Relationship between Ocean Heat Uptake and Climate Sensitivity in the Two Versions of FGOALS
-
摘要: 海洋在气候变暖过程中的重要性通常用海洋热吸收来衡量,热吸收的大小影响全球变暖的幅度。本文利用FGOALS-g2、FGOALS-s2(以下分别缩写为g2、s2)两个耦合模式的CO2浓度以每年1%速率增长(1pctCO2)试验,评估和分析海洋热吸收与气候敏感度的关系。结果表明:进入海洋净热通量(s2模式大于g2模式)会使得s2模式的海洋热吸收总体比g2模式大;更为重要的是,由于s2模式中的海洋热吸收主要集中在上层,使得耦合模式s2中的瞬态气候响应(TCR,或称气候敏感度)比g2大。当CO2浓度加倍时,在两个耦合模式中,海洋热吸收的空间分布呈现显著性的差异,s2模式中上层热吸收明显比深层大,上层热吸收主要位于太平洋和印度洋,而g2模式中上层和深层热吸收差别较小,深层主要位于大西洋和北冰洋。进一步研究表明,海洋热吸收分布特征与两个耦合模式海洋环流变化有关。在g2模式中北大西洋经圈翻转环流(AMOC)强度强且深度大,在CO2浓度加倍时,AMOC减弱小,这样AMOC可将热量带到海洋的深层,增加海洋深层热吸收。而在s2模式中,平均AMOC弱且浅,在CO2浓度加倍时,AMOC减弱明显,热量不易到达深层,主要集中在海洋上层,对气候敏感度影响更快且更强。海洋环流导致热吸收及其空间差异同时影响到气候敏感度的差异。因此,探讨海洋热吸收与气候敏感度之间的关系,利于明确气候敏感度不确定性的来源。Abstract: OHU (Ocean Heat Uptake) can affect the magnitude of global warming rate and is an important way to measure global warming. By utilizing the experiments of 1% per year increase of CO2 concentration simulated by two coupled models FGOALS-g2 and FGOALS-s2 (hereafter abbreviated g2 and s2), this study assesses and analyses the relationship between OHU and climate sensitivity. The result shows that TCR (transient climate response, i.e., climate sensitivity) in s2 is larger than that in g2, which is mainly related to larger OHU accumulation in the upper ocean, as the larger net heat flux into the ocean in s2 (compared to g2) results in larger OHU as a whole in s2 than in g2. When CO2 is doubled, there are significant differences in spatial distribution of OHU in the two coupled models. The OHU in the upper ocean is significantly larger than that in the deep ocean in s2. In s2, the OHU in the upper ocean is mainly located in the Indian-Pacific Ocean. Different from s2, the OHU difference between the upper ocean and deep ocean is small in g2. The OHU in the deep ocean is mainly located in the Atlantic-Arctic Ocean. Furthermore, the OHU distribution is related to the change in the ocean meridional overturning circulation. The AMOC (Atlantic Meridional Overturning Circulation) in g2 is stronger and deeper than that in s2 in the piControl (Pre-industrial Control) experiment. Meanwhile, the change in the AMOC is relatively small when CO2 is doubled in g2. These changes can bring more heat into the deep ocean and result in increases of OHU in the deep ocean. The averaged AMOC in s2 is weak and shallow in the piControl experiment and weakens significantly when CO2 is doubled. The absorbed heat is retained mainly in the upper ocean, which exerts rapid and strong impacts on the climate sensitivity. Therefore, the OHU change and its spatial distribution induced by ocean circulation affect the climate sensitivity. For this reason, the study of the relationship between OHU and climate sensitivity can help clarifying the uncertainty sources of climate sensitivity.
