高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用辐射数据构建云物理结构

霍娟

霍娟. 利用辐射数据构建云物理结构[J]. 大气科学, 2018, 42(5): 1013-1022. doi: 10.3878/j.issn.1006-9895.1801.17156
引用本文: 霍娟. 利用辐射数据构建云物理结构[J]. 大气科学, 2018, 42(5): 1013-1022. doi: 10.3878/j.issn.1006-9895.1801.17156
Juan HUO. Constructing Cloud Physical Structure Based on Radiation Data[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(5): 1013-1022. doi: 10.3878/j.issn.1006-9895.1801.17156
Citation: Juan HUO. Constructing Cloud Physical Structure Based on Radiation Data[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(5): 1013-1022. doi: 10.3878/j.issn.1006-9895.1801.17156

利用辐射数据构建云物理结构

doi: 10.3878/j.issn.1006-9895.1801.17156
基金项目: 

国家自然科学基金项目 41275040

国家自然科学基金项目 41775032

详细信息
    作者简介:

    霍娟, 女, 1977年出生, 博士、副研究员, 主要从事云相关遥感与辐射研究。E-mail:huojuan@mail.iap.ac.cn

  • 中图分类号: P401

Constructing Cloud Physical Structure Based on Radiation Data

Funds: 

National Natural Science Foundation of China 41275040

National Natural Science Foundation of China 41775032

  • 摘要: 本文运用CloudSat卫星上搭载的雷达探测数据和AQUA卫星搭载的辐射光谱仪探测数据,选择2007年1月至2010年12月期间,地理位置位于(15°~45°N,145°~165°E)区域内(远海)发生的云场数据开展分析,研究云的物理结构特征与其光谱辐射特性的相互关系。不同光谱波段对云物理结构变化的响应情况各有不同,首先从MODIS光谱仪22个云相关光谱波段中分析并选择出与云物理结构特征密切相关的光谱组合(包含13个波段),而后开展了这些光谱波段的云辐射特性与云物理结构特征的相互变化关系研究。统计分析表明,在外部大气、地表条件以及太阳入射辐射变化不大情况下,云的结构变化与其光谱辐射变化之间总体存在单调相关关系,物理结构变化不大的云廓线之间其光谱辐射的变化也小,反之也成立,即光谱辐射变化小的云廓线之间物理结构变化也小。从而,对于某些内部物理结构特征未知的云,利用与其光谱辐射特性相近的云结构数据可实现自身垂直结构信息的重建。基于光谱辐射相近则云物理结构很可能相近的特点,本文对未知云场的物理结构重建开展了模拟试验,试验结果表明光谱相近原则匹配物理结构的方法一定程度上能够实现云物理结构的构建,为利用被动遥感数据推测云物理结构特征研究提供参考。
  • 图  1  MODIS与CPR观测视场范围示例。方形格点代表MODIS的数据像元,灰色椭圆代表CPR的单廓线扫描范围

    Figure  1.  Footprints of MODIS and CPR (Cloud Profiling Radar, gray ellipse)

    图  2  发生于2007年8月14日位于(15°~45°N,145°~165°E)区域内的云例:(a)MODIS所测辐射值(单位:W m−2 μm −1 sr−1);(b)CPR观测雷达反射率值Ze(单位:dBZ)

    Figure  2.  Clouds occurring on 14 August 2007 over region (15°–45°N, 145°–165°E): (a) The radiance (units: W m−2 μm −1 sr−1) measured by MODIS; (b) the radar reflectivity factor Ze (units: dBZ) measured by CPR

    图  3  根据图 2云场MODIS的22个波段辐射值计算彼此之间的辐射相关系数。图中横坐标和纵坐标都是波段号,“B”代表波段

    Figure  3.  Correlation coefficients of radiation between 22 MODIS wavebands for cloud case in Fig. 2. The x-axis and y-axis show the numbers of wavebands, letter "B" means waveband

    图  4  根据2007~2010年区域(15°~45°N,145°~165°E)内MODIS的22个光谱通道探测的所有云廓线辐射数据,计算各通道之间的辐射相关系数:(a)将所有云廓线集中一起计算辐射相关系数;(b)针对各天云廓线数据分别计算通道辐射相关系数,然后求平均

    Figure  4.  Correlation coefficients of radiation between 22 MODIS wavebands for all cloudy profiles occurred over the area (15°–45°N, 145°–165°E) during 2007–2010: (a) Correlation coefficients of radiation calculated from all cloudy profiles; (b) the mean value of those radiation correlation coefficients which are calculated individually from cloudy profiles occurred in the same day.

