高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青藏高原感热气泵影响亚洲夏季风的机制

吴国雄 刘屹岷 何编 包庆 王子谦

吴国雄, 刘屹岷, 何编, 包庆, 王子谦. 青藏高原感热气泵影响亚洲夏季风的机制[J]. 大气科学, 2018, 42(3): 488-504. doi: 10.3878/j.issn.1006-9895.1801.17279
引用本文: 吴国雄, 刘屹岷, 何编, 包庆, 王子谦. 青藏高原感热气泵影响亚洲夏季风的机制[J]. 大气科学, 2018, 42(3): 488-504. doi: 10.3878/j.issn.1006-9895.1801.17279
Guoxiong WU, Yimin LIU, Bian HE, Qing BAO, Ziqian WANG. Review of the Impact of the Tibetan Plateau Sensible Heat Driven Air-Pump on the Asian Summer Monsoon[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(3): 488-504. doi: 10.3878/j.issn.1006-9895.1801.17279
Citation: Guoxiong WU, Yimin LIU, Bian HE, Qing BAO, Ziqian WANG. Review of the Impact of the Tibetan Plateau Sensible Heat Driven Air-Pump on the Asian Summer Monsoon[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(3): 488-504. doi: 10.3878/j.issn.1006-9895.1801.17279

青藏高原感热气泵影响亚洲夏季风的机制

doi: 10.3878/j.issn.1006-9895.1801.17279
基金项目: 

中国科学院前沿科学重点研究项目 QYZDY-SSW-DQC018

国家自然科学基金项目(NSFC) 41730963

国家自然科学基金项目(NSFC) 91637312

国家自然科学基金项目(NSFC) 91437219

国家自然科学基金项目(NSFC) 91637208

NSFC—广东联合基金(第二期)超级计算科学应用研究专项资助和国家超级计算广州中心项目 U1501501

详细信息
    作者简介:

    吴国雄, 男, 1943年出生, 研究员, 主要从事天气气候动力学研究。E-mail:gxwu@lasg.iap.ac.cn

    通讯作者:

    何编, E-mail:heb@lasg.iap.ac.cn

  • 中图分类号: P461

Review of the Impact of the Tibetan Plateau Sensible Heat Driven Air-Pump on the Asian Summer Monsoon

Funds: 

Key Research Program of Frontier Sciences QYZDY-SSW-DQC018

National Natural Science Foundation of China 41730963

National Natural Science Foundation of China 91637312

National Natural Science Foundation of China 91437219

National Natural Science Foundation of China 91637208

Special Program for Applied Research on Super Computation of the NSFC–Guangdong Joint Fund (the second phase) U1501501

  • 摘要: 本文回顾了二十年来关于青藏高原感热驱动气泵(TP-SHAP)及其影响亚洲夏季风的研究进展,并从能量(θ)、位涡—加热(PV–Q)、和角动量守恒(AMC)的不同角度阐述其影响机制。指出高原斜坡上的表面感热加热改变了移向高原的大气质块的能量从而出现垂直抽吸的重要性。强调了高原加热产生的位涡强迫在近地层制造了强度大范围广的、环绕高原的气旋式环流,把丰沛的水汽从海洋输运到大陆,为季风对流降水提供充足的水汽条件。证明高原加热还通过改变其上空的温、压场的结构从而制造出高原上空近对流层顶的绝对涡度和位涡的最小值,在角动量平衡约束下,在亚洲季风区激发出与Hadley环流反向的季风经圈环流,从而为季风发生发展提供了大范围上升运动的背景。文中还对近年来有关青藏高原影响亚洲夏季风机制的讨论进行概述,并展望了未来的研究方向。
  • 图  1  1986~1995年(a、b)7月和(c、d)1月平均的位温(等值线,单位:K)和风场(箭头,单位:m s-1)(a、c)沿30°N、(b、d)沿90°E的剖面分布。(改自Wu et al., 2007)

