高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东亚夏季风变化机理的模拟和未来变化的预估:成绩和问题、机遇和挑战

周天军 吴波 郭准 何超 邹立维 陈晓龙 张丽霞 满文敏 李普曦 李东欢 姚隽琛 黄昕 张文霞 左萌 陆静文 孙宁

周天军, 吴波, 郭准, 何超, 邹立维, 陈晓龙, 张丽霞, 满文敏, 李普曦, 李东欢, 姚隽琛, 黄昕, 张文霞, 左萌, 陆静文, 孙宁. 东亚夏季风变化机理的模拟和未来变化的预估:成绩和问题、机遇和挑战[J]. 大气科学, 2018, 42(4): 902-934. doi: 10.3878/j.issn.1006-9895.1802.17306
引用本文: 周天军, 吴波, 郭准, 何超, 邹立维, 陈晓龙, 张丽霞, 满文敏, 李普曦, 李东欢, 姚隽琛, 黄昕, 张文霞, 左萌, 陆静文, 孙宁. 东亚夏季风变化机理的模拟和未来变化的预估:成绩和问题、机遇和挑战[J]. 大气科学, 2018, 42(4): 902-934. doi: 10.3878/j.issn.1006-9895.1802.17306
Tianjun ZHOU, Bo WU, Zhun GUO, Chao HE, Liwei ZOU, Xiaolong CHEN, Lixia ZHANG, Wenmin MAN, Puxi LI, Donghuan LI, Junchen YAO, Xin HUANG, Wenxia ZHANG, Meng ZUO, Jingwen LU, Ning SU. A Review of East Asian Summer Monsoon Simulation and Projection: Achievements and Problems, Opportunities and Challenges[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4): 902-934. doi: 10.3878/j.issn.1006-9895.1802.17306
Citation: Tianjun ZHOU, Bo WU, Zhun GUO, Chao HE, Liwei ZOU, Xiaolong CHEN, Lixia ZHANG, Wenmin MAN, Puxi LI, Donghuan LI, Junchen YAO, Xin HUANG, Wenxia ZHANG, Meng ZUO, Jingwen LU, Ning SU. A Review of East Asian Summer Monsoon Simulation and Projection: Achievements and Problems, Opportunities and Challenges[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4): 902-934. doi: 10.3878/j.issn.1006-9895.1802.17306

东亚夏季风变化机理的模拟和未来变化的预估:成绩和问题、机遇和挑战

doi: 10.3878/j.issn.1006-9895.1802.17306
基金项目: 

国家自然科学基金项目 41420104006

国家自然科学基金项目 41330423

中国科学院"国际伙伴计划——国际大科学计划培育专项" 134111KYSB20160031

详细信息
    作者简介:

    周天军, 男, 1969年出生, 研究员, 主要从事全球季风和气候模拟方面的研究。E-mail:zhoutj@lasg.iap.ac.cn

  • 中图分类号: P461

A Review of East Asian Summer Monsoon Simulation and Projection: Achievements and Problems, Opportunities and Challenges

Funds: 

National Natural Science Foundation of China (NSFC) 41420104006

National Natural Science Foundation of China (NSFC) 41330423

the International Partnership Program of Chinese Academy of Sciences 134111KYSB20160031

  • 摘要: 东亚夏季风对于我国东部气候具有重要影响,呈现出多种时间尺度的变化特征。在理解东亚夏季风过去和当前的变化机理、预测和预估其未来变化等方面,气候系统模式发挥着不可替代的作用。但是当前的气候模式在东亚夏季风的模拟上尚存在诸多不足,这使得其模拟结果存在不确定性,既制约了我们对过去和当前季风变化机理的准确理解,又降低了未来预测预估结果的可信度。关于造成季风模拟偏差的原因,既涉及模式本身的性能问题,又与模拟系统的构建、强迫资料的误差、乃至我们当前对季风变化规律自身的认知水平有关。本文以时间尺度为序,从气候态、日变化、年际变率、年代际变率、长期气候变化和未来预估等季风学界关注的热点问题角度,本着总结成绩、归纳问题、寻找机遇、面对挑战的目的,从七个方面系统总结了当前气候模式的水平,归纳了其主要偏差特征,讨论了影响模式性能的可能因素。内容涉及模式分辨率和地形效应、对流和云辐射效应的作用、与季风相关的热带海气相互作用关键过程、内部变率(太平洋年代际振荡)、自然变率(太阳辐照度变化和火山气溶胶强迫)和人为辐射强迫(人为温室气体和气溶胶排放)对季风变化的不同影响、热力和动力过程及气候敏感度对季风环流(副高)和降水预估不确定性的影响等。最后从优化参数、实现场地观测和过程模拟的协同、发展高分辨和对流解析模式等角度,讨论了提升东亚夏季风模拟能力的技术途径。
  • 图  1  (a)基于全球降水气候计划(GPCP)资料计算的1979~2010年气候态平均夏季降水[北半球6~8月(JJA),南半球12月至次年2月(DJF)]占年降水的百分比,黑线表示全球季风区;(b)基于格点化全球人口数据集(版本3)给出的2000年全球人口分布(单位:103),黑线表示全球陆地季风区,右上角给出全球季风区的总人口数及其占全球总人口的比例

    Figure  1.  (a) The proportion of local summer precipitation [June–July–August (JJA) in the Northern Hemisphere and December–January–February (DJF) in the Southern Hemisphere] in annual mean precipitation derived from Global Precipitation Climatology Project (GPCP) in 1979–2010, the black line indicates the regions of global monsoon; (b) the population (units: 103 persons) in 2000 AD, the black line indicates the regions of global monsoon and the number above the plot presents the percentage of population in the monsoon region to global population

    图  2  (a)第三次气候耦合模式比较计划(CMIP3)和(b)第五次气候耦合模式比较计划(CMIP5)两代大气环流模式进行多模式集合所模拟的气候态夏季降水量与GPCP观测资料的差值(单位:mm d−1)。基于Song and Zhou(2014a)所用模式资料新绘制

    Figure  2.  Differences in climatological JJA mean precipitation between (a) phase 3 of Coupled Model Intercomparison Project (CMIP3)/ (b) phase 5 of Coupled Model Intercomparison Project (CMIP5) and GPCP (units: mm d−1). Adapted from Song and Zhou (2014a)

    图  3  气候态夏季850 hPa风场(矢量,单位:m s−1)和降水量(彩色阴影,单位:mm d−1):(a,b)NCEP2和ERA40的风场和GPCP/CMAP降水;(c,d)CMIP5和CMIP3多个大气环流模式的集合平均结果。根据Song and Zhou(2014a)重新绘制

    Figure  3.  Climatological distributions of JJA mean precipitation (shaded; units: mm d−1) and 850-hPa winds (vectors; units: m s−1) from (a) GPCP and NCEP2 data, (b) CMAP and ERA40 data, (c) multiple ensemble mean (MME) of CMIP5 models and (d) MME of CMIP3 models. Adapted from Song and Zhou (2014a)

    图  4  高分辨率模式提高东亚夏季风雨带模拟技巧示意图。模式分辨率的提升使得青藏高原地形更加精细,在东部季风区产生正压的地形罗斯贝波,加强了该区域的相对于纬向平均的定常经向涡动平流,使得湿焓平流输送与水汽辐的加强,最终令季风雨带模拟技巧提升。基于Yao et al. (2017)绘制的机制示意图

    Figure  4.  Schematic of how the high-resolution climate model improves the simulation of the East Asian Summer Monsoon (EASM) rain belt. Due to the increasing model resolution, a barotropic Rossby wave response downstream of the Tibetan Plateau is generated, and meridional convergence and moisture convergence along the EASM rainbelt are further intensifies. Thus, the EASM rain belt simulation is improved in the high-resolution models. Adapted from Yao et al. (2017)

    图  5  1998~2006年观测(黑色实线)和6个CMIP5大气环流模式模拟的我国副热带地区(a)西部平原(青藏高原东坡)、(b)东部平原(江淮流域)、(c)中国东海的总降水量的日变化。纵坐标为标准化后的降水日变化(气候态逐时降水值相对于日平均值的偏差再除以日平均值),横坐标为当地太阳时LST (Local Solar Time)。引自Yuan (2013)

    Figure  5.  Diurnal variations of total rainfall from observations (black solid lines) and simulations of 6 atmospheric models averaged over subtropical China regions: (a) western plains (eastern periphery of Tibetan Plateau), (b) eastern plains (the middle and lower reaches of Yangtze River valley) and (c) the East China Sea during 1998–2006. Cited from Yuan (2013)