    图  5  一个结构距离和辐射距离分析示例:(a)2008年12月15日所选区域内CPR观测雷达反射率因子Ze;(b)以图a中红色线所在云廓线为参照计算的各廓线与其之间的辐射距离和结构距离;(c)辐射距离随结构距离单调变化

    Figure  5.  A cloud case showing the distribution of Dst (Standardized Euclidean distance of structure) and Drd (Standardized Euclidean distance of radiation): (a) Ze measured by CPR on 15 December 2008 in the selected area; (b) Dst and Drd between the red profile in Fig. a and other profiles; (c) the monotonic relation between Dst and Drd

    图  6  (a)8条云廓线的Ze垂直结构;(b)黑色方点廓线与其他廓线的辐射距离以及结构距离

    Figure  6.  Contrast of the Drds and Dsts between cloud profiles with different vertical structures: (a) Vertical structures of eight cloud pofiles; (b) Drds and Dsts of the black square profile with other profiles

    图  7  (a)MODIS通道一的辐亮度(单位:W m-2 μm-1 sr-1)分布,图上白色实线A为CPR扫描路径,白色虚线B距离白色实线A大约10 km。(b)从上到下分别对应图a中线段B、线段A和线段C的垂直结构分布。线段B和C的云结构构建是基于最近辐射特征原则匹配而成

    Figure  7.  (a) Radiance (units: W m-2 μm-1 sr-1) of waveband 1 from MODIS, line A (white solid line) is the scan path of CPR, line B (white dashed line) is about 10 km from line A. (b) The panel from top to bottom shows the cloud vertical structures of line B, Line A, and Line C. Vertical structures of line B and line C are constructed based on the nearest radiative characteristics principle

    表  1  MODIS光谱仪的22个云相关光谱波段宽度、分辨率以及主要用途

    Table  1.   The bandwidth, data resolution, and primary use of 22 MODIS (MODerate-resolution Imaging Spectroradiometer) wavebands which are related to cloud

    波段波段宽度数据分辨率/m主要用途
    1620~670 nm250地表/云/气溶胶边界层
    2841~867 nm250
    3459~479 nm500地表/云/气溶胶特征
    4545~565 nm500
    51230~1250 nm500
    61628~1652 nm500
    72105~2155 nm500
    17890~920 nm1000云/大气水汽特征
    18931~941 nm1000
    19915~965 nm1000
    203.66~3.84 μm1000地表/云温度
    261.36~1.39 μm1000卷云/水汽/湿度
    276.535~6.895 μm1000
    287.175~7.475 μm1000
    298.4~8.7 μm1000云属性
    309.58~9.88 μm1000臭氧
    3110.78~11.28 μm1000地表/云温度
    3211.77~12.27 μm1000
    3313.185~13.485 μm1000云高/云量
    3413.485~13.785 μm1000
    3513.785~14.085 μm1000
    3614.085~14.385 μm1000
    下载: 导出CSV
  • [1] Barker H W, Jerg M P, Wehr T, et al. 2011. A 3D cloud-construction algorithm for the EarthCARE satellite mission[J]. Quart. J. Roy. Meteor. Soc., 137:1042-1058, doi: 10.1002/qj.824.
    [2] Cole J N S, Barker H W, Randall D A, et al. 2005. Global consequences of interactions between clouds and radiation at scales unresolved by global climate models[J]. Geophys. Res. Lett., 32:L06703, doi: 10.1029/2004GL020945.
    [3] Liou K N. 1992. Radiation and Cloud Processes in the Atmosphere:Theory, Observation and Modeling[M]. Oxford:Oxford University Press, 487pp.
    [4] Minnis P, Garber D P, Young D F, et al. 1998. Parameterizations of reflectance and effective emittance for satellite remote sensing of cloud properties[J]. J. Atmos. Sci., 55:3313-3339, doi:10.1175/1520-0469 (1998)055<3313:PORAEE>2.0.CO;2.
    [5] Pincus R, Szczodrak M, Gu J J, et al. 1995. Uncertainty in cloud optical depth estimates made from satellite radiance measurements[J]. J. Climate, 8:1453-1462, doi:10.1175/1520-0442(1995)008<1453:UICODE>2.0.CO;2.
    [6] 邱金桓, 陈洪滨, 王普才, 等. 2005.大气遥感研究展望[J].大气科学, 29:131-136. doi: 10.3878/j.issn.1006-9895.2005.01.15

    Qiu Jinhuan, Chen Hongbin, Wang Pucai, et al. 2005. A prospect on future atmospheric remote sensing[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29:131-136, doi:10.3878/j.issn. 1006-9895.2005.01.15.
    [7] Ramanathan V. 1987. The role of earth radiation budget studies in climate and general circulation research[J]. J. Geophys. Res., 92:4075-4095, doi: 10.1029/JD092iD04p04075.
    [8] Roskovensky J K, Liou K N. 2006. Simultaneous determination of aerosol and thin cirrus optical depths over oceans from MODIS data:Some case studies[J]. J. Atmos. Sci., 63:2307-2323, doi: 10.1175/JAS3747.1.
    [9] 盛裴轩, 毛节泰, 李建国, 等. 2003.大气物理学[M].北京:北京大学出版社, 521pp.

    Sheng Peixuan, Mao Jietai, Li Jianguo, et al. 2003. Atmospheric Pysiscs (in Chinese)[M]. Beijing:Peking University Press, 521pp.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  818
  • HTML全文浏览量:  0
  • PDF下载量:  829
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-21
  • 网络出版日期:  2018-01-16
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回