高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FGOALS耦合模式两个版本的海洋热吸收与气候敏感度的关系研究

李伊吟 智海 林鹏飞 刘海龙 于溢

李伊吟, 智海, 林鹏飞, 刘海龙, 于溢. FGOALS耦合模式两个版本的海洋热吸收与气候敏感度的关系研究[J]. 大气科学, 2018, 42(6): 1263-1272. doi: 10.3878/j.issn.1006-9895.1801.17194
引用本文: 李伊吟, 智海, 林鹏飞, 刘海龙, 于溢. FGOALS耦合模式两个版本的海洋热吸收与气候敏感度的关系研究[J]. 大气科学, 2018, 42(6): 1263-1272. doi: 10.3878/j.issn.1006-9895.1801.17194
Yiyin LI, Hai ZHI, Pengfei LIN, Hailong LIU, Yi YU. Relationship between Ocean Heat Uptake and Climate Sensitivity in the Two Versions of FGOALS[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(6): 1263-1272. doi: 10.3878/j.issn.1006-9895.1801.17194
Citation: Yiyin LI, Hai ZHI, Pengfei LIN, Hailong LIU, Yi YU. Relationship between Ocean Heat Uptake and Climate Sensitivity in the Two Versions of FGOALS[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(6): 1263-1272. doi: 10.3878/j.issn.1006-9895.1801.17194

FGOALS耦合模式两个版本的海洋热吸收与气候敏感度的关系研究

doi: 10.3878/j.issn.1006-9895.1801.17194
基金项目: 

国家自然科学基金项目 41376019

国家自然科学基金项目 41376039

国家自然科学基金项目 41376026

中国科学院战略性先导科技专项"热带西太平洋海洋系统物质能量交换及其影响" XDA11010304

详细信息
    作者简介:

    李伊吟, 女, 1992年出生, 硕士研究生, 主要从事气候敏感度和气候变化评估工作。E-mail:liyiyin12@163.com

    通讯作者:

    林鹏飞, E-mail:linpf@mail.iap.ac.cn

  • 中图分类号: P467

Relationship between Ocean Heat Uptake and Climate Sensitivity in the Two Versions of FGOALS

Funds: 

National Natural Science Foundation of China 41376019

National Natural Science Foundation of China 41376039

National Natural Science Foundation of China 41376026

Strategic Priority Research Program Entitled 'Western Pacific Ocean System: Structure, Dynamics and Consequences' of the Chinese Academy of Sciences XDA11010304

  • 摘要: 海洋在气候变暖过程中的重要性通常用海洋热吸收来衡量,热吸收的大小影响全球变暖的幅度。本文利用FGOALS-g2、FGOALS-s2(以下分别缩写为g2、s2)两个耦合模式的CO2浓度以每年1%速率增长(1pctCO2)试验,评估和分析海洋热吸收与气候敏感度的关系。结果表明:进入海洋净热通量(s2模式大于g2模式)会使得s2模式的海洋热吸收总体比g2模式大;更为重要的是,由于s2模式中的海洋热吸收主要集中在上层,使得耦合模式s2中的瞬态气候响应(TCR,或称气候敏感度)比g2大。当CO2浓度加倍时,在两个耦合模式中,海洋热吸收的空间分布呈现显著性的差异,s2模式中上层热吸收明显比深层大,上层热吸收主要位于太平洋和印度洋,而g2模式中上层和深层热吸收差别较小,深层主要位于大西洋和北冰洋。进一步研究表明,海洋热吸收分布特征与两个耦合模式海洋环流变化有关。在g2模式中北大西洋经圈翻转环流(AMOC)强度强且深度大,在CO2浓度加倍时,AMOC减弱小,这样AMOC可将热量带到海洋的深层,增加海洋深层热吸收。而在s2模式中,平均AMOC弱且浅,在CO2浓度加倍时,AMOC减弱明显,热量不易到达深层,主要集中在海洋上层,对气候敏感度影响更快且更强。海洋环流导致热吸收及其空间差异同时影响到气候敏感度的差异。因此,探讨海洋热吸收与气候敏感度之间的关系,利于明确气候敏感度不确定性的来源。
  • 图  1  全球平均的(a)表面气温(实线,单位:K)及海表面温度(点线,单位:K)、(b)整层海温(单位:K)、(c)海洋热吸收(单位:109 J m-2)相对于多年平均的piControl试验的差值随时间变化曲线。(d)全球平均的海表净热通量(单位:W m-2,五点滑动平均)随时间的变化曲线。红色(蓝色)代表g2(s2)模式模拟值,黑色实线代表 1919年,灰色区域代表计算CO2浓度加倍时段范围(1910~1929年)

    Figure  1.  Temporal evolutions of global mean (a) surface air temperature (SAT, solid lines, units: K) and sea surface temperature (SST) changes (dotted lines, units: K), (b) full-depth ocean temperature changes (FDOT, units: K), (c) ocean heat uptake changes (OHU, units: 109 J m-2). Changes are relative to mean values in the piControl (Pre-industrial Control) experiment. (d) Temporal evolutions of sea surface net heat fluxes (5-yr running means, units: W m-2). The red (blue) lines indicate FGOALS-g2 (FGOALS-s2) simulation results. The position of black solid line indicates the year of 1919, the gray area indicates the period (1910–1929) when CO2 is doubled