    图  6  海温(彩色阴影,单位:K)、降水(等值线,单位: mm d−1)和850 hPa风场(矢量,单位: m s−1)与观测的东亚夏季风指数的回归系数分布:(a)GPCP和NCEP2;(b)CMAP和ERA40;(c)CMIP3 MME;(d)CMIP5 MME;(e)高技巧模式;(f)低技巧模式。绿线(紫线)表示正(负)降水异常,等值线间隔为0.35 mm d−1。风速低于0.45 m s−1的风场部分略掉不画。黑点表示海温距平通过0.1的显著性检验

    Figure  6.  Horizontal distributions of SST (shaded, units: K), precipitation (contours, units: mm d−1), and 850-hPa winds (vectors, units: m s−1) regressed on the observed East Asian Summer Monsoon (EASM) index from (a) GPCP and NCEP2, (b) CMAP and ERA40, (c) MME of CMIP3, (d) MME of CMIP5, and (e) high-skill and (f) low-skill models in CMIP5. The green and purple lines show positive and negative precipitation anomalies, respectively. The black dots indicate that the regressed precipitation is significant at the 0.1 level by Student's t test

    图  7  (a)1950~2009年夏季观测的SST与NCEP/NCAR东亚夏季风指数的相关系数分布;(b)CAM5全海温强迫试验(GOGA)模拟的1950~2009年东亚夏季风指数与SST相关系数分布;(c)CAM5全球海温强迫(GOGA,黑色实线)和热带海温强迫(TOGA,绿色虚线)模拟的东亚夏季风指数)、观测的太平洋年代际振荡(PDO)指数(乘以-1,柱状图)。(a,b)中黑线范围为通过5%显著性的区域。引自Li et al.(2010a)

    Figure  7.  Correlation coefficients between observed JJA SST at each grid box and the EASM index from (a) NCEP/NCAR reanalysis and (b) CAM3 GOGA runs. Values above the contour line in (a, b) are significant at the 5% level. (c) Time series of the observed Pacific Decadal Oscillation (PDO) index (multiplied by −1, bars) and the EASM index from the CAM3 GOGA (solid black line) and TOGA (dashed green line) simulations. Rg (Rt) on top of panel (c) is the correlation coefficient between the observed PDO index and GOGA (TOGA) simulated EASM index, the numbers in parentheses show the correlations of detrended series. Cited from Li et al. (2010a)

    图  8  1958~2001年夏季海平面气压(SLP)[阴影,单位:hPa (44 a)−1]和850 hPa风场[矢量,单位:m s−1(44 a)−1]的线性趋势:(a)ERA40;(b)CMIP5 17个耦合模式全强迫试验集合平均结果;(c)同(b),但为人类强迫试验结果;(d)同(b), 但为温室气体强迫试验结果;(e)同(b), 但为自然强迫试验结果;(f)同(b), 但为气溶胶强迫试验结果。(a,b)绿色方框为中国华北地区(32°N~42°N, 105°E~122°E)。打点区域表明降水通过了10%显著性水平检验。多模式集合平均(MME)基于17个CMIP5 35个成员平均得到。引自Song et al.(2014)

    Figure  8.  The linear trends of SLP [shaded; units: hPa (44 a)−1] and 850 hPa winds [vectors; m s−1 (44 a)−1) in JJA during 1958–2001. (a) Observations (SLP and 850 hPa winds from ERA-40), (b) all-forcing run, (c) anthropogenic-forcing run, (d) GHG-forcing run, (e) natural-forcing run, and (f) aerosol-forcing run from MME. The green box in Fig. 8a and 8b is northern China (32°N–42°N, 105°E–122°E). The dotted areas indicate that the precipitation trends are statistically significant at the 10% level. The MME is constructed by using 35 realizations from 17 CMIP5 models. Cited from Song et al. (2014)

    图  9  中世纪(a)暖期和(b)小冰期夏季对流层200~500 hPa平均温度异常(相对于过去千年气候平均结果)(单位:℃),阴影表示通过5%显著性水平检验的区域。引自Man et al(2012)

    Figure  9.  JJA mean upper-tropospheric (500–200 hPa) temperature anomalies (units: ℃) for (a) the MWP and (b) the LIA. The anomalies are calculated relative to the millennial mean value. The black stippled regions denote areas that are statistically significant at the 5% level by using a Student's t test. Cited from Man et al (2012)

    图  10  预估的850 hPa西北太平洋副热带高压(西太副高)强度变化量(横轴)与印度洋—太平洋纬向海温梯度变化量(纵轴)关系的散点图。不同的字母代表不同的模式;蓝色和红色字母分别代表RCP4.5和RCP8.5情景预估的变化量。引自He and Zhou(2015)

    Figure  10.  The changes of the tropical Indian Ocean (TIO) and the tropical western Pacific (TWP) SST zonal gradient as a function of the changes in the western North Pacific subtropical high intensity. The TIO-TWP zonal SST gradient is defined as the difference between the TIO SST and the TWP SST. The blue and red markers are for the projected changes under RCP4.5 and RCP8.5 scenarios, respectively. Cited from He and Zhou (2015)

    图  11  (a、b)RCP4.5和(c、d)RCP8.5情景下预估850 hPa西太副高显著(a、c)增强和(b、d)减弱的模式分别合成预估的中国东部夏季850 hPa风场和降水(填色阴影,单位:mm d−1)的变化。红色打点区域表示所有参与合成的模式预估的变化量的符号一致。引自He and Zhou(2015)

    Figure  11.  (a) P-type models' composite of the projected changes in the precipitation (shading, units: mm d−1) and 850 hPa wind (vectors, units: m s−1) under RCP4.5 scenario. (b) Same as (a) but for the N-type models. (c, d) Same as (a, b) but under the RCP8.5 scenario. The regions with red dots indicate all of the P-type (or N-type) models agree in the sign of changes in the precipitation. Cited from He and Zhou (2015)

    图  12  概率为0.5时R95T气候态相较于基准期(1986~2005)降水变化的分布。(a–c)为模式加权预估结果,(d–f)为模式未加权预估结果。第一行为2016~2035年,第二行为2046~2065年,第三行为2081~2100年。红色等值线表示零和负值,蓝色等值线表示正值。加号表示信噪比大于1的区域。引自Li et al.(2016b)

    Figure  12.  Geographic distribution of precipitation changes relative to 1986–2005 with probability 0.5, with two different ensemble schemes, (a–c) weighted and (d–f) unweighted, for three periods: (top) 2016–2035, (middle) 2046–2065, and (bottom) 2081–2100. Red contours indicate zero and negative values, and blue contours indicate positive values. Areas with plus symbols show that the SNR is larger than 1.0. Cited from Li et al. (2016b)

  • [1] Anchukaitis K J, Buckley B M, Cook E R, et al. 2010. Influence of volcanic eruptions on the climate of the Asian monsoon region [J]. Geophys. Res. Lett., 37 (22): L22703, doi: 10.1029/2010GL044843.
    [2] Bacmeister J T, Wehner M F, Neale R B, et al. 2014. Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM) [J]. J. Climate, 27 (9): 3073-3099, doi: 10.1175/JCLI-D-13-00387.1.
    [3] Bao J W, Feng J M, Wang Y L. 2015. Dynamical downscaling simulation and future projection of precipitation over China [J]. J. Geophys. Res., 120 (16): 8227-8243, doi: 10.1002/2015jd023275.
    [4] Bengtsson L, Hodges K I, Esch M, et al. 2007. How may tropical cyclones change in a warmer climate? [J]. Tellus A, 59 (4): 539-561, doi: 10.1111/j.1600-0870.2007.00251.x.
    [5] 布和朝鲁. 2003.东亚季风气候未来变化的情景分析——基于IPCC SRES A2和B2方案的模拟结果[J].科学通报, 48 (7): 737-742. doi: 10.1007/BF03184220

    Bueh C. 2003. Simulation of the future change of East Asian monsoon climate using the IPCC SRES A2 and B2 scenarios [J]. Chin. Sci. Bull., 48 (10):1024-1030, doi: 10.1007/BF03184220.
    [6] 布和朝鲁, 林永辉. 2003. ECHAM4/OPYC3海气耦合模式对东亚季风年循环及其未来变化的模拟[J].气候与环境研究, 8 (4): 402-416. doi: 10.3878/j.issn.1006-9585.2003.04.03

