征、驱动力与年代际变化

doi: 10.3878/j.issn.1006-9895.1712.17261
基金项目: 

公益性行业(气象)科研专项项目 GYHY201406001

国家重点基础研究发展计划(973计划)项目 2012CB417205

国家重点基础研究发展计划(973计划)项目 2013CB430202

国家自然科学基金项目 41790471

详细信息
    作者简介:

    丁一汇, 男, 1938年出生, 研究员, 主要从事亚洲季风、气候变化和中国灾害性天气气候等方面的研究。E-mail:dingyh@cma.gov.cn

  • 中图分类号: P466

On the Characteristics, Driving Forces and Inter-decadal Variability of the East Asian Summer Monsoon

Funds: 

Special Scientific Research Fund of Meteorological Public Welfare Profession of China GYHY201406001

National Basic Research Program of China (973 Program) 2012CB417205

National Basic Research Program of China (973 Program) 2013CB430202

National Natural Science Foundation of China 41790471

  • 摘要: 本文是以新的资料和研究结果对东亚夏季风的基本特征、驱动力和年代际变化所作的重新分析与评估。内容包括四个部分:(1)东亚夏季风的基本特征;(2)东亚夏季风的驱动力;(3)东亚夏季风的年代际变率与原因;(4)东亚夏季风与全球季风的关系。结果表明:东亚夏季风是亚洲夏季风的一个重要有机部分,主要由来源于热带的季风气流组成,并随季节由南向北呈阶段性推进,它是形成夏季东亚天气与气候的主要环流和降水系统。驱动夏季风的主要强迫有三部分:外部强迫、耦合强迫与内部变率,其中人类活动引起的外强迫(气候变暖、城市化、气溶胶增加等)是新出现的外强迫,它正不断改变着东亚夏季风的特征与演变趋势。海洋与陆面耦合强迫作为自然因子是引起东亚夏季风年际和年代际变化的主要原因,其中太平洋年代尺度振荡(PDO)与北大西洋多年代尺度振荡(AMO)的协同作用是造成东亚夏季风30~40年周期振荡的主要原因。1960年代以后,东亚夏季风经历了强—弱—强的年代际变化,相应的中国东部夏季降水型出现了“北多南少”向“南涝北旱”以及“北方渐增”的转变。最近的研究表明,上述东亚夏季风年代际变化与整个亚非夏季风系统的变化趋势是一致的。在本世纪主要受气候变暖的影响,夏季风雨带将持续北移,中国北方和西部地区出现持续性多雨的格局。最后本文指出,亚非夏季风系统相比于其他区域季风系统更适合全球季风的概念。
  • 图  1  1981~2010年气候平均的(a)夏季(6~8月)和(b)冬季(11月至次年2月)850 hPa风场分布(单位:m s-1)。空白区表示高度超过1500 m

    Figure  1.  Climatologically averaged (1981-2010) wind field distributions at 850 hPa in (a) summer (June to August) and (b) winter (December to February) (units: m s-1). The clear areas denote regions with elevation above 1500 m

    图  2  1981~2010年气候平均的(a)夏季(6~8月)和(b)冬季(11月至次年2月)整层积分(1000~300 hPa)的水汽输送通量分布(单位:kg m−1 s−1),阴影已表示100 kg m−1 s−1以上

    Figure  2.  Climatologically averaged (1981−2010) vertically integrated moisture transport flux (units: kg m−1 s−1) distributions from 1000 hPa to 300 hPa in (a) summer (June to August) and (b) winter (December to February). The areas with moisture transport above 100 kg m−1 s−1 are shaded

    图  3  1981~2010年气候平均的(a)夏季(6~8月)和(b)冬季(12月至次年2月)200 hPa纬向风的气候态分布(单位:m s−1),阴影区表示20 m s−1以上风速

    Figure  3.  Climatologically averaged (1981–2010) zonal wind distributions at 200 hPa in (a) summer (June to August) and (b) winter (December to February) (units: m s−1). The areas with the wind speed above 20 m s−1 are shaded

    图  4  1981~2010年气候平均的东亚地区(105°–120°E)(a)4月和(b)6月纬向风的纬度—高度剖面(单位:m s−1

    Figure  4.  Latitude–height cross sections of climatologically averaged (1981–2010) zonal wind in (a) April and (b) June over East Asia (along 105°–120°E) (units: m s−1)

    图  5  1981~2010年气候平均的东亚地区(105°~120°E)夏季风经圈垂直环流

    Figure  5.  Climatologically averaged (1981–2010) meridional-vertical circulation of summer monsoon over East Asia (along105°–120°E)

    图  6  1981~2010年气候平均的5~9月东亚地区(105°~120°E)(a)850 hPa风场(单位:m s−1)、(b)200 hPa风场(单位:m s−1,阴影区表示西风)及(c)整层积分水汽输送通量(单位:kg m-1 s−1)的纬度—时间剖面

    Figure  6.  Latitude–time cross sections (along 105°–120°E) of climatologically averaged (1981–2010) (a) 850 hPa wind field (units: m s−1), (b) 200 hPa wind field (units: m s−1, the shaded areas denote the westerlies) and (c) vertically integrated moisture transport fluxes (units: kg m-1 s−1) over East Asia

    图  7  1981~2010年气候平均的3月至11月(a)南亚地区和(b)东亚地区日平均降水量的纬度—时间剖面(单位:mm)。阴影区表示日降水量在6 mm以上;南亚地区:70°~80°E;东亚地区:105°~120°E

    Figure  7.  Latitude–time cross sections of climatologically averaged (1981–2010) daily mean precipitation over (a) South Asia and (b) East Asia during March to November (units: mm). The regions with precipitation amount above 6 mm are shaded; South Asia: 70°–80°E; East Asia: 105°–120°E

    图  8  1981~2010年气候平均的沿117.5°E的梅雨锋垂直结构。黄色实线是等$ {\theta _{{\rm{se}}}}$线(单位:K);蓝色虚线是等比湿线(单位:kg kg−1);底端水平红色粗实线代表梅雨区南北范围