-
图 1 全球平均的(a)表面气温(实线,单位:K)及海表面温度(点线,单位:K)、(b)整层海温(单位:K)、(c)海洋热吸收(单位:109 J m-2)相对于多年平均的piControl试验的差值随时间变化曲线。(d)全球平均的海表净热通量(单位:W m-2,五点滑动平均)随时间的变化曲线。红色(蓝色)代表g2(s2)模式模拟值,黑色实线代表 1919年,灰色区域代表计算CO2浓度加倍时段范围(1910~1929年)
Figure 1. Temporal evolutions of global mean (a) surface air temperature (SAT, solid lines, units: K) and sea surface temperature (SST) changes (dotted lines, units: K), (b) full-depth ocean temperature changes (FDOT, units: K), (c) ocean heat uptake changes (OHU, units: 109 J m-2). Changes are relative to mean values in the piControl (Pre-industrial Control) experiment. (d) Temporal evolutions of sea surface net heat fluxes (5-yr running means, units: W m-2). The red (blue) lines indicate FGOALS-g2 (FGOALS-s2) simulation results. The position of black solid line indicates the year of 1919, the gray area indicates the period (1910–1929) when CO2 is doubled
图 3 g2、s2模式模拟的海温纬向平均(单位:K):(a、b)多年平均的piControl试验;(c、d)CO2浓度加倍时相对于多年平均piControl试验的差值
Figure 3. Zonal mean ocean temperature (units: K) simulated by FGOALS-g2 and FGOALS-s2, respectively: (a, b) Multi-year mean values in the piControl experiment; (c, d) changes relative to multi-year mean values in the piControl experiment when CO2 is doubled
图 4 CO2浓度加倍时g2、s2模式模拟的全球海洋热吸收平均值(单位:109 J m-2)在不同深度的空间分布:(a、b)整层海洋;(c、d)300 m以上的海洋;(e、f)300 m以下的海洋
Figure 4. Distributions of mean global ocean heat uptake (units: 109 J m-2) at different depths simulated by the FGOALS-g2 and FGOALS-s2 when CO2 is doubled: (a, b) The whole water column; (c, d) above 300 m; (e, f) below 300 m
图 5 CO2浓度加倍时海洋热吸收(单位:1023 J)在不同深度及不同海盆(全球、大西洋—北冰洋、太平洋-印度洋、南大洋)的空间分布:(a)整层海洋;(b)300 m以上的海洋;(c)300 m以下的海洋。红色(蓝色)代表g2(s2)模式
Figure 5. Distributions of ocean heat uptake (OHU, units: 1023 J) in different depths and basins (Global, Atlantic–Arctic Ocean, Pacific–Indian Ocean, Southern Ocean) when CO2 is doubled: (a) The whole water column; (b) above 300 m; (c) below 300 m. The red (blue) bars indicating FGOALS-g2 (FGOALS-s2)
图 6 g2、s2模式模拟的北大西洋经圈翻转环流(AMOC,单位:Sv):(a、b)多年平均的piControl试验;(c、d)CO2浓度加倍时相对于多年平均piControl试验的差值
Figure 6. The Atlantic Meridional Overturning Circulation (AMOC, units: Sv) simulated by the FGOALS-g2 and FGOALS-s2: (a, b) Multi-year mean values in the piControl experiment; (c, d) changes relative to Multi-year mean in the piControl experiment when CO2 is doubled
-
[1] Andrews T, Gregory J M, Webb M J, et al. 2012. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models[J]. Geophys. Res. Lett., 39 (9):L09712, doi: 10.1029/2012GL051607. [2] Balmaseda M A, Trenberth K E, Källén E. 2013. Distinctive climate signals in reanalysis of global ocean heat content[J]. Geophys. Res. Lett., 40 (9):1754-1759, doi: 10.1002/grl.50382. [3] Bao Q, Wu G X, Liu Y M, et al. 2010. An introduction to the coupled model FGOALS1.1-s and its performance in East Asia[J]. Adv. Atmos. Sci., 27 (5):1131-1142, doi: 10.1007/s00376-010-9177-1. [4] Chen X L, Zhou T J, Guo Z. 2014. Climate sensitivities of two versions of FGOALS model to idealized radiative forcing[J]. Sci. China Earth Sci., 57 (6):1363-1373, doi: 10.1007/s11430-013-4692-4. [5] Cheng L J, Trenberth K E, Palmer M D, et al. 2016. Observed and simulated full-depth ocean heat-content changes for 1970-2005[J]. Ocean Sci., 12 (4):925-936, doi: 10.5194/os-12-925-2016. [6] Cubasch U, Meehl G A, Boer G J, et al. 2001. Projections of future climate change[M]//Houghton J T, Ding Y, Griggs D J, et al. Climate Change 2001: The Scientific Basis. New York: Cambridge University Press, 525-582. [7] Gregory J M. 2000. Vertical heat transports in the ocean and their effect on time-dependent climate change[J]. Climate Dyn., 16 (7):501-515, doi: 10.1007/s003820000059. [8] Gregory J M, Dixon K W, Stouffer R J, et al. 2005. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration[J]. Geophys. Res. Lett., 32 (12):L12703, doi: 10.1029/2005GL023209. [9] Gregory J M, Webb M J. 2008. Tropospheric adjustment induces a cloud component in CO2 forcing[J]. J. Climate, 21 (1):58-71, doi: 10.1175/2007JCLI1834.1. [10] Hansen J, Russel G, Lacis A, et al. 1985. Climate response times:Dependence on climate sensitivity and ocean mixing[J]. Science, 229 (4716):857-859, doi: 10.1126/science.229.4716.857. [11] He J, Winton M, Vecchi G, et al. 2017. Transient climate sensitivity depends on base climate ocean circulation[J]. J. Climate, 30 (4):1493-1504, doi: 10.1175/JCLI-D-16-0581.1. [12] Huber M B, Zanna L. 2017. Drivers of uncertainty in simulated ocean circulation and heat uptake[J]. Geophys. Res. Lett., 44 (3):1402-1413, doi: 10.1002/2016GL071587. [13] IPCC. 1990. Climate Change: The IPCC Scientific Assessment[M]. Houghton J T, Jenkins J G, Ephraums J J, Eds. Cambridge, UK and New York, USA: Cambridge University Press. [14] IPCC. 2007. Climate Change 2007:The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK and New York, USA:Cambridge University Press. [15] IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Stocker T F, Qin D, Plattner G K, et al., Eds. Cambridge, UK and New York, USA: Cambridge University Press. [16] Kostov Y, Armour K C, Marshall J. 2014. Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change[J]. Geophys. Res. Lett., 41 (6):2108-2116, doi: 10.1002/2013GL058998. [17] Kuhlbrodt T, Gregory J M. 2012. Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change[J]. Geophys. Res. Lett., 39 (18):L18608, doi: 10.1029/2012GL052952. [18] Levitus S, Antonov J, Boyer T, et al. 2012. World ocean heat content and thermometric sea level change (0-2000 m), 1955-2010[J]. Geophys. Res. Lett., 39 (10):L10603, doi: 10.1029/2012GL051106. [19] Li L J, Lin P F, Yu Y Q, et al. 2013. The flexible global ocean-atmosphere-land system model, grid-point version 2:FGOALS-g2[J]. Adv. Atmos. Sci., 30 (3):543-560, doi: 10.1007/s00376-012-2140-6. [20] Lin P F, Yu Y Q, Liu H L. 2013a. Long-term stability and oceanic mean state simulated by the coupled model FGOALS-s2[J]. Adv. Atmos. Sci., 30 (1):175-192, doi: 10.1007/s00376-012-2042-7. [21] Lin P F, Liu H L, Yu Y Q, et al. 2013b. Long-term behaviors of two versions of FGOALS2 in preindustrial control simulations with implications for 20th century simulations[J]. Adv. Atmos. Sci., 30 (3):577-592, doi: 10.1007/s00376-013-2186-0. [22] Liu H L, Lin P F, Yu Y Q, et al. 2012. The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2[J]. Acta Meteor. Sinica, 26 (3):318-329, doi: 10.1007/s13351-012-0305-y. [23] Meehl G A, Stocker T F, Collins W D, et al. 2007. Global climate projections[M]//Solomon S, Qin D, Manning M, et al. Climate Change 2007: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 747-845. [24] Morrison A K, Griffies S M, Winton M, et al. 2016. Mechanisms of southern ocean heat uptake and transport in a global eddying climate model[J]. J. Climate, 29 (6):2059-2075, doi: 10.1175/JCLI-D-15-0579.1. [25] Raper S C B, Gregory J M, Stouffer R J. 2002. The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response[J]. J. Climate, 15 (1):124-130, doi:10.1175/1520-0442(2002) 015<0124:TROCSA>2.0.CO;2. [26] Rugenstein M A A, Winton M, Stouffer R J, et al. 2013. Northern high-latitude heat budget decomposition and transient warming[J]. J. Climate, 26 (2):609-621, doi: 10.1175/JCLI-D-11-00695.1. [27] Stouffer R J, Russell J, Spelman M J. 2006a. Importance of oceanic heat uptake in transient climate change[J]. Geophys. Res. Lett., 33 (17):L17704, doi: 10.1029/2006GL027242. [28] Stouffer R J, Broccoli A J, Delworth T L, et al. 2006b. GFDL's CM2 global coupled climate models. Part Ⅳ:Idealized climate response[J]. J. Climate, 19 (5):723-740, doi: 10.1175/JCLI3632.1. [29] Winton M, Anderson W G, Delworth T L, et al. 2014. Has coarse ocean resolution biased simulations of transient climate sensitivity?[J] Geophys. Res. Lett., 41 (23):8522-8529, doi: 10.1002/2014GL061523. [30] Yokohata T, Emori S, Nozawa T, et al. 2007. Different transient climate responses of two versions of an atmosphere-ocean coupled general circulation model[J]. Geophys. Res. Lett., 34 (2):L02707, doi: 10.1029/2006GL027966. -