    Figure  1.  (a, b) July and (c, d) January mean cross sections of potential temperature (contours, units: K) and winds (vectors, units: m s-1) along (a, c) 30°N and (b, d) 90°E during 1986–1995. (Adapted from Wu et al., 2007)

    图  2  1979~2010年7月平均的青藏高原和孟加拉湾上空加热率廓线。黄、红色线分别为青藏高原上空平均的总加热率和垂直扩散加热率;紫、蓝色线分别为孟加拉湾上空平均的总加热率和凝结加热率

    Figure  2.  July mean vertical heating profiles over the Tibetan Plateau and the Bay of Bengal during 1979–2010. Yellow and red lines represent total heating and vertical diffusive heating over the Tibetan Plateau, respectively; purple and blue lines denote total heating and convective heating over the Bay of Bengal, respectively

    图  3  (a)ALLSH试验、(b)SLPSH试验、(c)TOPSH试验在σ=0.991坐标面上的风速(箭头,单位:m s-1)和垂直速度(−ω,等值线,彩色阴影表示上升运动,单位:10−2 Pa s-1)与NOSH试验的差异分布。左列为试验设计,右列为相关机制示意图,桔红填色代表地形,加粗红短线表示给定了地表感热加热;中列的虚矩形表示给定梯型山脉的底部。(改自Wu et al., 2007)

    Figure  3.  Distributions of differences in wind (vectors, units: m s-1) and vertical velocity (–ω, color shadings, units: 10−2 Pa s-1) at the σ=0.991 between experiment NOSH (no sensible heating) and experiments (a) ALLSH (sensible heating on all surface), (b) SLPSH (sensible heating on slope), and (c) TOPSH (sensible heating on top). Left panels indicate the experiment designs, right panels indicate interpretations of the relevant mechanisms. Orange shadings represent mountain and heavy red bars denote the imposed surface sensible heating. In middle panels, the dashed rectangle indicates the prescribed mountain base. (Adapted from Wu et al., 2007)

    图  4  GCM模式中6~8月平均降水量(彩色阴影,单位:mm d-1)和850 hPa风场(箭头,单位:m s-1)的分布:(a)CON试验;(b)TOP_NS试验;(c)喜马拉雅试验HIM;(d)HIM_NS试验。图b、d中,红色实线表示试验中无感热加热区域。紫色等值线表示1.5 km和3.0 km的地形等高线,下同。右列为相关机制示意图。(改自Wu et al., 2012)

    Figure  4.  JJA (June, July, and August) mean precipitation rate (color shadings, units: mm d-1) and 850-hPa winds (arrows, units: m s-1) from GCM model for (a) control experiment CON with full topography, (b) experiment TOP_NS in which sensible heating at the top of the Tibetan Plateau is removed, (c) experiment HIM in which surface elevations north of the Himalayas is set to zero, (d) experiment HIM_NS, which is the same as the HIM run except the surface sensible heating on the Himalayas is set to zero. In Figs. b, d, red lines indicate sensible heating is removed. Purple contours surround elevations higher than 1500 m and 3000 m, the same below. Right panels provide corresponding mechanisms. (Adapted from Wu et al., 2012)

    图  5  不同数值试验中夏季平均的降水(彩色阴影,单位:mm d-1)和850 hPa风场(箭头,单位:m s-1)的分布:(a)背景试验CON;(b)去除全球地形,仅保留海—陆分布的试验L_S;(c)图a与图b的差异;(d)仅TIP机械强迫的试验TIP_M;(e)仅TIP表面感热加热的试验TIP_SH。(改自Wu et al., 2012)

    Figure  5.  JJA mean precipitation (color shadings, units: mm d-1) and 850-hPa winds (arrows, units: m s-1): (a) Control experiment CON with full topography; (b) experiment L_S in which no topography is presented; (c) differences between Fig. a and Fig. b; (d) experiment TIP_M in which TIP (Tibetan–Iranian Plateau) is added but without surface sensible heating to the atmosphere; (e) experiment TIP_SH showing the impacts of TIP surface sensible heating on the ASM (Asian summer monsoon). (Adapted from Wu et al. 2012)