    Figure  8.  Climatologically averaged (1981−2010) Meiyu frontal vertical structure along 117.5°E. The yellow solid lines are isolines of potential pseudo-temperature ($ {\theta _{{\rm{se}}}}$, units: K), and blue dashed lines are isolines of specific humidity (units: kg kg−1). The horizontal bar at the bottom represents the latitudinal range of Meiyu area

    图  9  1981~2010年气候平均的5~9月东亚地区(105°~120°E),850 hPa $ {\theta _{{\rm{se}}}}$纬度—时间剖面(单位:K),阴影区表示$ {\theta _{{\rm{se}}}}$≥340 K

    Figure  9.  Latitude–time cross section of climatologically averaged (1981–2010) potential pseudo-temperature ($ {\theta _{{\rm{se}}}}$) at 850 hPa over East Asia (along 105°– 120°E) during May to September (units: K). The regions with $ {\theta _{{\rm{se}}}}$ greater than or equal to 340 K are shaded

    图  10  1948~2017年东亚夏季风强度指数的变化,蓝色线为气候平均值。[根据Zhang et al.(1996)的定义]

    Figure  10.  East Asian summer monsoon intensity index from1948 to 2017. The blue curve denotes the climatological value. [Estimated by the method proposed by Zhang et al. (1996)]

    图  11  多种资料计算得到的1948~2016年东亚夏季风强度指数的变化:(a)NCEP/NCAR再分析资料;(b)Hadley中心;(c)NCEP/DOE再分析资料;(d)ERA-Interim再分析资料。[根据施能等(1996)的定义]

    Figure  11.  East Asian summer monsoon intensity index from1948 to 2016 estimated by different datasets: (a) NCEP/NCAR reanalysis data; (b) Hadley Center data; (c) NCEP/DOE reanalysis data; (d) ERA-Interim reanalysis data. [Estimated by the method of Shi et al. (1996)]

    图  12  1961~2015年中国东部(105°~120°E)年代际滤波后夏季降水(单位:mm d-1)标准化值的纬度—时间剖面

    Figure  12.  Latitude–time cross section of the decadal-filtered and normalized summer rainfall (unites: mm d-1) in East China along 105°–120°E during 1961–2015

    图  13  1961~2015年中国(a)华南、(b)长江中下游、(c)华北和(d)东北地区夏季降水量(单位:mm)的演变。粗实线为年代际滤波值

    Figure  13.  Summer rainfall (units: mm) over (a) South China, (b) the middle and lower reaches of the Yangtze River, (c) North China, and (d) Northeast China during 1961 to 2015. Solid curves denote decadal-filtered values in these regions

    图  14  1961~2015年东亚夏季风区(20°~40°N,105°~130°E)观测的降水量经验正交分解(EOF)的主模态和时间系数:(a,b)第一模态;(c,d)第二模态;(e,f)第三模态。图中红实线为时间系数的5年滑动平均值

    Figure  14.  Leading modes and time series of observed precipitation over the East Asian monsoon region (20°–40°N, 105°–130°E) via empirical orthogonal decomposition method: (a, b) The first mode; (c, d) the second mode; (e, f) the third mode. Red curves represent 5-year smoothed time series

    图  15  1901~2014年亚非夏季风区降水量EOF(a)第一模态(填色代表降水对时间系数的回归分布,单位:mm d-1),(b)对应的标准化时间系数PC1(灰色实线代表标准化时间系数的11年滑动平均)。

    Figure  15.  Spatial pattern of (a) the first EOF mode of monthly mean precipitation during 1901–2014 (shadings indicate regression coefficients of time series against precipitation; units: mm d-1) and (b) its normalized time coefficient (PC1). The gray line shows the 11-point smoothing of the normalized PC.

    图  16  东亚夏季风区多模式模拟集合平均的降水异常时间序列(单位:mm d-1),相对参考时段为1971~2000年平均,基于CMIP5多模式逐月输出资料。灰实线:历史气候模拟试验(Historical),24个模式,1901~2005年;绿实线:未来低辐射强迫情景试验(RCP2.6),20个模式,2006~2099年;蓝实线:未来中等偏低辐射强迫情景试验(RCP4.5),24个模式,2006~2099年;红实线:未来高辐射强迫情景试验(RCP8.5),24个模式,2006~2099年

    Figure  16.  Multi-model ensemble mean of precipitation anomalies (units: mm d-1) based on CMIP5 multi-model monthly outputs and with respect to the reference period over 1971–2000. Gray curve: Historical simulation, 24 models, 1901–2005; green curve: RCP2.6 scenario, 20 models, 2006–2099; blue curve: RCP4.5 scenario, 24 models, 2006–2099; red curve: RCP8.5 scenario, 24 models, 2006–2099

    图  17  (a)太平洋年代尺度振荡(PDO)和(b)北大西洋多年代尺度振荡(AMO)指数长期演变,填色粗实线为年代际滤波值

    Figure  17.  (a) The Pacific Decadal Oscillation (PDO) index and (b) the Atlantic Multi-decadal Oscillation (AMO) index, heavy solid curves denote decadal-filtered values

    图  18  1880~2011年我国夏季降水年代际分量EOF分解得到的前两个模态的时间系数(蓝线)和PDO、AMO指数(红线)

    Figure  18.  (a) The first component (PC1, blue curve) of an EOF analysis of the decadal-filtered summer (JJA) rainfall in East Asia compared to the decadal-filtered spring (MAM) PDO index (red curve) for 1880–2011. (b) Same as (a) but for PC2 (blue curve) and the AMO index (red curve). The PC1 and PC2 values are scaled to facilitate comparison with the PDO and AMO, respectively

    图  19  PDO指数回归的(a)1880~1959年期间和(b)1960~2011年期间850 hPa风场(箭头)及其散度场(阴影,单位:106 s−1)分布。A和C分别表示异常反气旋和气旋中心

    Figure  19.  Regression of the summer (JJA) 850-hPa wind (vectors, units: m s−1) and divergence field (shading, units: 106 s−1) on the PDO index during (a) 1880–1959 and (b) 1960–2011. The letters A and C denote an anomalous anticyclone and cyclone, respectively.