    Bueh Cholaw, Lin Yonghui. 2003. A simulation of the annual cycle and future change of the East Asian monsoon with the ECHAM4/OPYC3 CGCM model [J].Climatic Environ. Res. (in Chinese), 8(4): 402-416, doi: 10.3878/j.issn.1006-9585.2003.04.03.
    [7] Chang C P, Zhang Y S, Li T. 2000. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part Ⅰ: Roles of the subtropical ridge [J]. J. Climate, 13 (24): 4310-4325, doi:10.1175/1520-0442(2000)013<4310:iaivot>2.0.co; 2.
    [8] 巢纪平, 李耀锟. 2010.二维能量平衡模式中大气温度对二氧化碳增温效应的响应[J].气象学报, 68 (2): 147-152. doi: 10.11676/qxxb2010.015

    Chao Jiping, Li Yaokun. 2010. Response of atmospheric temperature to CO2 warming effect in a 2-dimensional energy balance model [J]. Acta Meteor. Sinica (in Chinese), 68(2): 147-152, doi: 10.11676/qxxb2010.015.
    [9] 陈红. 2014. CMIP5气候模式对中国东部夏季降水年代际变化的模拟性能评估[J].气候与环境研究, 19 (6): 773-786. doi: 10.3878/j.issn.1006-9585.2014.13174

    Chen H. 2014. Validation of the CMIP5 climate models in simulating decadal variations of summer rainfall in Eastern China [J].Climatic Environ. Res. (in Chinese), 19 (6): 773-786, doi: 10.3878/j.issn.1006-9585.2014.13174.
    [10] Chen X L, Zhou T J. 2015. Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon [J]. Geophys. Res. Lett., 42 (21): 9433-9439, doi: 10.1002/2015gl066384.
    [11] Chen X L, Zhou T J. 2016. Uncertainty in crossing time of 2 ℃ warming threshold over China [J]. Science Bulletin, 61 (18): 1451-1459, doi: 10.1007/s11434-016-1166-z.
    [12] 陈活泼, 孙建奇, 陈晓丽. 2012.我国夏季降水及相关大气环流场未来变化的预估及不确定性分析[J].气候与环境研究, 17 (2): 171-183. doi: 10.3878/j.issn.1006-9585.2011.10137

    Chen H P, Sun J Q, Chen X L. 2012. The projection and uncertainty analysis of summer precipitation in China and the variations of associated atmospheric circulation field [J]. Climatic Environ. Res., 17 (2): 171-183, doi: 10.3878/j.issn.1006-9585.2011.10137.
    [13] 陈晓龙, 周天军, 郭准. 2014.影响气候系统模式温室气体敏感度的反馈过程——基于FGOALS模式的研究[J].中国科学:地球科学, 44 (2): 322-332. doi: 10.1007/s11430-013-4692-4

    Chen X L, Zhou T J, Guo Z. 2014. Climate sensitivities of two versions of FGOALS model to idealized radiative forcing [J]. Sci. China Earth Sci., 57 (6): 1363-1373, doi: 10.1007/s11430-013-4692-4.
    [14] Chen X C, Zhang F Q, Zhao K. 2016b. Diurnal variations of land-sea breeze and its related precipitation over South China [J]. J. Atmos. Sci., 73 (12): 4793-4815, doi: 10.1175/JAS-D-16-0106.1.
    [15] 陈隆勋, 朱文琴, 王文, 等. 1998.中国近45年来气候变化的研究[J].气象学报, 56 (3): 257-271. doi: 10.11676/qxxb1998.023

    Chen L X, Zhu W Q, Wang W, et al. 1998. Studies on climate change in China in recent 45 years [J]. Acta Meteor. Sinica (in Chinese), 56 (3): 257-271, doi: 10.11676/qxxb1998.023.
    [16] Chen H M, Zhou TJ, Neale R B, et al. 2010. Performance of the New NCAR CAM3.5 in East Asian summer monsoon simulations: Sensitivity to modifications of the convection scheme [J]. J. Climate, 23 (13): 3657-3675, doi: 10.1175/2010JCLI3022.1.
    [17] Chen W, Lee J Y, Ha K J, et al. 2016a. Intensification of the western North Pacific anticyclone response to the short decaying El Niño event due to greenhouse warming [J]. J. Climate, 29 (10): 3607-3627, doi:10.1175/ jcli-d-15-0195.1.
    [18] Chen W, Lee J Y, Lu R Y, et al. 2015. Intensified impact of tropical Atlantic SST on the western North Pacific summer climate under a weakened Atlantic thermohaline circulation [J]. Climate Dyn., 45 (7-8): 2033-2046, doi: 10.1007/s00382-014-2454-4.
    [19] Chen Z S, Wen Z P, Wu R G, et al. 2014. Influence of two types of El Niño on the East Asian climate during boreal summer: A numerical study [J]. Climate Dyn., 43 (1-2): 469-481, doi: 10.1007/s00382-013-1943-1.
    [20] Chen Z S, Wen Z P, Wu R G, et al. 2016c. Relative importance of tropical SST anomalies in maintaining the western North Pacific anomalous anticyclone during El Niño to La Niña transition years [J]. Climate Dyn., 46 (3-4): 1027-1041, doi: 10.1007/s00382-015-2630-1.
    [21] Chou C, Neelin J D, Chen C A, et al. 2009. Evaluating the "Rich-Get-Richer" mechanism in tropical precipitation change under global warming [J]. J. Climate, 22 (8): 1982-2005. doi: 10.1175/2008jcli2471.1.
    [22] Chow K C, Chan J C L, Pal J S, et al. 2006. Convection suppression criteria applied to the MIT cumulus parameterization scheme for simulating the Asian summer monsoon [J]. Geophys. Res. Lett., 33 (24): L24709, doi: 10.1029/2006GL028026.
    [23] Christensen J H, Kanikicharla K K, Aldrian E, et al. 2013. Climate phenomena and their relevance for future regional climate change [M]//Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
    [24] Crowley T J, Zielinski G, Vinther B, et al. 2008. Volcanism and the little ice age [J]. PAGES Newsl., 16 (2): 22-23, doi: 10.1029/2002GL0166335.
    [25] 戴翼, 陆日宇. 2013.东亚夏季降水和高空急流关系的未来变化预估[J].科学通报, 58 (8): 717-723. doi: 10.1007/s11434-012-5540-1

    Dai Y, Lu R Y. 2013. Projected change in the relationship between East Asian summer rainfall and upper-tropospheric westerly jet [J].Chin. Sci. Bull., 58 (12): 1436-1442, doi: 10.1007/s11434-012-5540-1.
    [26] Dai A G. 2006. Precipitation characteristics in eighteen coupled climate models [J]. J. Climate, 19 (18): 4605-4630, doi: 10.1175/JCLI3884.1.
    [27] Dai Y, Lu R Y. 2013. Projected change in the relationship between East Asian summer rainfall and upper-tropospheric westerly jet [J]. Chin. Sci. Bull., 58 (12): 1436-1442, doi: 10.1007/s11434-012-5540-1.
    [28] Demory M E, Vidale P L, Roberts M J, et al. 2014. The role of horizontal resolution in simulating drivers of the global hydrological cycle [J]. Climate Dyn., 42 (7-8): 2201-2225, doi: 10.1007/s00382-013-1924-4.
    [29] Di Z H, Duan Q Y, Gong W, et al. 2017. Parametric sensitivity analysis of precipitation and temperature based on multi-uncertainty quantification methods in the Weather Research and Forecasting model [J]. Sci. China Earth Sci., 60 (5): 876-898, doi: 10.1007/s11430-016-9021-6.
    [30] Di Z H, Duan Q Y, Wang C, et al. 2018. Assessing the applicability of WRF optimal parameters under the different precipitation simulations in the greater Beijing area [J]. Climate Dyn., 50 (5-6): 1927-1948, doi:10.1007/ s00382-017-3729-3.
    [31] 丁一汇, 王会军. 2016.近百年中国气候变化科学问题的新认识[J].科学通报, 61 (10): 1029-1041. doi: 10.1360/N972015-00638

    Ding Y H, Wang H J. 2016. Newly acquired knowledge on the scientific issues related to climate change over the recent 100 years in China [J]. Chin. Sci. Bull. (in Chinese), 61 (10): 1029-1041, doi: 10.1360/N972015-00638.
    [32] 丁一汇, 孙颖, 刘芸芸, 等. 2013.亚洲夏季风的年际和年代际变化及其未来预测[J].大气科学, 37 (2): 253-280. doi: 10.3878/j.issn.1006-9895.2012.12302