    图  6  在GCM试验中夏季平均的近地表(σ=0.991)位温(彩色阴影,单位:K)和环流(箭头,单位:m s-1)差异分布:(a)CON-TIP_NS;(b)干大气模式试验CON_dry-TIP_NS_dry。方框区域表示南亚季风区北部(24°~28°N,75°~100°E)。(引自He et al., 2015)

    Figure  6.  JJA mean differences of potential temperature (color shadings, units: K) and circulation (arrows, units: m s-1) in near surface (σ=0.991) from GCM model: (a) between CON (experiment with sensible heating) and TIP_NS (experiment without sensible heating), (b) between CON_dry (dry experiment with sensible heating) and TIP_NS_dry (dry experiment without sensible heating). The rectangle indicates the north (24°–28°N, 75°–100°E) of South Asian summer monsoon region. (Cited from He et al., 2015)

    图  7  夏季平均的绝对涡度(彩色阴影,单位:10−5 s-1)和经圈环流(流线)的纬度—高度分布:(a)东太平洋(160°E~90°W)平均;(b)亚洲季风区(70°~90°E)平均。红色带箭头粗线表示经圈环流方向;白虚线表示副高脊线位置(纬向风u=0等值线);灰色阴影表示地形

    Figure  7.  JJA mean absolute vorticity (color shadings, units: 10−5 s-1) and meridional circulation (streamline) averaged over (a) the eastern Pacific (160°E–90°W), (b) the ASM area (70°–90°E). Heavy red curves with arrows indicate circulation directions; white dashed curves denote the ridge line locations (zonal wind u=0) of the subtropical anticyclone; gray shadings indicate topography

    图  8  基于WRF模式试验中夏季平均的温度场(彩色阴影,单位:K)和风场(箭头,单位:m s-1)在(a、b)300 hPa和(c、d)100 hPa的分布:(a、c)CTL试验;(b、d)CTL试验减TP_NS试验。图b、d中,黑色箭头和打点区分别表示风场差异和温度差异超过95%信度水平。(改自吴国雄等,2016)

    Figure  8.  JJA mean air temperature (color shadings, units: K) and wind field (arrows, units: m s-1) at (a, b) 300 hPa and (c, d) 100 hPa from WRF model for the experiments of (a, c) CTL and (b, d) the differences between CTL and TP_NS. In Figs. b and d, the black arrows and the dotted regions denote wind differences and temperature differences above 95% confidence levels. (Adapted from Wu et al., 2016)

    图  9  模式模拟的在青藏高原上空(37°N,95°E)处的(a)温度廓线、(b)温度垂直递减率和(c)背景试验CTL与高原无表面感热加热试验的 温度差异廓线。(改自刘屹岷等,2017)

    Figure  9.  Profiles over the Tibetan Plateau (37°N, 95°E) produced from numerical experiments of (a) air temperature, (b) lapse rate, and (c) temperature difference between CTL and TIP_NS. (Adapted from Liu et al., 2017)

    图  10  青藏高原主体加热通过改变对流层上层的温度场和流场结构在近对流层顶形成最小位涡强迫的示意图。Pc表示临界气压层,箭矢表示反气旋环流,“C”和蓝色表示冷性,“W”和粉红色表示暖性。(吴国雄等,2016)

    Figure  10.  Schematic diagram indicating the formation of the area of minimum PV (potential vorticity) forcing near the tropopause due to thermal forcing over the main body of the TP. Pc indicates critical pressure level, vectors indicate anticyclonic circulation, "C" and blue denote cold temperature, "W" and pink denote warm temperature. (Cited from Wu et al., 2016)