    图  20  1960~2015年青藏高原72站平均的(a)冬季及(b)春季积雪深度序列(单位:cm d-1),黑色直线为气候平均值

    Figure  20.  Time series of (a) winter and (b) spring snow depth (units: cm d-1) over the Tibetan Plateau, averaged for the 72 stations from 1960 to 2015. The horizontal solid lines indicate averaged values

    图  21  青藏高原72站平均的(a)冬季、(b)春季和(c)夏季感热通量变化(单位:W m-2),蓝色线为9点滑动值

    Figure  21.  Seasonal-mean sensible heat fluxes (units:W m-2) over the Tibetan Plateau averaged for the 72 stations for (a) winter, (b) spring, and (c) summer. The blue curves indicate 9-year running averages

    图  22  青藏高原72站平均的冬季积雪深度序列与东亚夏季降水量的相关:(a)1978~1999年;(b)2000~2011年。阴影区为通过90%信度检验的区域

    Figure  22.  Correlations between the winter snow depth over the Tibetan Plateau averaged for the 72 stations and the observed summer precipitation over East Asia for the periods (a) 1979–1999 and (b) 2000–2011. Shaded areas are statistically significant at the 90% confidence level

    表  1  中国东部各区域夏季降水距平的周期分析

    Table  1.   Primary periods of summer rainfalls in each sub-region of eastern China

    周期/a
    华南 2*,7,30*
    长江中下游 2*,7,14,40*
    华北 3*,9,18
    长江5站 2,7*,12,40*
    *表示通过95%的信度检验
    下载: 导出CSV
  • [1] An Z S, Wu G X, Li J P, et al. 2015. Global monsoon dynamics and climate change[J]. Annual Review of Earth and Planetary Sciences, 43: 29–77, doi: 10.1146/annurev-earth-060313-054623.
    [2] Anchukaitis K J, Buckley B M, Cook E R, et al. 2010. Influence of volcanic eruptions on the climate of the Asian monsoon region [J]. Geophys. Res. Lett., 37 (22): L22703, doi: 10.1029/2010GL044843.
    [3] Biasutti M, Giannini A. 2006. Robust Sahel drying in response to late 20th century forcings [J]. Geophys. Res. Lett., 33 (11): L11706, doi: 0.1029/2006GL026067.
    [4] Boos W R, Kuang Z M. 2010. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating [J]. Nature, 463 (7278): 218-222, doi: 10.1038/nature08707.
    [5] Caley T, Malaizé B, Revel M, et al. 2011. Orbital timing of the Indian, East Asian and African boreal monsoons and the concept of a 'global monsoon' [J]. Quaternary Science Reviews, 30 (25-26): 3705-3715, doi: 10.1016/j.quascirev.2011.09.015.
    [6] Chang C C. 1981. A contrasting study of the rainfall anomalies between central Tibet and central India during the summer monsoon season of 1979 [J]. Bull. Amer. Meteor. Soc., 62 (1): 20-22, doi:10.1175/1520-0477 (1981)062 < 0020:ACSOTR > 2.0.CO; 2.
    [7] Chang C P. 2004. East Asian Monsoon [M]. Singapore: World Scientific Publishing Co Pte Ltd, 564.
    [8] Chang C P, Ding Y H, Lau N C, et al. 2011. The Global Monsoon System: Research and Forecast [M]. 2nd ed. Singapore: World Scientific, 594.
    [9] 陈烈庭. 1998.青藏高原冬春季异常雪盖与江南前汛期降水关系的检验和应用[J].应用气象学报, 9 (S1): 2-9. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX8S1.000.htm

    Chen Lieting. 1998. Test and application of the relationship between anomalous snow cover in winter-spring over Qinghai-Xizang Plateau and the first summer rainfall in southern China [J]. Quarterly Journal of Applied Meteorology (in Chinese), 9 (S1): 2-9. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX8S1.000.htm
    [10] 陈秋士, 繆锦海, 李維亮. 1964. 1958年7月亚洲东南部西南季风区和太平洋信风区平均流場和平均經圈环流[J].气象学报, 34 (1): 51-61. doi: 10.11676/qxxb1964.006

    Chen Chiushih, Miao Jinhai, Li Weiliang. 1964. A comparison of mean wind field and mean meridional circulation between South-West monsoon area in South-East Asia and Pacific trade wind area in July, 1958 [J]. Acta Meteor. Sinica (in Chinese), 34 (1): 51-61, doi:10.11676/ qxxb1964.006.
    [11] Chen T C, Wang S Y, Huang W R, et al. 2004. Variation of the East Asian summer monsoon rainfall [J]. J. Climate, 17 (4): 744-762, doi:10.1175/ 1520-0442(2004)017 < 0744:VOTEAS > 2.0.CO; 2.
    [12] 陈兴芳, 宋文玲. 2000.冬季高原积雪和欧亚积雪对我国夏季旱涝不同影响关系的环流特征分析[J].大气科学, 24 (5): 585-592. doi: 10.3878/j.issn.1006-9895.2000.05.02