    Ding Y H, Sun Y, Liu Y Y, et al. 2013. Interdecadal and interannual variabilities of the Asian summer monsoon and its projection of future change [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37 (2): 253-280, doi:10.3878/j.issn. 1006-9895.2012.12302.
    [33] Dong B W, Sutton R T, Highwood E J, et al. 2016. Preferred response of the East Asian summer monsoon to local and non-local anthropogenic sulphur dioxide emissions [J]. Clim Dyn, 46:1733-1751. doi:10.1007/ s00382-015-2671-5
    [34] Dong L, Zhou T J. 2014. The formation of the recent cooling in the eastern tropical Pacific Ocean and the associated climate impacts: A competition of global warming, IPO, and AMO [J]. J. Geophys. Res., 119 (19): 11272-11287, doi: 10.1002/2013JD021395.
    [35] Duan Q, Di Z, Quan J, et al. 2017. Automatic model calibration: A new way to improve numerical weather forecasting [J]. Bull. Amer. Meteor. Soc., 98 (5): 959-970, doi: 10.1175/BAMS-D-15-00104.1.
    [36] Duan A, Wu G. 2009, Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part Ⅱ: Connection with climate warming[J]. Journal of Climate, 22 (15):5691. http://adsabs.harvard.edu/abs/2010eguga..12.5691d
    [37] Duffy P B, Govindasamy B, Iorio J P, et al. 2003. High-resolution simulations of global climate. Part 1: Present climate [J]. Climate Dyn., 21 (5-6): 371-390, doi: 10.1007/s00382-003-0339-z.
    [38] Emori S, Nozawa T, Numaguti A, et al. 2001. Importance of cumulus parameterization for precipitation simulation over East Asia in June [J]. J. Meteor. Soc. Japan, 79 (4): 939-947, doi: 10.2151/jmsj.79.939.
    [39] Endo H, Kitoh A. 2014. Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate [J]. Geophys. Res. Lett., 41 (5): 1704-1711, doi: 10.1002/2013gl059158.
    [40] Eyring V, Bony S, Meehl G A, et al. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization [J]. Geosci. Model Dev., 9 (5): 1937-1958, doi:10.5194/ gmd-9-1937-2016.
    [41] Fan K, Xu Z Q, Tian B Q. 2014. Has the intensity of the interannual variability in summer rainfall over South China remarkably increased? [J]. Meteor. Atmos. Phys., 124 (1-2): 23-32, doi: 10.1007/s00703-013-0301-5.
    [42] Feng J, Chen W. 2014. Influence of the IOD on the relationship between El Niño Modoki and the East Asian-western North Pacific summer monsoon [J]. Int. J. Climatol., 34 (6): 1729-1736, doi: 10.1002/joc.3790.
    [43] Feng L, Zhou T J, Wu B, et al. 2011. Projection of future precipitation change over China with a high-resolution global atmospheric model [J]. Adv. Atmos. Sci., 28 (2): 464-476, doi: 10.1007/s00376-010-0016-1.
    [44] Freychet N, Hsu H H, Chou C, et al. 2015. Asian summer monsoon in CMIP5 projections: A link between the change in extreme precipitation and monsoon dynamics [J]. J. Climate, 28 (4): 1477-1493, doi:10.1175/ jcli-d-14-00449.1.
    [45] 富元海. 2012. CMIP3模式预估的21世纪东亚夏季降水年际变率变化过程[J].中国科学:地球科学, 42 (12): 1937-1950. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201212014.htm
    [46] Fu Y H. 2013. The projected temporal evolution in the interannual variability of East Asian summer rainfall by CMIP3 coupled models [J]. Sci. China Earth Sci., 56 (8): 1434-1446, doi: 10.1007/s11430-012-4430-3.
    [47] Fu Y H, Lu R Y, Wang H J, et al. 2013. Impact of overestimated ENSO variability in the relationship between ENSO and East Asian summer rainfall [J]. J. Geophys. Res., 118 (12): 6200-6211, doi:10.1002/jgrd. 50482.
    [48] Fu Y H, Lu R Y. 2017. Improvements in simulating the relationship between ENSO and East Asian summer rainfall in the CMIP5 models [J]. J. Climate, 30 (12): 4513-4525, doi: 10.1175/jcli-d-16-0606.1.
    [49] Gao C C, Robock A, Ammann C. 2008a. Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models [J]. J. Geophys. Res., 113 (D23): D23111, doi: 10.1029/2008JD010239.
    [50] Gao X J, Shi Y, Giorgi F. 2011. A high resolution simulation of climate change over China [J]. Sci. China Earth Sci., 54 (3): 462-472, doi: 10.1007/s11430-010-4035-7.
    [51] Gao X J, Shi Y, Zhang D F. 2012. Uncertainties in monsoon precipitation projections over China: Results from two high-resolution RCM simulations [J]. Climate Res., 52: 213-226, doi: 10.3354/cr01084.
    [52] Gao X J, Wang M L, Giorgi F. 2013. Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0 [J]. Atmos. Ocean Sci. Lett., 6 (5): 381-386, doi: 10.3878/j.issn.1674-2834.13.0029.
    [53] Gao X J, Xu Y, Zhao Z C, et al. 2006. On the role of resolution and topography in the simulation of East Asia precipitation [J]. Theor. Appl. Climatol., 86 (1-4): 173-185, doi: 10.1007/s00704-005-0214-4.
    [54] Gao X, Shi Y, Song R, et al. 2008b. Reduction of future monsoon precipitation over China: Comparison between a high resolution RCM simulation and the driving GCM [J]. Meteor. Atmos. Phys., 100 (1-4): 73-86, doi: 10.1007/s00703-008-0296-5.
    [55] Gao W H, Sui C H, Fan J W, et al. 2016. A study of cloud microphysics and precipitation over the Tibetan Plateau by radar observations and cloud-resolving model simulations [J]. J. Geophys. Res., 121 (22): 13735-13752, doi: 10.1002/2015JD024196.
    [56] Ge Q S, Wu W X. 2011. Climate during the medieval climate anomaly in China [J]. PAGES Newsl., 19 (1): 24-26, doi: 10.22498/pages.19.1.24.
    [57] Grise K M, Polvani L M. 2014. Is climate sensitivity related to dynamical sensitivity? A Southern Hemisphere perspective [J]. Geophys. Res. Lett., 41 (2): 534-540, doi: 10.1002/2013gl058466.
    [58] 贵志成, 郑益群, 曾新民, 等. 2014.不同边界层参数化方案对东亚夏季风气候模拟的对比研究[J].气象科学, 34 (6): 638-646. doi: 10.3969/2013jms.0064

    Gui Z C, Zheng Y Q, Zeng X M, et al. 2014. Impact of different planetary boundary layer parameterizations on summer monsoonal climate simulation in East Asia [J]. J. Meteor. Sci. (in Chinese), 34 (6): 638-646, doi: 10.3969/2013jms.0064.
    [59] Guo Z, Zhou T J. 2014. An improved diagnostic stratocumulus scheme based on estimated inversion strength and its performance in GAMIL2 [J]. Sci. China Earth Sci., 57 (11): 2637-2649, doi: 10.1007/s11430-014-4891-7.
    [60] 郭其蕴, 蔡静宁, 邵雪梅, 等. 2003.东亚夏季风的年代际变率对中国气候的影响[J].地理学报, 58 (4): 569-576. doi: 10.11821/xb200304011

    Guo Q Y, Cai J N, Shao X M, et al. 2003. Interdecadal variability of East-Asian summer monsoon and its impact on the climate of China [J]. Acta Geogr. Sinica (in Chinese), 58 (4): 569-576, doi: 10.11821/xb200304011.
    [61] 郭其蕴, 蔡静宁, 邵雪梅, 等. 2004. 1873~2000年东亚夏季风变化的研究[J].大气科学, 28 (2): 206-215. doi: 10.3878/j.issn.1006-9895.2004.02.04