    图  11  基于WRF模式模拟的夏季CTL和TP_NS两组试验的差异场(CTL-TP_NS)分布:(a)150 hPa绝对涡度(单位:10−5 s-1);(b)沿35°N的垂直位涡(单位:PVU,1 PVU=10−6 K m2 s-1 kg-1)。打点区表示差异超过95%信度水平。(改自吴国雄等,2016)

    Figure  11.  JJA mean distributions of differences in (a) 150-hPa absolute vorticity (shadings, units: 10−5 s-1) and (b) potential vorticity (units: PVU, 1 PVU=10−6 K m2 s-1 kg-1) along 35°N simulated by experiment CTL and experiment TP_NS (CTL minus TP_NS). Dotted regions denote statistical significance of the differences above the 95% confidence level. (Adapted from Wu et al., 2016)

    图  12  (a)夏至日长分布,彩色阴影表示地形;(b)7月云量(上图)和到达地表的短波辐射(单位:W m−2,下图);(c)75°~100°E范围内平均的到达大气层顶的太阳辐射随纬度分布的年变化(单位:W m−2),白色虚线表示480 W m−2等值线,白色方框示6~8月南亚季风区北部(24°~28°N)所在位置。75°~100°E范围内平均的地表北风风速(m s-1)分布:(d)2001年ERA-interim资料;(e)CON试验;(f)无地形试验NOTIP。图d–f中,红色方框示6~8月南亚季风区北部(24°~28°N)所在位置。(改自He et al., 2015)

    Figure  12.  (a) The length of day (LOD) on the summer solstice; (b) July mean cloud fraction (upper panel) and surface downward short wave radiation (units: W m−2, lower panel); (c) annual evolution of daily short wave radiation (units: W m−2) averaged along 75°–100°E at the TOA (top of atmosphere), white dashed line denotes the 480 W m−2 contour, the white rectangle indicate the South Asian summer monsoon (SASM) region (24°–28°N) during JJA. Annual evolution of surface northerly wind (units: m s-1) occurrence averaged along 75°–100°E from (d) ERA-interim in 2001, (e) experiment CON, (f) experiment NOTIP (no TIP topography). The red rectangles in Figs. d–f indicate the SASM region (24°–28°N) during JJA. (Adopted from He et al., 2015)

    图  13  从ERA再分析资料计得的夏季要素分布:(a)200 hPa(蓝色)和400 hPa(绿色)等高线(单位:dagpm)和200~400 hPa质量加权平均等温线(红色,单位:K);(b)500 hPa垂直速度(填色,单位:hPa s-1),200~400 hPa质量加权平均等温线(红色线,单位:K),地表熵>356 K区域(紫色点区,单位:K),以及300 hPa等压面上的u=0等值线(黑色虚线);(c)60°~100°E平均的非绝热加热Q/cp(填色,单位:K d-1)和绝热加热(蓝色点线,单位:K d-1),副高脊线(黑虚线),以及温度对(0°~50°N,40°~160°E)区域平均的偏差(红线,单位间隔5 K)。(引自Wu et al., 2015)

    Figure  13.  JJA mean distributions from ERA reanalysis data: (a) 200-hPa geopotential height (blue solid lines, units: dagpm) and 400-hPa geopotential height (green dashed lines, units: dgpm), 200–400 hPa mass-weighted mean temperature (red solid lines, units: K); (b) 500-hPa vertical velocity (shadings, units: hPa s-1), 200–400 hPa mass-weighted mean temperature (red contours, units: K), surface entropy more than 356 K (purple stippled; units: K), and the 300-hPa contour of u=0 (black dashed line); (c) 60°–100°E averaged diabatic heating Q/cp (shadings, units: K d-1) and adiabatic heating (blue dotted contours, units: K d-1), ridgeline (black dashed line), and mean temperature deviation (red contours, interval: 5 K) from the area (0°–50°N, 40°–160°E). (Cited from Wu et al., 2015)