    Chen Xingfang, Song Wenling. 2000. Circulation analysis of different influence of snow cover over the Tibetan Plateau and Eurasia in winter on summertime droughts and floods of China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 24 (5): 585-592, doi:10.3878/j.issn. 1006-9895.2000.05.02.
    [13] Christensen J H, Krishna Kumar K, Aldrian E, et al. 2013. Climate phenomena and their relevance for future regional climate change [M]//Stocker T F, Qin D H, Plattner G K, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
    [14] Cressman G P. 1981. Circulations of the West Pacific jet stream [J]. Mon. Wea. Rev., 109 (12): 2450-2463, doi:10.1175/1520-0493(1981)109 < 2450: COTWPJ > 2.0.CO; 2.
    [15] Dallmeyer A, Claussen M, Fischer N, et al. 2015. The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene—Comparison of different transient climate model simulations[J]. Climate Past, 11 (2): 305-326, doi: 10.5194/cp-11-305-2015.
    [16] Ding Y H. 1992. Summer monsoon rainfalls in China [J]. J. Meteor. Soc. Japan, 70(1B): 373-396, doi: 10.2151/jmsj1965.70.1B_373.
    [17] Ding Y H. 1994. Monsoons over China [M]. Dordrecht/Boston/London: Kluwer Academic Publishers, 419-420.
    [18] Ding Y H. 2004. Seasonal march of the East-Asian summer monsoon [M]//Chang C P. East Asian Monsoon. Singapore: World Scientific, 3-53.
    [19] Ding Y H. 2007. The variability of the Asian summer monsoon [J]. J. Meteor. Soc. Japan, 85B: 21-54, doi: 10.2151/jmsj.85B.21.
    [20] Ding Y H, Liu Y J. 2001. Onset and the evolution of the summer monsoon over the South China Sea during SCSMEX field experiment in 1998 [J]. J. Meteor. Soc. Japan, 79(1B): 255-276, doi: 10.2151/jmsj.79.255.
    [21] Ding Y H, Chan J C L. 2005. The East Asian summer monsoon: An overview [J]. Meteor. Atmos. Phys., 89 (1-4): 117-142, doi: 10.1007/s00703-005-0125-z.
    [22] Ding Y H, Sikka D R. 2006. Synoptic systems and weather [M]//Wang B. The Asian Monsoon. Berlin Heidelberg: Springer, 131-201.
    [23] Ding Y H, Wang Z Y, Sun Y. 2008. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part Ⅰ: Observed evidences[J]. Int. J. Climatol., 28 (9): 1139-1161, doi: 10.1002/joc.1615.
    [24] Ding Y H, Sun Y, Wang Z Y, et al. 2009. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon. Part Ⅱ: Possible causes [J]. International Journal of Climatology, 29(13): 1926-1944, doi: 10.1002/joc.1759.
    [25] Ding Y H, Liu Y J, Zhang L, et al. 2011. The Meiyu weather system in East Asia: Build-up, maintenance and structures[M]//Chang C P, Ding Y H, Lau N C, et al. The Global Monsoon System: Research and Forecast. 2nd ed. Singapore: World Scientific, 205-221.
    [26] 丁一汇, 孙颖, 刘芸芸, 等. 2013.亚洲夏季风的年际和年代际变化及其未来预测[J].大气科学, 37 (2): 253-280. doi: 10.3878/j.issn.1006-9895.2012.12302

    Ding Yihui, Sun Ying, Liu Yunyun, et al. 2013. Interdecadal and interannual variabilities of the Asian summer monsoon and its projection of future change [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37 (2): 253-280, doi:10.3878/j.issn. 1006-9895.2012.12302.
    [27] Ding Y H, Si D, Sun Y, et al. 2014. Inter-decadal variations, causes and future projection of the Asian summer monsoon [J]. Engineering Sciences, 12 (2): 22-28, doi: 10.3969/j.issn.1672-4178.2014.02.004.
    [28] Ding Y H, Liu Y J, Song Y F, et al. 2015. From MONEX to the global monsoon: A review of monsoon system research[J]. Adv. Atmos. Sci., 32 (1): 10-31, doi: 10.1007/s00376-014-0008-7.
    [29] Fong S K, Wang A Y. 2001. Climatological Atlas for Asian Summer Monsoon [M]. Macau: Macau Meteorological and Geophysical Bureau, 318 pp.
    [30] Francis J A, Vavrus S J. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes [J]. Geophys. Res. Lett., 39(6): L06801, doi: 10.1029/2012GL051000.
    [31] Gray L J, Beer J, Geller M, et al. 2010. Solar influences on climate [J]. Rev. Geophys., 48(4): RG4001, doi: 10.1029/2009RG000282.
    [32] Hahn D G, Manabe S. 1975. The role of mountains in the South Asian monsoon circulation [J]. J. Atmos. Sci., 32 (8): 1515-1541, doi:10.1175/ 1520-0469(1975)032 < 1515:TROMIT > 2.0.CO; 2.
    [33] Held I M, Hou A Y. 1980. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere [J]. J. Atmos. Sci., 37 (3): 515-533, doi:10. 1175/1520-0469(1980)037 < 0515:NASCIA > 2.0.CO; 2.
    [34] Held I M, Soden B J. 2006. Robust responses of the hydrological cycle to global warming [J]. J. Climate, 19 (21): 5686-5699, doi: 10.1175/ JCLI3990.1.
    [35] Hu Y M, Si D, Liu Y J, et al. 2016. Investigations on moisture transports, budgets and sources responsible for the decadal variability of precipitation in southern China [J]. Journal of Tropical Meteorology, 22 (3): 402-412, doi: 10.16555/j.1006-8775.2016.03.014.
    [36] 胡泊, 张志森, 乔少博, 等. 2016. 1990年代末东亚北部地区夏季水汽输送年代际变化特征及其影响机制[J].大气科学, 40 (5): 933-945. doi: 10.3878/j.issn.1006-9895.1512.15158

    Hu Po, Zhang Zhisen, Qiao Shaobo, et al. 2016. The interdecadal variation and physical mechanism for the summertime water vapor transport in northern East Asia in the late 1990s [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40 (5): 933-945, doi:10.3878/j.issn.1006-9895. 1512.15158.
    [37] Huang R H, Huang G, We Z G. 2004. Climate variations of the summer monsoon over China [M]//Chang C P. East Asian Monsoon. Singapore: World Scientific, 564pp.
    [38] 黄荣辉, 刘永, 冯涛. 2013. 20世纪90年代末中国东部夏季降水和环流的年代际变化特征及其内动力成因[J].科学通报, 58 (8): 617-628. doi: 10.1007/s11434-012-5545-9