    Guo Q Y, Cai J N, Shao X M, et al. 2004. Studies on the variations of East-Asian summer monsoon during A D 1873~2000 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28 (2): 206-215, doi: 10.3878/j.issn.1006-9895.2004.02.04.
    [62] Guichard F, Petch J C, Redelsperger J L, et al. 2004. Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models [J]. Quart. J. Roy. Meteor. Soc., 130 (604): 3139-3172, doi: 10.1256/qj.03.145.
    [63] Guo L, Highwood E J, Shaffrey L C, et al. 2013. The effect of regional changes in anthropogenic aerosols on rainfall of the East Asian summer monsoon [J]. Atmos. Chem. Phys., 13: 1521-1534 doi: 10.5194/acp-13-1521-2013
    [64] Guo Z, Zhou T J, Wang M H, et al. 2015. Impact of cloud radiative heating on East Asian summer monsoon circulation [J]. Environ. Res. Lett., 10 (7): 074014, doi: 10.1088/1748-9326/10/7/074014.
    [65] Hack J J, Caron J M, Danabasoglu G, et al. 2006. CCSM-CAM3 climate simulation sensitivity to changes in horizontal resolution [J]. J. Climate, 19 (11): 2267-2289, doi: 10.1175/jcli3764.1.
    [66] He C, Zhou T J. 2015. Responses of the western North Pacific subtropical high to global warming under RCP4.5 and RCP8.5 scenarios projected by 33 CMIP5 Models: The dominance of tropical Indian Ocean-tropical western Pacific SST gradient [J]. J. Climate, 28 (1): 365-380, doi:10. 1175/jcli-d-13-00494.1.
    [67] He C, Zhou T J, Lin A L, et al. 2015. Enhanced or weakened western North Pacific subtropical high under global warming? [J]. Sci. Rep., 5: 16771, doi: 10.1038/srep16771.
    [68] He C, Lin A L, Gu D J, et al. 2018. Using eddy geopotential height to measure the western North Pacific subtropical high in a warming climate [J]. Theor. Appl. Climatol., 131 (1-2): 681-691, doi: 10.1007/s00704-016-2001-9.
    [69] Held I M, Soden B J. 2006. Robust responses of the hydrological cycle to global warming [J]. J. Climate, 19 (21): 5686-5699, doi:10.1175/ jcli3990.1.
    [70] Hourdin F, Mauritsen T, Gettelman A, et al. 2017. The art and science of climate model tuning [J]. Bull. Amer. Meteor. Soc., 98 (3): 589-602, doi: 10.1175/BAMS-D-15-00135.1.
    [71] Hu J, Duan A M. 2015. Relative contributions of the Tibetan Plateau thermal forcing and the Indian Ocean Sea surface temperature basin mode to the interannual variability of the East Asian summer monsoon [J]. Climate Dyn., 45 (9-10): 2697-2711, doi: 10.1007/s00382-015-2503-7.
    [72] Hu K M, Huang G, Huang R H. 2011. The impact of tropical Indian Ocean variability on summer surface air temperature in China [J]. J. Climate, 24 (20): 5365-5377, doi: 10.1175/2011jcli4152.1.
    [73] 胡婷, 孙颖, 张学斌. 2017.全球1.5和2℃温升时的气温和降水变化预估[J].科学通报, 62 (26): 3098-3111. doi: 10.1360/n972016-01234

    Hu T, Sun Y, Zhang X B. 2017. Temperature and precipitation projection at 1.5 and 2℃ increase in global mean temperature [J]. Chin. Sci. Bull. (in Chinese), 62 (26): 3098-3111, doi: 10.1360/n972016-01234.
    [74] Hu K M, Huang G, Zheng X T, et al. 2014. Interdecadal variations in ENSO influences on Northwest Pacific-East Asian early summertime climate simulated in CMIP5 models [J]. J. Climate, 27 (15): 5982-5998, doi: 10.1175/jcli-d-13-00268.1.
    [75] Huang P, Chen D, Ying J. 2017. Weakening of the tropical atmospheric circulation response to local sea surface temperature anomalies under global warming [J]. J. Climate, 30 (20): 8149-8158, doi: 10.1175/JCLI-D-17.0171.1.
    [76] IPCC. 2013. Summary for Policymakers [M]//Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
    [77] Jackson C S, Sen M K, Huerta G, et al. 2008. Error reduction and convergence in climate prediction [J]. J. Climate, 21 (24): 6698-6709, doi: 10.1175/2008jcli2112.1.
    [78] 姜大膀, 田芝平. 2013. 21世纪东亚季风变化: CMIP3和CMIP5模式预估结果[J].科学通报, 58 (8): 707-716. doi: 10.1007/s11434-012-5533-0

    Jiang D B, Tian Z P. 2013. East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models [J]. Chin. Sci. Bulle., 58 (12): 1427-1435, doi:10.1007/ s11434-012-5533-0.
    [79] 姜江, 姜大膀, 林一骅. 2015. RCP4.5情景下中国季风区及降水变化预估[J].大气科学, 39 (5): 901-910. doi: 10.3878/j.issn.1006-9895.1411.14216

    Jiang J, Jiang D B, Lin Y H. 2015. Projection of monsoon area and precipitation in China under the RCP4.5 scenario [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39 (5): 901-910, doi: 10.3878/j.issn.1006-9895.1411.14216.
    [80] Jiang Y Q, Liu X H, Yang X Q, et al. 2013. A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation [J]. Atmos. Environ., 70: 51-63, doi: 10.1016/j.atmosenv.2012.12.039.
    [81] Jiang Z H, Li W, Xu J J, et al. 2015. Extreme precipitation indices over China in CMIP5 models. Part Ⅰ: Model evaluation [J]. J. Climate, 28 (21): 8603-8619, doi: 10.1175/jcli-d-15-0099.1.
    [82] Jiang W P, Huang G, Hu K M, et al. 2017. Diverse relationship between ENSO and the Northwest Pacific summer climate among CMIP5 models: Dependence on the ENSO decay pace [J]. J. Climate, 30 (1): 109-127, doi: 10.1175/jcli-d-16-0365.1.
    [83] Jin Q, Yang X Q, Sun X G, et al. 2013. East Asian summer monsoon circulation structure controlled by feedback of condensational heating [J]. Climate Dyn., 41 (7-8): 1885-1897, doi: 10.1007/s00382-012-1620-9.
    [84] Kamae Y, Watanabe M, Kimoto M, et al. 2014. Summertime land-sea thermal contrast and atmospheric circulation over East Asia in a warming climate—Part Ⅰ: Past changes and future projections [J]. Climate Dyn., 43 (9-10): 2553-2568, doi: 10.1007/s00382-014-2073-0.
    [85] Kim M J, Yeh S W, Park R J. 2016. Effects of sulfate aerosol forcing on East Asian summer monsoon for 1985-2010 [J]. Geophys. Res. Lett., 43 (3): 1364-1372, doi: 10.1002/2015GL067124.
    [86] Kitoh A, Kusunoki S. 2008. East Asian summer monsoon simulation by a 20-km mesh AGCM [J]. Climate Dyn., 31 (4): 389-401, doi:10.1007/ s00382-007-0285-2.
    [87] Kitoh A, Endo H, Krishna Kumar K, et al. 2013. Monsoons in a changing world: A regional perspective in a global context [J]. J. Geophys. Res., 118 (8): 3053-3065, doi: 10.1002/jgrd.50258.
    [88] Koo M S, Hong S Y. 2010. Diurnal variations of simulated precipitation over East Asia in two regional climate models [J]. J. Geophys. Res., 115 (D5): D05105, doi: 10.1029/2009jd012574.
    [89] 况雪源, 刘健, 林惠娟, 等. 2010.近千年来三个气候特征时期东亚夏季风的模拟对比[J].地球科学进展, 25 (10): 1082-1090. doi: 10.11867/j.issn.1001-8166.2010.10.1082