    图  14  上对流层温度最大中心的经度位置与加热垂直梯度分布的T–Qz关系示意图。副热带强烈的季风对流加热导致上升运动(蓝色向上箭头),并在加热中心上方引起北风切变(黑色箭头),进一步导致了对流层上层向东的温度梯度减弱,最终导致UTTM在加热中心西侧形成,并伴随南亚高压增强。在副热带欧亚大陆西部的垂直南风切变是由局地表面的强感热加热以及对流层上层的长波辐射冷却导致(红色向下箭头),在冷却区东侧的UTTM和SAH(South Asian High)的形成有重要贡献。黑箭头为加热驱动的经向风v,橘黄色箭头示与气压梯度力平衡的惯性力fv,蓝色实线线示200 hPa南亚高压分布,粉色实线表示300 hPa等温线,粉色虚线为300 hPa上u=0的等值线。(引自Wu et al., 2015)

    Figure  14.  Schematic diagram of the T–Qz mechanism contributing to the longitudinal location of the upper-troposphere temperature maximum (UTTM). Strong monsoon convective latent heating induces upward motion (blue upward arrows) along the subtropics, and results in local development of a vertical northerly shear (black arrows). Further, it induces an eastward decreasing temperature gradient over the heated layer in the upper troposphere, and eventually leads to the formation of the UTTM and the intensified South Asian High (SAH) to the west of the heating. The vertical southerly shear over the western Eurasian subtropics is caused by strong surface sensible heating at surface and longwave radiation cooling (red downward arrow) in the upper troposphere. It contributes to the formation of the UTTM and SAH on the eastern side of the cooling. The black arrows denote the meridional wind driven by heating, the orange arrows denote the Coriolis force (fv) which is in geostrophic balance with the pressure gradient force, the blue solid line denotes the SAH at 200 hPa, the pink solid line denotes air temperature at 300 hPa, and the pink dashed line denotes u=0 contour at 300 hPa. (Cited from Wu et al., 2015)

  • [1] Boos W R, Kuang Z M. 2010. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating[J]. Nature, 463 (7278):218-222, doi: 10.1038/nature08707.
    [2] Emanuel K A, Neelin J D, Bretherton C S. 1994. On large-scale circulations in convecting atmospheres[J]. Quart. J. Roy. Meteor. Soc., 120 (518):1111-1143, doi: 10.1002/qj.49712051902.
    [3] Flohn H. 1957. Large-scale aspects of the "summer monsoon" in South and East Asia[J]. J. Meteor. Soc. Japan, 35A:180-186, doi: 10.2151/jmsj1923.35A.0_180.
    [4] He B, Wu G X, Liu Y M, et al. 2015. Astronomical and hydrological perspective of mountain impacts on the Asian summer monsoon[J]. Sci. Rep. 5:17586, doi: 10.1038/srep17586.
    [5] Held I M, Hou A Y. 1980. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere[J]. J. Atmos. Sci., 37 (3):515-533, doi:10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.
    [6] Hoskins B J. 1991. Towards a PV-θ view of the general circulation[J]. Tellus, 43 (4):27-35, doi: 10.1034/j.1600-0870.1991.t01-3-00005.x.
    [7] Hoskins B J, McIntyre M E, Robertson A W. 1985. On the use and significance of isentropic potential vorticity maps[J]. Quart. J. Roy. Meteor. Soc., 111 (470):877-946, doi: 10.1002/qj.49711147002.
    [8] Hu S N, Boos W R. 2017. The physics of orographic elevated heating in radiative-convective equilibrium[J]. J. Atmos. Sci., 74 (9):2949-2965, doi: 10.1175/JAS-D-16-0312.1.
    [9] 刘新, 吴国雄, 李伟平, 等. 2001.夏季青藏高原加热和大尺度流场的热力适应[J].自然科学进展, 11 (1):33-39. doi: 10.3321/j.issn:1002-008X.2001.01.006