    Huang Ronghui, Liu Yong, Feng Tao. 2013. Interdecadal change of summer precipitation over eastern China around the late-1990s and associated circulation anomalies, internal dynamical causes [J]. Chinese Science Bulletin, 58 (12): 1339-1349, doi: 10.1007/s11434-012-5545-9.
    [39] 黄士松, 杨修群, 蒋全荣, 等. 1995.极地海冰变化对气候的影响[J].气象科学, 15 (4): 46-56. http://mall.cnki.net/magazine/Article/QXKX199504004.htm

    Huang Shisong, Yang Xiuqun, Jiang Quanrong, et al. 1995. The effects of the polar sea ice on climate [J]. Scientia Meteorologica Sinica, 15 (4): 46-56. http://mall.cnki.net/magazine/Article/QXKX199504004.htm
    [40] 姜大膀, 田芝平. 2013. 21世纪东亚季风变化: CMIP3和CMIP5模式预估结果[J].科学通报, 58 (8): 707-716. doi: 10.1007/s11434-012-5533-0

    Jiang Dabang, Tian Zhiping. 2013. East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models [J]. Chinese Science Bulletin, 58 (12): 1427-1435, doi: 10.1007/s11434-012-5533-0.
    [41] Kitoh A. 2004. Effects of mountain uplift on East Asian summer climate investigated by a coupled atmosphere-ocean GCM [J]. J. Climate, 17 (4): 783-802, doi:10.1175/1520-0442(2004)017 < 0783:EOMUOE > 2.0.CO; 2.
    [42] Kitoh A. 2017. The Asian monsoon and its future change in climate models: a review [J]. J. Meteor. Soc. Japan, 95 (1): 7-33, doi:10.2151/jmsj.2017- 002.
    [43] Lau K M, Yang S. 1997. Climatology and interannual variability of the Southeast Asian summer monsoon [J]. Adv. Atmos. Sci., 14 (2): 141-162, doi: 10.1007/s00376-997-0016-y.
    [44] Lau K M, Lee J Y, Kim K M, et al. 2004. The North Pacific as a regulator of summertime climate over Eurasia and North America [J]. J. Climate, 17 (4): 819-833, doi:10.1175/1520-0442(2004)017 < 0819:TNPAAR > 2.0.CO; 2.
    [45] Li Y, Ding Y H, Li W J. 2017. Interdecadal variability of the Afro-Asian summer monsoon system [J]. Adv. Atmos. Sci., 34 (7): 833-846, doi:10. 1007/s00376-017-6247-7.
    [46] Li Y F, Leung L R. 2013. Potential impacts of the Arctic on interannual and interdecadal summer precipitation over China [J]. J. Climate, 26 (3): 899-917, doi: 10.1175/JCLI-D-12-00075.1.
    [47] Li Y F, Leung L R, Xiao Z N, et al. 2013. Interdecadal connection between Arctic temperature and summer precipitation over the Yangtze River valley in the CMIP5 historical simulations[J]. J. Climate, 26 (19): 7464-7488, doi: 10.1175/JCLI-D-12-00776.1.
    [48] Li Z Q, Lau W K M, Ramanathan V, et al. 2016. Aerosol and monsoon climate interactions over Asia [J]. Rev. Geophys., 54 (4): 866-929, doi: 10.1002/2015RG000500.
    [49] Liang P, Ding Y H. 2017. The long-term variation of extreme heavy precipitation and its link to urbanization effects in Shanghai during 1916-2014 [J]. Adv. Atmos. Sci., 34 (3): 321-334, doi:10.1007/s00376- 016-6120-0.
    [50] Liu X D, Dong B W. 2013. Influence of the Tibetan Plateau uplift on the Asian monsoon-arid environment evolution [J]. Chinese Science Bulletin, 58 (34): 4277-4291, doi: 10.1007/s11434-013-5987-8.
    [51] Liu Y, Chiang J C H. 2012. Coordinated abrupt weakening of the Eurasian and North African monsoons in the 1960s and links to extratropical North Atlantic cooling [J]. J. Climate, 25 (10): 3532-3548, doi:10.1175/JCLI- D-11-00219.1.
    [52] 柳艳菊, 丁一汇. 2007.亚洲夏季风爆发的基本气候特征分析[J].气象学报, 65 (4): 511-526. doi: 10.11676/qxxb2007.048

    Liu Yanju, Ding Yihui. 2007. Analysis of the basic features of the onset of Asian summer monsoon [J]. Acta Meteor. Sinica (in Chinese), 65 (4): 511-526, doi: 10.11676/qxxb2007.048.
    [53] Liu Z Y, Wen X Y, Brady E C, et al. 2014. Chinese cave records and the East Asia summer monsoon [J]. Quaternary Science Reviews, 83: 115-128, doi: 10.1016/j.quascirev.2013.10.021.
    [54] Lu R Y, Dong B W, Ding H. 2006. Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon [J]. Geophys. Res. Lett., 33(24): L24701, doi: 10.1029/2006GL027655.
    [55] 吕心艳, 张秀芝, 陈锦年. 2011.东亚夏季风南北进退的年代际变化对我国区域降水的影响[J].热带气象学报, 27 (6): 860-868. doi: 10.3969/j.issn.1004-4965.2011.06.009