    Kuang X Y, Liu J, Lin H J, et al. 2010. Comparison of East Asian summer monsoon in three climate typical periods during last millennium based on ECHO-G simulation [J]. Adv. Earth Sci. (in Chinese), 25 (10): 1082-1090, doi: 10.11867/j.issn.1001-8166.2010.10.1082.
    [90] Kusunoki S, Mizuta R, Matsueda M. 2011. Future changes in the East Asian rain band projected by global atmospheric models with 20-km and 60-km grid size [J]. Climate Dyn., 37 (11-12): 2481-2493, doi:10.1007/ s00382-011-1000-x.
    [91] Kusunoki S, Yoshimura J, Yoshimura H, et al. 2006. Change of Baiu rain band in global warming projection by an atmospheric general circulation model with a 20-km grid size [J]. J. Meteor. Soc. Japan, 84 (4): 581-611, doi: 10.2151/jmsj.84.581.
    [92] Lau W K M, Kim K M. 2017. Competing influences of greenhouse warming and aerosols on Asian summer monsoon circulation and rainfall [J]. Asia-Pacific J. Atmos. Sci., 53 (2): 181-194, doi: 10.1007/s13143-017-0033-4.
    [93] Lauwaet D, Van Lipzig N P M, Van Weverberg K, et al. 2012. The precipitation response to the desiccation of Lake Chad [J]. Quart. J. Roy. Meteor. Soc., 138 (664): 707-719, doi: 10.1002/qj.942.
    [94] Lee J Y, Wang B. 2014. Future change of global monsoon in the CMIP5 [J]. Climate Dyn., 42 (1-2): 101-119, doi: 10.1007/s00382-012-1564-0.
    [95] Lei Y H, Hoskins B, Slingo J. 2014. Natural variability of summer rainfall over China in HadCM3 [J]. Climate Dyn., 42 (1-2): 417-432, doi:10. 1007/s00382-013-1726-8.
    [96] 李东欢, 邹立维, 周天军. 2017.全球1.5℃温升背景下中国极端事件变化的区域模式预估[J].地球科学进展, 32 (4): 446-457. doi: 10.11867/j.issn.1001-8166.2017.04.0446

    Li D H, Zou L W, Zhou T J. 2017. Changes of Extreme indices over China in response to 1.5℃ global warming projected by a regional climate model [J]. Adv. Earth Sci. (in Chinese), 32 (4): 446-457, doi:10.11867/j.issn.1001-8166. 2017.04.0446.
    [97] Li H M, Zhou T J, Li C. 2010b. Decreasing trend in global land monsoon precipitation over the past 50 years simulated by a coupled climate model [J]. Adv. Atmos. Sci., 27 (2): 285-292, doi: 10.1007/s00376-009-8173-9.
    [98] Li S L, Lu J, Huang G, et al. 2008. Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study [J]. J. Climate, 21 (22): 6080-6088, doi: 10.1175/2008jcli2433.1.
    [99] Li H M, Dai A G, Zhou T J, et al. 2010a. Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950-2000 [J]. Climate Dyn., 34 (4): 501-514, doi: 10.1007/s00382-008-0482-7.
    [100] Li J, Yu R C, Yuan W H, et al. 2015. Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions [J]. J. Adv. Model. Earth Syst., 7 (2): 774-790, doi: 10.1002/2014MS000414.
    [101] Li Z Q, Lau W K M, Ramanathan V, et al. 2016a. Aerosol and monsoon climate interactions over Asia [J]. Rev. Geophys., 54 (4): 866-929, doi: 10.1002/2015RG000500.
    [102] Li W, Jiang Z, Xu J, et al. 2016b. Extreme precipitation Indices over China in CMIP5 models. Part Ⅱ: Probabilistic projection [J]. J. Climate, 29 (24): 8989-9004, doi: 10.1175/jcli-d-16-0377.1.
    [103] Li T, Wang B, Wu B, et al. 2017. Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review [J]. J. Meteor. Res., 31 (6): 987-1006, doi: 10.1007/s13351-017-7147-6.
    [104] Li Qingxiang, Zhang Lei, Xu Wenhui, et al. 2017. Comparisons of time series of annual mean surface air temperature for China since the 1900s: Observations, model simulations and reanalysis [J]. Bulletin of American Meteorological Society, 98 (4): 699-711, https://doi.org/10.1175/BAMS-D-16-0092.1. doi: 10.1175/BAMS-D-16-0092.1
    [105] Liang X Z, Li L, Dai A G, et al. 2004. Regional climate model simulation of summer precipitation diurnal cycle over the United States [J]. Geophys. Res. Let., 31 (24): L24208, doi: 10.1029/2004GL021054.
    [106] 林朝晖, 曾庆存. 1998.气候系统及模式中反馈机制研究Ⅰ.概念和方法[J].气候与环境研究, 3 (1): 1-14. http://www.oalib.com/paper/1699379

    Lin Z H, Zeng Q C. 1998. Analysis of feedback mechanisms in climate model and climate system. Part Ⅰ. Basic concepts and methodology [J]. Climatic Environ. Res. (in Chinese), 3 (1): 1-14. http://www.oalib.com/paper/1699379
    [107] Lin X, Zhu C W, Lü J M. 2013. Decadal change of the East Asian summer monsoon and its related surface temperature in Asia-Pacific during 1880-2004 [J]. Chin. Sci. Bull., 58 (35): 4497-4503, doi:10.1007/ s11434-013-5969-x.
    [108] Lin R P, Zhou T J, Qian Y. 2014. Evaluation of global monsoon precipitation changes based on five reanalysis datasets [J]. J. Climate, 27 (3): 1271-1289, doi: 10.1175/jcli-d-13-00215.1.
    [109] Liu H B, Zhang D L, Wang B. 2008. Daily to submonthly weather and climate characteristics of the summer 1998 extreme rainfall over the Yangtze River basin [J]. J. Geophys. Res., 113 (D22): D22101, doi: 10.1029/2008JD010072.
    [110] Liu H B, Zhang D L, Wang B. 2010. Impact of horizontal resolution on the regional climate simulations of the summer 1998 extreme rainfall along the Yangtze River basin [J]. J. Geophys. Res., 115 (D12): D12115, doi: 10.1029/2009JD012746.
    [111] Liu Y M, Chan J C L, Mao J Y, et al. 2002. The role of Bay of Bengal convection in the onset of the 1998 South China Sea summer monsoon [J]. Mon. Wea. Rev., 130 (11): 2731-2744, doi:10.1175/1520-0493(2002) 130<2731:trobob>2.0.co; 2.
    [112] Liu J, Wang B, Ding Q H, et al. 2009. Centennial variations of the global monsoon precipitation in the last millennium: Results from ECHO-G model [J]. J. Climate, 22 (9): 2356-2371, doi: 10.1175/2008JCLI2353.1.
    [113] 刘晓娟, 周天军, 张丽霞, 等. 2011. GAMIL1.0大气模式模拟的西北太平洋夏季风:阵风参数化方案的影响[J].大气科学, 35 (5): 871-884. doi: 10.3878/j.issn.1006-9895.2011.05.07

    Liu X J, Zhou T J, Zhang L X, et al. 2011. The western North Pacific summer monsoon simulated by GAMIL 1.0: Influences of the parameterization of wind gustiness [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35 (5): 871-884, doi:10.3878/j.issn.1006-9895. 2011.05.07.
    [114] Liu J, Wang B, Wang H L, et al. 2011. Forced response of the East Asian summer rainfall over the past millennium: Results from a coupled model simulation [J]. Climate Dyn., 36 (1-2): 323-336, doi: 10.1007/s00382-009-0693-6.
    [115] 刘海文, 周天军, 朱玉祥, 等. 2012.东亚夏季风自20世纪90年代初开始恢复增强[J].科学通报, 57 (9): 765-769. doi: 10.1007/s11434-012-4991-8

    Liu H W, Zhou T J, Zhu Y X, et al. 2012. The strengthening East Asia summer monsoon since the early 1990s [J]. Chin. Sci. Bull., 57 (13): 1553-1558, doi:10.1007/ s11434-012-4991-8.
    [116] 刘芸芸, 李维京, 艾秀, 等. 2012.月尺度西太平洋副热带高压指数的重建与应用[J].应用气象学报, 23 (4): 414-423. doi: 10.3969/j.issn.1001-7313.2012.04.004

    Liu Y, Li W J, Ai W X, et al. 2012. Reconstruction and application of the monthly western Pacific subtropical high indices [J]. J. Appl. Meteor. Sci. (in Chinese), 23 (4): 414-423, doi: 10.3969/j.issn.1001-7313.2012.04.004.
    [117] 刘芸芸, 李维京, 左金清, 等. 2014. CMIP5模式对西太平洋副热带高压的模拟和预估[J].气象学报, 72 (2): 277-290. doi: 10.11676/qxxb2014.025