    Liu Xin, Wu Guoxiong, Li Weiping, et al. 2001. Thermal adaptation of the large scale circulation to the summer heating over the Tibetan Plateau[J]. Progress in Natural Science (in Chinese), 11 (3):33-39, doi:10.3321/j.issn:1002-008X.2001. 01.006.
    [10] 刘屹岷, 吴国雄, 宇如聪, 等. 2001.热力适应、过流、频散和副高Ⅱ.水平非均匀加热与能量频散[J].大气科学, 25 (3):317-328. doi: 10.3878/j.issn.1006-9895.2001.03.03

    Liu Yimin, Wu Guoxiong, Yu Rucong, et al. 2001. Thermal adaptation, overshooting, dispersion, and subtropical anticyclone. Part Ⅱ:Horizontal inhomogeneous heating and energy dispersion[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 25 (3):317-328, doi: 10.3878/j.issn.1006-9895.2001.03.03.
    [11] Liu Y M, Wu G X, Liu H, et al. 2001. Condensation heating of the Asian summer monsoon and the subtropical anticyclone in the Eastern Hemisphere[J]. Climate Dyn., 17 (4):327-338, doi: 10.1007/s003820000117.
    [12] Liu Y M, Wu G X, Hong J L, et al. 2012. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing. Ⅱ:Change[J]. Climate Dyn., 39 (5):1183-1195, doi: 10.1007/s00382-012-1335-y.
    [13] 刘屹岷, 王子谦, 卓海峰, 等. 2017.夏季亚洲大地形双加热及近对流层顶位涡强迫的激发Ⅱ:伊朗高原-青藏高原感热加热[J].中国科学:地球科学, 47 (3):354-366, doi:10.1360/N072016-00080.

    Liu Yimin, Wang Ziqian, Zhuo Haifeng, et al. 2017. Two types of summertime heating over Asian large-scale orography and excitation of potential-vorticity forcing. Ⅱ:Sensible heating over Tibetan-Iranian Plateau[J]. Science China Earth Sciences, 60 (4):733-744, doi: 10.1007/s11430-016-9016-3.
    [14] Ma D, Boos W, Kuang Z M. 2014. Effects of orography and surface heat fluxes on the South Asian summer monsoon[J]. J. Climate, 27 (17):6647-6659, doi: 10.1175/JCLI-D-14-00138.1.
    [15] Molnar P, Emanuel K A. 1999. Temperature profiles in radiative-convective equilibrium above surfaces at different heights[J]. J. Geophys. Res., 104 (D20):24265-24271, doi: 10.1029/1999JD900485.
    [16] Plumb R A, Hou A Y. 1992. The response of a zonally symmetric atmosphere to subtropical thermal forcing:Threshold behavior[J]. J. Atmos. Sci., 49 (19):1790-1799, doi:10.1175/1520-0469(1992)049<1790:TROAZS>2.0.CO;2.
    [17] Qiu J. 2013. Monsoon melee[J]. Science, 340 (6139):1400-1401, doi: 10.1126/science.340.6139.1400.
    [18] Schneider E K. 1977. Axially symmetric steady-state models of the basic state for instability and climate studies. Part Ⅱ:Nonlinear calculations[J]. J. Atmos. Sci., 34 (2):280−296, doi:10.1175/1520-0469(1977)034<0280:ASSSMO>2.0.CO;2.
    [19] Schneider E K, Lindzen R S. 1977. Axially symmetric steady-state models of the basic state for instability and climate studies. Part Ⅰ:Linearized calculations[J]. J. Atmos. Sci., 34 (2):263−279, doi:10.1175/1520-0469 (1977)034<0263:ASSSMO>2.0.CO;2.
    [20] Schneider E K. 1987. A simplified model of the modified Hadley circulation[J]. J. Atmos. Sci., 44 (22):3311−3328, doi:10.1175/1520-0469(1987)044<3311:ASMOTM>2.0.CO;2.
    [21] Thorpe A J. 1985. Diagnosis of balanced vortex structure using potential vorticity[J]. J. Atmos. Sci., 42 (4):397-406, doi:10.1175/1520-0469(1985) 042<0397:DOBVSU>2.0.CO;2.
    [22] 吴国雄, 刘屹岷. 2000.热力适应、过流、频散和副高Ⅰ.热力适应和过流[J].大气科学, 24 (4):433-446. doi: 10.3878/j.issn.1006-9895.2000.04.01