    图  2  CO2浓度加倍时全球表面气温平均值(单位:K)相对于多年平均的piControl试验变化的空间分布(左)及纬向平均(右):(a)g2;(b)s2

    Figure  2.  Spatial patterns of mean global surface air temperature changes (units: K, left column) and zonal mean values (right column) relative to piControl experiment when CO2 is doubled: (a) FGOALS-g2; (b) FGOALS-s2

    图  3  g2、s2模式模拟的海温纬向平均(单位:K):(a、b)多年平均的piControl试验;(c、d)CO2浓度加倍时相对于多年平均piControl试验的差值

    Figure  3.  Zonal mean ocean temperature (units: K) simulated by FGOALS-g2 and FGOALS-s2, respectively: (a, b) Multi-year mean values in the piControl experiment; (c, d) changes relative to multi-year mean values in the piControl experiment when CO2 is doubled

    图  4  CO2浓度加倍时g2、s2模式模拟的全球海洋热吸收平均值(单位:109 J m-2)在不同深度的空间分布:(a、b)整层海洋;(c、d)300 m以上的海洋;(e、f)300 m以下的海洋

    Figure  4.  Distributions of mean global ocean heat uptake (units: 109 J m-2) at different depths simulated by the FGOALS-g2 and FGOALS-s2 when CO2 is doubled: (a, b) The whole water column; (c, d) above 300 m; (e, f) below 300 m

    图  5  CO2浓度加倍时海洋热吸收(单位:1023 J)在不同深度及不同海盆(全球、大西洋—北冰洋、太平洋-印度洋、南大洋)的空间分布:(a)整层海洋;(b)300 m以上的海洋;(c)300 m以下的海洋。红色(蓝色)代表g2(s2)模式

    Figure  5.  Distributions of ocean heat uptake (OHU, units: 1023 J) in different depths and basins (Global, Atlantic–Arctic Ocean, Pacific–Indian Ocean, Southern Ocean) when CO2 is doubled: (a) The whole water column; (b) above 300 m; (c) below 300 m. The red (blue) bars indicating FGOALS-g2 (FGOALS-s2)

    图  6  g2、s2模式模拟的北大西洋经圈翻转环流(AMOC,单位:Sv):(a、b)多年平均的piControl试验;(c、d)CO2浓度加倍时相对于多年平均piControl试验的差值

    Figure  6.  The Atlantic Meridional Overturning Circulation (AMOC, units: Sv) simulated by the FGOALS-g2 and FGOALS-s2: (a, b) Multi-year mean values in the piControl experiment; (c, d) changes relative to Multi-year mean in the piControl experiment when CO2 is doubled