    Liu Y Y, Li W J, Zuo J Q, et al. 2014. Simulations and projections of the western Pacific subtropical high in CMIP5 models [J]. Acta Meteor. Sinica (in Chinese), 72 (2): 277-290, doi: 10.11676/qxxb2014.025.
    [118] Liu B, Zhao G J, Huang G, et al. 2017. The dependence on atmospheric resolution of ENSO and related East Asian-western North Pacific summer climate variability in a coupled model [J]. Theor. Appl. Climatol., doi: 10.1007/s00704-017-2254-y.
    [119] Lu R Y, Fu Y H. 2010. Intensification of East Asian summer rainfall interannual variability in the twenty-first century simulated by 12 CMIP3 coupled models [J]. J. Climate, 23 (12): 3316-3331, doi:10.1175/ 2009jcli3130.1.
    [120] Luo Y L, Chen Y R X. 2015. Investigation of the predictability and physical mechanisms of an extreme-rainfall-producing mesoscale convective system along the Meiyu front in East China: An ensemble approach [J]. J. Geophys. Res., 120 (20): 10593-10618, doi: 10.1002/2015jd023584.
    [121] Luo Y L, Gong Y, Zhang D L. 2014. Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a Mei-Yu Front in East China [J]. Mon. Wea. Rev., 142 (1): 203-221, doi:10.1175/ mwr-d-13-00111.1.
    [122] Luo Y L, Zhang R H, Wan Q L, et al. 2017. The Southern China Monsoon Rainfall Experiment (SCMREX) [J]. Bull. Amer. Meteor. Soc., 98 (5): 999-1013, doi: 10.1175/bams-d-15-00235.1.
    [123] 马柱国, 邵丽娟. 2006.中国北方近百年干湿变化与太平洋年代际振荡的关系[J].大气科学, 30 (3): 464-474. doi: 10.3878/j.issn.1006-9895.2006.03.10

    Ma Z G, Shao L J. 2006. Relationship between dry/wet variation and the Pacific Decade Oscillation (PDO) in northern China during the last 100 years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30 (3): 464-474, doi: 10.3878/j.issn.1006-9895.2006.03.10.
    [124] Man W M, Zhou T J. 2014a. Response of the East Asian summer monsoon to large volcanic eruptions during the last millennium [J]. Chinese Sci. Bull., 59 (31): 4123-4129, doi: 10.1007/s11434-014-0404-5.
    [125] Man W M, Zhou T J. 2014b. Regional-scale surface air temperature and East Asian summer monsoon changes during the last millennium simulated by the FGOALS-gl climate system model [J]. Adv. Atmos. Sci., 31 (4): 765-778, doi: 10.1007/s00376-013-3123-y.
    [126] Man W M, Zhou T J, Jungclaus J H. 2012. Simulation of the East Asian summer monsoon during the last millennium with the MPI earth system model [J]. J. Climate, 25 (22): 7852-7866, doi: 10.1175/JCLI-D-11-00462.1.
    [127] Man W M, Zhou T J, Jungclaus J H. 2014. Effects of large volcanic eruptions on global summer climate and East Asian monsoon changes during the last millennium: Analysis of MPI-ESM simulations [J]. J. Climate, 27 (19): 7394-7409, doi: 10.1175/JCLI-D-13-00739.1.
    [128] Mizuta R, Oouchi K, Yoshimura H, et al. 2006. 20-km-mesh global climate simulations using JMA-GSM model—Mean climate states [J]. J. Meteor. Soc. Japan., Ser. Ⅱ, 84 (1): 165-185, doi: 10.2151/jmsj.84.165.
    [129] Murakami H, Wang Y Q, Yoshimura H, et al. 2012. Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM [J]. J. Climate, 25 (9): 3237-3260, doi: 10.1175/JCLI-D-11-00415.1.
    [130] Murakami H, Wang B, Li T, et al. 2013. Projected increase in tropical cyclones near Hawaii [J]. Nat. Climate Change, 3 (8): 749-754, doi: 10.1038/nclimate1890.
    [131] Niu X R, Wang S Y, Tang J P, et al. 2015. Multimodel ensemble projection of precipitation in eastern China under A1B emission scenario [J]. J. Geophys. Res., 120 (19): 9965-9980, doi: 10.1002/2015jd023853.
    [132] Oouchi K, Yoshimura J, Yoshimura H, et al. 2006. Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses [J]. J. Meteor. Soc. Japan, Ser. Ⅱ, 84 (2): 259-276, doi: 10.2151/jmsj.84.259.
    [133] Peng Y B, Xu Y, Jin L Y. 2009. Climate changes over eastern China during the last millennium in simulations and reconstructions [J]. Quat. Int., 208 (1-2): 11-18, doi: 10.1016/j.quaint.2009.02.013.
    [134] Peng Y B, Shen C M, Wang W C, et al. 2010. Response of summer precipitation over Eastern China to large volcanic eruptions [J]. J. Climate, 23 (3): 818-824, doi: 10.1175/2009JCLI2950.1.
    [135] Prein A F, Rasmussen R, Stephens G. 2017. Challenges and advances in convection-permitting climate modeling [J]. Bull. Amer. Meteor. Soc., 98 (5): 1027-1030, doi: 10.1175/BAMS-D-16-0263.1.
    [136] Prein A F, Gobiet A, Suklitsch M, et al. 2013a. Added value of convection permitting seasonal simulations [J]. Climate Dyn., 41 (9-10): 2655-2677, doi: 10.1007/s00382-013-1744-6.
    [137] Prein A F, Holland G J, Rasmussen R M, et al. 2013b. Importance of regional climate model grid spacing for the simulation of heavy precipitation in the Colorado headwaters [J]. J. Climate, 26 (13): 4848-4857, doi: 10.1175/jcli-d-12-00727.1.
    [138] Prein A F, Langhans W, Fosser G, et al. 2015. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges [J]. Rev. Geophys., 53 (2): 323-361, doi:10.1002/ 2014RG000475.
    [139] Qin P H, Xie Z H. 2016. Detecting changes in future precipitation extremes over eight river basins in China using RegCM4 downscaling [J]. J. Geophys. Res., 121 (12): 6802-6821, doi: 10.1002/2016JD024776.
    [140] Randall D A. 2013. Beyond deadlock [J]. Geophys. Res. Lett., 40 (22): 5970-5976, doi: 10.1002/2013GL057998.
    [141] Randall D, Khairoutdinov M, Arakawa A, et al. 2003. Breaking the cloud parameterization deadlock [J]. Bull. Amer. Meteor. Soc., 84 (11): 1547-1564, doi: 10.1175/BAMS-84-11-1547.
    [142] Rashid H A, Hirst A C. 2017. Mechanisms of improved rainfall simulation over the Maritime Continent due to increased horizontal resolution in an AGCM [J]. Climate Dyn., 49 (5-6): 1747-1764, doi: 10.1007/s00382-016-3413-z.
    [143] Ren Y J, Zhou B T, Song L C, et al. 2017. Interannual variability of western North Pacific subtropical high, East Asian jet and East Asian summer precipitation: CMIP5 simulation and projection [J]. Quat. Int., 440: 64-70, doi: 10.1016/j.quaint.2016.08.033.
    [144] Salzmann M, Weser H, Cherian R. 2014. Robust response of Asian summer monsoon to anthropogenic aerosols in CMIP5 models [J]. J. Geophys. Res., 119 (19): 11321-11337, doi: 10.1002/2014jd021783.
    [145] Sato T, Miura H, Satoh M, et al. 2009. Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model [J]. J. Climate, 22 (18): 4809-4826, doi: 10.1175/2009JCLI2890.1.
    [146] Satoh M, Kitao Y. 2013. Numerical examination of the diurnal variation of summer precipitation over southern China [J]. Sola, 9: 129-133, doi: 10.2151/sola.2013-029.
    [147] Sato T, Miura H, Satoh M. 2007. Spring diurnal cycle of clouds over Tibetan Plateau: Global cloud-resolving simulations and satellite observations [J]. Geophys. Res. Lett., 34 (18): L18816, doi:10.1029/ 2007GL030782.
    [148] Satoh M, Matsuno T, Tomita H, et al. 2008. Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations [J]. J. Comput. Phys., 227 (7): 3486-3514, doi: 10.1016/j.jcp.2007.02.006.
    [149] Schiemann R, Demory M E, Mizielinski M S, et al. 2014. The sensitivity of the tropical circulation and Maritime Continent precipitation to climate model resolution [J]. Climate Dyn., 42 (9-10): 2455-2468, doi:10.1007/ s00382-013-1997-0.
    [150] Shen C M, Wang W C, Hao Z X, et al. 2008. Characteristics of anomalous precipitation events over eastern China during the past five centuries [J]. Climate Dyn., 31 (4): 463-476, doi: 10.1007/s00382-007-0323-0.
    [151] Shen Y, Xiong A Y, Hong Y, et al. 2014. Uncertainty analysis of five satellite-based precipitation products and evaluation of three optimally merged multi-algorithm products over the Tibetan Plateau [J]. Int. J. Remote Sens., 35 (19): 6843-6858, doi: 10.1080/01431161.
    [152] Shi X Y, Wang Y Q, Xu X D. 2008. Effect of mesoscale topography over the Tibetan Plateau on summer precipitation in china: A regional model study [J]. Geophys. Res. Lett., 35 (19): L19707, doi: 10.1029/2008GL034740.
    [153] Sigl M, McConnell J R, Layman L. et al. 2013. A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years [J]. J. Geophys. Res., 118 (3): 1151-1169, doi: 10.1029/2012jd018603.
    [154] Song F F, Zhou T J. 2014a. Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean-western Pacific anticyclone teleconnection [J]. J. Climate, 27 (4): 1679-1697, doi: 10.1175/JCLI-D-13-00248.1.
    [155] Song F F, Zhou T J. 2014b. The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air-sea coupling improve the simulations? [J]. J. Climate, 27 (23): 8761-8777, doi: 10.1175/jcli-d-14-00396.1.
    [156] Song F F, Zhou T J. 2015. The crucial role of internal variability in modulating the decadal variation of the East Asian summer monsoon-ENSO relationship during the twentieth century [J]. J. Climate, 28 (18): 7093-7107, doi: 10.1175/JCLI-D-14-00783.1.
    [157] Song F F, Zhou T J, Qian Y. 2014. Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models [J]. Geophys. Res. Lett., 41 (2): 596-603, doi:10.1002/ 2013gl058705.
    [158] Sperber K R, Annamalai H, Kang I S, et al. 2013. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century [J]. Climate Dyn., 41, 2711-2744, doi: 10.1007/s00382-012-1607-6.
    [159] Stainforth D A, Aina T, Christensen C, et al. 2005. Uncertainty in predictions of the climate response to rising levels of greenhouse gases [J]. Nature, 433 (7024): 403-406, doi: 10.1038/nature03301.
    [160] Su T H, Xue F, Zhang H. 2014. Simulating the intraseasonal variation of the East Asian summer monsoon by IAP AGCM4.0 [J]. Adv. Atmos. Sci., 31 (3): 570-580, doi: 10.1007/s00376-013-3029-8.
    [161] 孙颖, 丁一汇. 2009.未来百年东亚夏季降水和季风预测的研究[J].中国科学D辑:地球科学, 39 (11): 1487-1504. http://www.oalib.com/paper/4150434
    [162] Su Y, Ding Y H. 2010. A projection of future changes in summer precipitation and monsoon in East Asia [J]. Sci China Ser D-Earth Sci, 53 (2): 284-300, doi:10.1007/ s11430-009-0123-y.
    [163] Tao W C, Huang G, Hu K M, et al. 2015. Interdecadal modulation of ENSO teleconnections to the Indian Ocean Basin Mode and their relationship under global warming in CMIP5 models [J]. Int. J. Climatol. 35 (3): 391-407, doi: 10.1002/joc.3987.
    [164] Tao W C, Huang G, Hu K M, et al. 2016. A study of biases in simulation of the Indian Ocean basin mode and its capacitor effect in CMIP3/CMIP5 models [J]. Climate Dyn., 46 (1-2): 205-226, doi: 10.1007/s00382-015-2579-0.
    [165] Tian D, Guo Y, Dong W J. 2015. Future changes and uncertainties in temperature and precipitation over China based on CMIP5 models [J]. Adv. Atmos. Sci., 32 (4): 487-496, doi: 10.1007/s00376-014-4102-7.
    [166] Trenberth K E, Stepaniak D P, Caron J M. 2000. The global monsoon as seen through the divergent atmospheric circulation [J]. J. Climate, 13 (22): 3969-3993, doi:10.1175/1520-0442(2000)013<3969:tgmast>2.0.co; 2.
    [167] Vial J, Dufresne J, Bony S. 2013. On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates [J]. Climate Dyn., 41 (11-12): 3339-3362, doi: 10.1007/s00382-013-1725-9.
    [168] Wang H J. 2001. The weakening of the Asian monsoon circulation after the end of 1970's [J]. Adv. Atmos. Sci., 18 (3): 376-386, doi:10.1007/ bf02919316.
    [169] 汪方, 丁一汇. 2005.气候模式中云辐射反馈过程机理的评述[J].地球科学进展, 20 (2): 207-215. doi: 10.3321/j.issn:1001-8166.2005.02.011