    Lü Xinyan, Zhang Xiuzhi, Chen Jinnian. 2011. The interdecadal variability of North-South movement of East Asian summer monsoon and its effect on the regional rainfall over China [J]. Journal of Tropical Meteorology, 27 (6): 860-868, doi: 10.3969/j.issn.1004-4965.2011.06.009.
    [56] Ma D, Boos W, Kuang Z M. 2014. Effects of orography and surface heat fluxes on the South Asian summer monsoon [J]. J. Climate, 27 (17): 6647-6659, doi: 10.1175/JCLI-D-14-00138.1.
    [57] Man W M, Zhou T J, Jungclaus J H. 2014. Effects of large volcanic eruptions on global summer climate and east Asian monsoon changes during the last millennium: Analysis of MPI-ESM simulations[J]. J. Climate, 27 (19): 7394-7409, doi: 10.1175/JCLI-D-13-00739.1.
    [58] Manabe S, Terpstra T B. 1974. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments [J]. J. Atmos. Sci., 31 (1): 3-42, doi:10.1175/1520-0469(1974)031 < 0003: TEOMOT > 2.0.CO; 2.
    [59] Matsumoto J. 1997. Seasonal transition of summer rainy season over Indochina and adjacent monsoon region [J]. Adv. Atmos. Sci., 14 (2): 231-245, doi: 10.1007/s00376-997-0022-0.
    [60] Mohtadi M, Prange M, Steinke S. 2016. Palaeoclimatic insights into forcing and response of monsoon rainfall [J]. Nature, 533 (7602): 191-199, doi: 10.1038/nature17450.
    [61] Molnar P, Boos W R, Battisti D S. 2010. Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau [J]. Annual Review of Earth and Planetary Sciences, 38: 77-102, doi: 10.1146/annurev-earth-040809-152456.
    [62] Murakam M. 1986. Monsoon(日文). 东京: 东京堂, 198
    [63] Overland J E, Wang M Y. 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice [J]. Tellus A: Dynamic Meteorology and Oceanography, 62 (1): 1-9, doi:10.1111/j. 1600-0870.2009.00421.x.
    [64] Ramage C S. 1971. Monsoon Meteorology[M]. New York: Academic Press.
    [65] Ridley H E, Asmerom Y, Baldini J U L, et al. 2015. Aerosol forcing of the position of the intertropical convergence zone since AD 1550 [J]. Nature Geoscience, 8 (3): 195-200, doi: 10.1038/ngeo2353.
    [66] Schmidt G A, Annan J D, Bartlein P J, et al. 2014. Using palaeo-climate comparisons to constrain future projections in CMIP5[J]. Climate Past, 10 (1): 221-250, doi: 10.5194/cpd-9-775-2013.
    [67] Schneider E K, Lindzen R S. 1977. Axially symmetric steady-state models of the basic state for instability and climate studies. Part Ⅰ. Linearized calculations [J]. J. Atmos. Sci., 34 (2): 263-279, doi:10.1175/1520-0469 (1977)034 < 0263:ASSSMO > 2.0.CO; 2.
    [68] 施能, 朱乾根, 吴彬贵. 1996.近40年东亚夏季风及我国夏季大尺度天气气候异常[J].大气科学, 20 (5): 575-583. doi: 10.3878/j.issn.1006-9895.1996.05.08

    Shi Neng, Zhu Qian'gen, Wu Bingui. 1996. The East Asian summer monsoon in relation to summer large scale weather-climate anomaly in China for last 40 years [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 20 (5): 575-583, doi: 10.3878/j.issn.1006-9895.1996.05.08.
    [69] Si D, Ding Y H. 2012. The tropospheric biennial oscillation in the East Asian monsoon region and its influence on the precipitation in China and large-scale atmospheric circulation in East Asia[J]. Int. J. Climatol., 32 (11): 1697-1716, doi: 10.1002/joc.2386.
    [70] Si D, Ding Y H. 2013. Decadal change in the correlation pattern between the Tibetan plateau winter snow and the East Asian summer precipitation during 1979-2011 [J]. J. Climate, 26 (19): 7622-7634, doi:10.1175/JCLI- D-12-00587.1.
    [71] Si D, Ding Y H. 2016. Oceanic forcings of the interdecadal variability in East Asian summer rainfall [J]. J. Climate, 29 (21): 7633-7649, doi:10. 1175/JCLI-D-15-0792.1.
    [72] Si D, Ding Y H, Liu Y J. 2009. Decadal northward shift of the Meiyu belt and the possible cause [J]. Chinese Science Bulletin, 54 (24): 4742-4748, doi: 10.1007/s11434-009-0385-y.
    [73] 孙颖, 丁一汇. 2009.未来百年东亚夏季降水和季风预测的研究[J].中国科学D辑:地球科学, 39 (11): 1487-1504. http://www.oalib.com/paper/4150434
    [74] Sun Ying, Ding Yihui. 2010. A projection of future changes in summer precipitation and monsoon in East Asia [J]. Science China Earth Sciences, 53 (2): 284-300. doi: 10.1007/s11430-009-0123-y
    [75] Tada R, Zheng H B, Clift P D. 2016. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau [J]. Progress in Earth and Planetary Science, 3: 4. doi:10.1186/ s40645-016-0080-y.
    [76] Takata K, Saito K, Yasunari T. 2009. Changes in the Asian monsoon climate during 1700-1850 induced by preindustrial cultivation [J]. Proceedings of the National Academy of Sciences of the United States of America, 106 (24): 9586-9589, doi: 10.1073/pnas.0807346106.
    [77] Tao S Y, Ding Y H. 1981. Observational evidence of the influence of the Qinghai-Xizang (Tibet) plateau on the occurrence of heavy rain and severe convective storms in China [J]. Bull. Amer. Meteor. Soc., 62 (1): 23-30, doi:10.1175/1520-0477(1981)062 < 0023:OEOTIO > 2.0.CO; 2.
    [78] Tao S Y, Chen L. 1987. A review of recent research on the East Asian summer monsoon in China [M]//Chang C P, Krishnamurti T N. Monsoon Meterorlogy. Oxford: Oxford University Press, 60-92.
    [79] 陶诗言, 朱文妹, 赵卫. 1988.论梅雨的年际变异[J].大气科学, 12 (S1): 13-21. doi: 10.3878/j.issn.1006-9895