  • [1] Andrews T, Gregory J M, Webb M J, et al. 2012. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models[J]. Geophys. Res. Lett., 39 (9):L09712, doi: 10.1029/2012GL051607.
    [2] Balmaseda M A, Trenberth K E, Källén E. 2013. Distinctive climate signals in reanalysis of global ocean heat content[J]. Geophys. Res. Lett., 40 (9):1754-1759, doi: 10.1002/grl.50382.
    [3] Bao Q, Wu G X, Liu Y M, et al. 2010. An introduction to the coupled model FGOALS1.1-s and its performance in East Asia[J]. Adv. Atmos. Sci., 27 (5):1131-1142, doi: 10.1007/s00376-010-9177-1.
    [4] Chen X L, Zhou T J, Guo Z. 2014. Climate sensitivities of two versions of FGOALS model to idealized radiative forcing[J]. Sci. China Earth Sci., 57 (6):1363-1373, doi: 10.1007/s11430-013-4692-4.
    [5] Cheng L J, Trenberth K E, Palmer M D, et al. 2016. Observed and simulated full-depth ocean heat-content changes for 1970-2005[J]. Ocean Sci., 12 (4):925-936, doi: 10.5194/os-12-925-2016.
    [6] Cubasch U, Meehl G A, Boer G J, et al. 2001. Projections of future climate change[M]//Houghton J T, Ding Y, Griggs D J, et al. Climate Change 2001: The Scientific Basis. New York: Cambridge University Press, 525-582.
    [7] Gregory J M. 2000. Vertical heat transports in the ocean and their effect on time-dependent climate change[J]. Climate Dyn., 16 (7):501-515, doi: 10.1007/s003820000059.
    [8] Gregory J M, Dixon K W, Stouffer R J, et al. 2005. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration[J]. Geophys. Res. Lett., 32 (12):L12703, doi: 10.1029/2005GL023209.
    [9] Gregory J M, Webb M J. 2008. Tropospheric adjustment induces a cloud component in CO2 forcing[J]. J. Climate, 21 (1):58-71, doi: 10.1175/2007JCLI1834.1.
    [10] Hansen J, Russel G, Lacis A, et al. 1985. Climate response times:Dependence on climate sensitivity and ocean mixing[J]. Science, 229 (4716):857-859, doi: 10.1126/science.229.4716.857.
    [11] He J, Winton M, Vecchi G, et al. 2017. Transient climate sensitivity depends on base climate ocean circulation[J]. J. Climate, 30 (4):1493-1504, doi: 10.1175/JCLI-D-16-0581.1.
    [12] Huber M B, Zanna L. 2017. Drivers of uncertainty in simulated ocean circulation and heat uptake[J]. Geophys. Res. Lett., 44 (3):1402-1413, doi: 10.1002/2016GL071587.
    [13] IPCC. 1990. Climate Change: The IPCC Scientific Assessment[M]. Houghton J T, Jenkins J G, Ephraums J J, Eds. Cambridge, UK and New York, USA: Cambridge University Press.
    [14] IPCC. 2007. Climate Change 2007:The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK and New York, USA:Cambridge University Press.
    [15] IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Stocker T F, Qin D, Plattner G K, et al., Eds. Cambridge, UK and New York, USA: Cambridge University Press.
    [16] Kostov Y, Armour K C, Marshall J. 2014. Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change[J]. Geophys. Res. Lett., 41 (6):2108-2116, doi: 10.1002/2013GL058998.
    [17] Kuhlbrodt T, Gregory J M. 2012. Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change[J]. Geophys. Res. Lett., 39 (18):L18608, doi: 10.1029/2012GL052952.
    [18] Levitus S, Antonov J, Boyer T, et al. 2012. World ocean heat content and thermometric sea level change (0-2000 m), 1955-2010[J]. Geophys. Res. Lett., 39 (10):L10603, doi: 10.1029/2012GL051106.
    [19] Li L J, Lin P F, Yu Y Q, et al. 2013. The flexible global ocean-atmosphere-land system model, grid-point version 2:FGOALS-g2[J]. Adv. Atmos. Sci., 30 (3):543-560, doi: 10.1007/s00376-012-2140-6.
    [20] Lin P F, Yu Y Q, Liu H L. 2013a. Long-term stability and oceanic mean state simulated by the coupled model FGOALS-s2[J]. Adv. Atmos. Sci., 30 (1):175-192, doi: 10.1007/s00376-012-2042-7.
    [21] Lin P F, Liu H L, Yu Y Q, et al. 2013b. Long-term behaviors of two versions of FGOALS2 in preindustrial control simulations with implications for 20th century simulations[J]. Adv. Atmos. Sci., 30 (3):577-592, doi: 10.1007/s00376-013-2186-0.
    [22] Liu H L, Lin P F, Yu Y Q, et al. 2012. The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2[J]. Acta Meteor. Sinica, 26 (3):318-329, doi: 10.1007/s13351-012-0305-y.
    [23] Meehl G A, Stocker T F, Collins W D, et al. 2007. Global climate projections[M]//Solomon S, Qin D, Manning M, et al. Climate Change 2007: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 747-845.
    [24] Morrison A K, Griffies S M, Winton M, et al. 2016. Mechanisms of southern ocean heat uptake and transport in a global eddying climate model[J]. J. Climate, 29 (6):2059-2075, doi: 10.1175/JCLI-D-15-0579.1.
    [25] Raper S C B, Gregory J M, Stouffer R J. 2002. The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response[J]. J. Climate, 15 (1):124-130, doi:10.1175/1520-0442(2002) 015<0124:TROCSA>2.0.CO;2.
    [26] Rugenstein M A A, Winton M, Stouffer R J, et al. 2013. Northern high-latitude heat budget decomposition and transient warming[J]. J. Climate, 26 (2):609-621, doi: 10.1175/JCLI-D-11-00695.1.
    [27] Stouffer R J, Russell J, Spelman M J. 2006a. Importance of oceanic heat uptake in transient climate change[J]. Geophys. Res. Lett., 33 (17):L17704, doi: 10.1029/2006GL027242.
    [28] Stouffer R J, Broccoli A J, Delworth T L, et al. 2006b. GFDL's CM2 global coupled climate models. Part Ⅳ:Idealized climate response[J]. J. Climate, 19 (5):723-740, doi: 10.1175/JCLI3632.1.
    [29] Winton M, Anderson W G, Delworth T L, et al. 2014. Has coarse ocean resolution biased simulations of transient climate sensitivity?[J] Geophys. Res. Lett., 41 (23):8522-8529, doi: 10.1002/2014GL061523.
    [30] Yokohata T, Emori S, Nozawa T, et al. 2007. Different transient climate responses of two versions of an atmosphere-ocean coupled general circulation model[J]. Geophys. Res. Lett., 34 (2):L02707, doi: 10.1029/2006GL027966.
  • 加载中
图(6)
计量
  • 文章访问数:  2555
  • HTML全文浏览量:  45
  • PDF下载量:  932
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-11-15

目录

    /

    返回文章
    返回