    Wu Guoxiong, Liu Yimin. 2000. Thermal adaptation, overshooting, dispersion, and subtropical anticyclone. Part Ⅰ:Thermal adaptation and overshooting[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 24 (4):433-446, doi:10.3878/j.issn. 1006-9895.2000.04.01.
    [23] Wu G X, Liu H, Zhao Y C, et al. 1996. A nine-layer atmospheric general circulation model and its performance[J]. Adv. Atmos. Sci., 13 (1):1-18, doi: 10.1007/BF02657024.
    [24] 吴国雄, 李伟平, 郭华, 等. 1997. 青藏高原感热气泵和亚洲夏季风[M]//叶笃正. 赵九章纪念文集. 北京: 科学出版社, 116-126.

    Wu Guoxiong, Li Weiping, Guo Hua, et al. 1997. Sensible heat driven air-pump over the Tibetan Plateau and its impacts on the Asian summer monsoon[M]//Ye Duzheng. Collections on the Memory of Zhao Jiuzhang (in Chinese). Beijing: Science Press, 116-126.
    [25] Wu G X, Liu Y M, Zhang Q, et al. 2007. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate[J]. Journal of Hydrometeorology, 8(4):770-789, doi: 10.1175/JHM609.1.
    [26] Wu G X, Liu Y M, Dong B W, et al. 2012a. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing. Ⅰ:Formation[J]. Climate Dyn., 39 (5):1169-1181, doi: 10.1007/s00382-012-1334-z.
    [27] Wu G X, Liu Y M, He B, et al. 2012b. Thermal controls on the Asian summer monsoon[J]. Sci. Rep., 2:404, doi: 10.1038/srep00404.
    [28] Wu G X, Duan A M, Liu Y M, et al. 2015a. Tibetan Plateau climate dynamics:Recent research progress and outlook[J]. National Science Review, 2 (1):100-116, doi: 10.1093/nsr/nwu045.
    [29] Wu G X, He B, Liu Y M, et al. 2015b. Location and variation of the summertime upper-troposphere temperature maximum over South Asia[J]. Climate Dyn., 45 (9-10):2757-2774, doi: 10.1007/s00382-015-2506-4.
    [30] 吴国雄, 卓海峰, 王子谦, 等. 2016.夏季亚洲大地形双加热及近对流层顶位涡强迫的激发(Ⅰ):青藏高原主体加热.中国科学:地球科学, 46 (9):1209-1222, doi:10.1360/N072015-00519.

    Wu Guoxiong, Zhuo Haifeng, Wang Ziqian, et al. 2016. Two types of summertime heating over the Asian large-scale orography and excitation of potential-vorticity forcing. Ⅰ:Over Tibetan Plateau[J]. Science China:Earth Sciences, 59 (10):1996-2008, doi: 10.1007/s11430-016-5328-2.
    [31] Yanai M, Wu G X. 2006. Effects of the Tibetan Plateau[M]//Wang B. The Asian Monsoon. Berlin, Heidelberg: Springer, 513-549.
    [32] 叶笃正, 罗四维, 朱抱真. 1957.西藏高原及其附近的流场结构和对流层大气的热量平衡[J].气象学报, 28 (2):108‒121. doi: 10.11676/qxxb1957.010

    Ye Duzheng, Luo Siwei, Zhu Baozhen. 1957. The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding[J]. Acta Meteorologica Sinica (in Chinese), 28 (2):108-121, doi: 10.11676/qxxb1957.010.
  • 加载中
图(14)
计量
  • 文章访问数:  2658
  • HTML全文浏览量:  157
  • PDF下载量:  1757
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-15
  • 网络出版日期:  2018-01-15
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回