    Tao Shiyan, Zhu Wenmei, Zhao Wei. 1988. Interannual variability of Meiyu rainfalls [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 12 (S1): 13-21, doi: 10.3878/j.issn.1006-9895.
    [80] Trenberth K E, Stepaniak D P, Caron J M. 2000. The global monsoon as seen through the divergent atmospheric circulation[J]. J. Climate, 13 (22): 3969-3993, doi:10.1175/1520-0442(2000)013 < 3969:TGMAST > 2.0.CO; 2.
    [81] Van Loon H, Meehl G A. 2012. The Indian summer monsoon during peaks in the 11 year sunspot cycle [J]. Geophys. Res. Lett., 39 (13): L13701, doi: 10.1029/2012GL051977.
    [82] Wang B. 2006. The Asian Monsoon [M]. Chichester, UK: Springer, 787.
    [83] Wang B, Lin H. 2002. Rainy season of the Asian-Pacific summer monsoon [J]. J. Climate, 15 (4): 386-396, doi:10.1175/1520-0442(2002)015 < 0386: RSOTAP > 2.0.CO; 2.
    [84] Wang B, Ding Q H. 2008. Global monsoon: Dominant mode of annual variation in the tropics [J]. Dyn. Atmos. Oceans, 44 (3-4): 165-183, doi: 10.1016/j.dynatmoce.2007.05.002.
    [85] Wang B, Ding Q H, Fu X, et al. 2005. Fundamental challenge in simulation and prediction of summer monsoon rainfall[J]. Geophys. Res. Lett., 32 (15): L15711, doi: 10.1029/2005GL022734.
    [86] Wang B, Liu J, Kim H J, et al. 2012. Recent change of the global monsoon precipitation (1979-2008) [J]. Climate Dyn., 39 (5): 1123-1135, doi: 10.1007/s00382-011-1266-z.
    [87] Wang H J. 2001. The weakening of the Asian monsoon circulation after the end of 1970's [J]. Adv. Atmos. Sci., 18 (3): 376-386, doi:10.1007/ BF02919316.
    [88] Wang P X. 2009. Global monsoon in a geological perspective [J]. Chinese Science Bulletin, 54 (7): 1113-1136.
    [89] Wang Y M, Li S L, Luo D H. 2009. Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation [J]. J. Geophys. Res., 114 (D2): D02112, doi: 10.1029/2008JD010929.
    [90] Webster P J, Yang S. 1992. Monsoon and ENSO: Selectively interactive systems [J]. Quart. J. Roy. Meteor. Soc., 118 (507): 877-926, doi: 10.1002/qj.49711850705.
    [91] Webster P J, Magaña V O, Palmer T N, et al. 1998. Monsoons: Processes, predictability, and the prospects for prediction[J]. J. Geophys. Res., 103 (C7): 14451-14510, doi: 10.1029/97JC02719.
    [92] 韦志刚, 罗四维, 董文杰, 等. 1998.青藏高原积雪资料分析及其与我国夏季降水的关系[J].应用气象学报, 9 (S1): 40-47. http://www.cqvip.com/QK/97586X/1998S1/3000897905.html

    Wei Zhigang, Luo Siwei, Dong Wenjie, et al. 1998. Snow cover data on Qinghai- Xizang Plateau and its correlation with summer rainfall in China [J]. Quarterly Journal of Applied Meteorology (in Chinese), 9 (S1): 40-47. http://www.cqvip.com/QK/97586X/1998S1/3000897905.html
    [93] Wu B Y, Zhang R H, Wang B, et al. 2009a. On the association between spring Arctic sea ice concentration and Chinese summer rainfall [J]. Geophys. Res. Lett., 36 (9): L09501, doi: 10.1029/2009GL037299.
    [94] Wu B Y, Zhang R H, Wang B. 2009b. On the association between spring Arctic sea ice concentration and Chinese summer rainfall: A further study [J]. Adv. Atmos. Sci., 26(4): 666-678, doi: 10.1007/s00376-009-9009-3.
    [95] Wu R, Wang B. 2001. Multi-stage onset of the summer monsoon over the western North Pacific [J]. Climate Dyn., 17 (4): 277-289, doi:10.1007/ s003820000118.
    [96] Wu R G, Wen Z P, Yang S, et al. 2010. An interdecadal change in southern China summer rainfall around 1992/93 [J]. J. Climate, 23 (9): 2389-2403, doi: 10.1175/2009JCLI3336.1.
    [97] 吴尚森, 梁建茵, 纪忠萍. 1996.极地海冰异常对我国夏季大气环流和降水影响的数值研究[J].热带气象学报, 12 (2): 105-112. doi: 10.16032/j.issn.1004-4965.1996.02.002

    Wu Shangsen, Liang Jianyin, Ji Zhongping. 1996. The numerical study on the impacts of the polar sea ice anomalies on the summer atmospheric circulation and precipitation in China [J]. Journal of Tropical Meteorology (in Chinese), 12 (2): 105-112, doi:10.16032/j.issn.1004-4965.1996.02. 002.
    [98] Wu Z W, Li X X, Li Y J, et al. 2016. Potential influence of Arctic sea ice to the interannual variations of East Asian spring precipitation [J]. J. Climate, 29 (8): 2797-2813, doi: 10.1175/JCLI-D-15-0128.1.
    [99] Xie S P, Deser C, Vecchi G A, et al. 2010. Global warming pattern formation: Sea surface temperature and rainfall[J]. J. Climate, 23 (4): 966-986, doi: 10.1175/2009JCLI3329.1.
    [100] 谢义炳. 1956.中国夏半年几种降水天气系统的分析研[J].气象学报, 27 (1): 1-23. doi: 10.11676/qxxb1956.001

    Xie Yibing. 1956. A preliminary survey of certain rain- bearing systems over China in spring and summer [J]. Acta Meteor. Sinica, 27 (1): 1-23, doi: 10.11676/qxxb1956.001.
    [101] Yanai M, Wu G X. 2006. Effects of the Tibetan Plateau [M]//Wang B. The Asian Monsoon. Berlin: Springer, 513-539.
    [102] 杨广基, 王兴东, 叶笃正. 1979.东亚和太平洋地区上空的平均垂直环流(二)冬季[J].大气科学, 3 (4): 299-305. doi: 10.3878/j.issn.1006-9895

    Yang Guangji, Wang Xingdong, Yeh Tucheng. 1979. The average vertical circulation over the East-Asia and the Pacific Area (2) Winter [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 3 (4): 299-305, doi: 10.3878/j.issn.1006-9895.
    [103] 杨修群, 谢倩, 黄士松. 1994.北极冰异常对亚洲夏季风影响的数值模拟[J].海洋学报, 16 (5): 34-40. http://www.cqvip.com/QK/95712X/199405/1362657.html

    Yang Xiuqun, Xie Qian, Huang Shisong. 1994. Numerical simulation of the impact of Arctic ice anomaly on the Asian summer monsoon [J]. Acta Oceanologica Sinica (in Chinese), 16 (5): 34-40. http://www.cqvip.com/QK/95712X/199405/1362657.html
    [104] Yasunari T. 2011. Role of vegetation in the monsoon climate system [M]//Chang C P, Ding Y, Lau N C, et al. The Global Monsoon System: Research and Forecast. 2nd ed. Singapore: World Scientific, 583-594.
    [105] 叶笃正, 陶诗言, 李麥村. 1958.在六月和十月大气环流的突变现象[J].气象学报, 29 (4): 249-263. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB195804004.htm

    Ye Tucheng, Tao Shihyan, Li Meitsium. 1958. The abrupt change of circulation over northern hemisphere during June and October [J]. Acta Meteor. Sinica (in Chinese), 29 (2): 234-246. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB195804004.htm
    [106] 叶笃正, 高由禧. 1979.青藏高原气象学[M].北京:科学出版社, 278pp.

    Yeh Tucheng, Gao Youxi. 1979. Meteorology of the Qinghai-Xizang Plateau (in Chinese) [M]. Beijing: Science Press, 278pp.
    [107] 叶笃正, 杨广基, 王兴东. 1979.东亚和太平洋上空平均垂直环流(一)夏季[J].大气科学, 3 (1): 1-11. doi: 10.3878/j.issn.1006-9895

    Yeh Tucheng, Yang Guangji, Wang Dongxing. 1979. The average vertical circulations over the East Asia and the Pacific area, (Ⅰ) In summer [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 3 (1): 1-11, doi: 10.3878/j.issn.1006-9895.
    [108] Yeh T C, Tao S Y, Li M C. 1959. The abrupt change of circulation over the northern Hemisphere during June and October [M]//Bolin B. The Atmosphere and the Sea in Motion. New York: Rockefeller Institute Press, 249-267.
    [109] Zhang R H, Sumi A, Kimoto M. 1996. Impact of El Niño on the East Asian Monsoon: A diagnostic study of the '86/87 and '91/92 events [J]. J. Meteor. Soc. Japan, 74 (1): 49-62, doi: 10.2151/jmsj1965.74.1_49.
    [110] Zhang R H. 2015. Changes in East Asian summer monsoon and summer rainfall over eastern China during recent decades [J]. Science Bulletin, 60 (13): 1222-1224, doi: 10.1007/s11434-015-0824-x.
    [111] 张若楠, 武炳义. 2011.北半球大气对春季北极海冰异常响应的数值模拟[J].大气科学, 35 (5): 847-862. doi: 10.3878/j.issn.1006-9895.2011.05.05

    Zhang Ruonan, Wu Bingyi. 2011. The northern Hemisphere atmospheric response to spring Arctic sea ice anomalies in CAM3.0 model [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35 (5): 847-862, doi:10.3878/j.issn.1006-9895. 2011.05.05.
    [112] Zhang Y S, Li T, Wang B. 2004. Decadal change of the spring snow depth over the Tibetan plateau: The associated circulation and influence on the East Asian summer monsoon [J]. J. Climate, 17 (14): 2780-2793, doi:10.1175/1520-0442(2004)017 < 2780:DCOTSS > 2.0.CO; 2.
    [113] Zhao L, Wang J S. 2014. Robust response of the East Asian monsoon rainband to solar variability [J]. J. Climate, 27 (8): 3043-3051, doi:10. 1175/JCLI-D-13-00482.1.
    [114] 赵溱. 1984.欧亚大陆雪盖与东亚夏季风[J].气象, 10 (7): 27-29. doi: 10.7519/j.issn.1000-0526.1984.07.006

    Zhao Zhen. 1984. Eurasia snow cover and the Asian monsoon [J]. Meteorological Monthly (in Chinese), (7): 27-29. doi: 10.7519/j.issn.1000-0526.1984.07.006
    [115] Zhu K Z. 1934. Monsoons in Southeast Asia and rainfall amount in China [J]. Acta Geologica Sinica, 1: 1-27.
    [116] Zhu Y L, Wang H J, Zhou W, et al. 2011. Recent changes in the summer precipitation pattern in East China and the background circulation [J]. Climate Dyn., 36 (7-8): 1463-1473, doi: 10.1007/s00382-010-0852-9.
    [117] Zhu Y L, Wang H J, Ma J H, et al. 2015. Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990s' shift in East China summer rainfall [J]. J. Geophys. Res., 120 (17): 8817-8827, doi:10.1002/ 2015JD023545.
    [118] 朱益民, 杨修群. 2003.太平洋年代际振荡与中国气候变率的联系[J].气象学报, 61 (6): 641-654. doi: 10.3321/j.issn:0577-6619.2003.06.001

    Zhu Yimin, Yang Xiuqun. 2003. Relationships between Pacific decadal oscillation (PDO) and climate variabilities in China [J]. Acta Meteor. Sinica (in Chinese), 61 (6): 641-654, doi: 10.3321/j.issn:0577-6619.2003.06.001.
    [119] 朱玉祥, 丁一汇, 徐怀刚. 2007.青藏高原大气热源和冬春积雪与中国东部降水的年代际变化关系[J].气象学报, 65(6): 946-958. doi: 10.3321/j.issn:0577-6619.2007.06.012

    Zhu Yuxiang, Ding Yihui, Xu Huaigang. 2007. The decadal relationship between atmospheric heat source of winter and spring snow over Tibetan Plateau and rainfall in East China [J]. Acta Meteor. Sinica (in Chinese), 65 (6): 946-958, doi: 10.3321/j.issn:0577-6619.2007.06.012.
  • 加载中
图(22) / 表(1)
计量
  • 文章访问数:  1848
  • HTML全文浏览量:  3
  • PDF下载量:  1992
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-27
  • 网络出版日期:  2017-12-27
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回