    Wang F, Ding Y H. 2005. An evaluation of cloud radiative feedback mechanisms in climate models [J]. Adv. Earth Sci. (in Chinese), 20 (2): 207-215, doi:10.3321/j.issn:1001-8166.2005. 02.011.
    [170] 王东阡, 张耀存. 2009.气候系统模式MIROC对中国降水和地面风场日变化的模拟[J].南京大学学报(自然科学), 45 (6): 724-733. doi: 10.3321/j.issn:0469-5097.2009.06.002

    Wang D Q, Zhang Y C. 2009. Diurnal variations of precipitation and circulation simulated by model for interdisciplinary research on climate [J]. J. Nanjing Univ. (Nat. Sci.) (in Chinese), 45 (6): 724-733, doi:10.3321/j. issn:0469-5097.2009.06.002.
    [171] 王会军, 范可. 2013.东亚季风近几十年来的主要变化特征[J].大气科学, 37 (2): 313-318. doi: 10.3878/j.issn.1006-9895.2012.12301

    Wang H J, Fan K. 2013. Recent changes in the East Asian monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37 (2): 313-318, doi: 10.3878/j.issn.1006-9895.2012.12301.
    [172] 王绍武, 赵宗慈, 陈振华. 1993. 公元950~1991年的旱涝型[M]//王绍武, 黄朝迎. 长江黄河旱涝灾害发生规律及其经济影响的诊断研究. 北京: 气象出版社, 55-66.

    Wang S W, Zhao Z C, Chen Z H. 1993. The patterns of drought and flood during AD 950 to AD 1991 [M]// Wang S W, Huang C Y. The Mechanisms and Economical Impacts of the Yangtze-Yellow River's Drought and Flood (in Chinese). Beijing: China Meteorological Press.
    [173] Wang Y Q, Zhou L, Hamilton K. 2007. Effect of convective entrainment/ detrainment on the simulation of the tropical precipitation diurnal cycle [J]. Mon. Wea. Rev., 135 (2): 567-585, doi: 10.1175/MWR3308.1.
    [174] Wang Q Y, Wang Z L, Zhang H. 2017b. Impact of anthropogenic aerosols from global, East Asian, and non-East Asian sources on East Asian summer monsoon system [J]. Atmos. Res., 183: 224-236, doi:10.1016/j. atmosres.2016.08.023.
    [175] 王绍武, 龚道溢, 叶瑾琳, 等. 2000. 1880年以来中国东部四季降水量序列及其变率[J].地理学报, 55 (3): 281-293. doi: 10.3321/j.issn:0375-5444.2000.03.004

    Wang S W, Gong D Y, Ye J L, et al. 2000. Seasonal precipitation series of Eastern China since 1880 and the variability [J]. Acta Geogr. Sinica (in Chinese), 55 (3): 281-293, doi: 10.3321/j.issn:0375-5444.2000.03.004.
    [176] 王绍武, 蔡静宁, 朱锦红, 等. 2002. 19世纪80年代到20世纪90年代中国年降水量的年代际变化[J].气象学报, 60 (5): 637-639. doi: 10.11676/qxxb2002.076

    Wang S W, Cai J N, Zhu J J, et al. 2002. The interdecadal variations of annual precipitation in China during 1880's-1990's [J]. Acta Meteor. Sinica (in Chinese), 60 (5): 637-639, doi: 10.11676/qxxb2002.076.
    [177] Wang B, Ding Q H, Fu X, et al. 2005. Fundamental challenge in simulation and prediction of summer monsoon rainfall [J]. Geophys. Res. Lett., 32 (15): L15711, doi: 10.1029/2005GL022734.
    [178] Wang M, Ghan S, Easter R, et al. 2011. The multi-scale aerosol-climate model PNNL-MMF: Model description and evaluation [J]. Geosci. Model. Dev., 4 (1): 137-168, doi: 10.5194/gmd-4-137-2011.
    [179] Wang T, Wang H J, Otterå O H, et al. 2013. Anthropogenic agent implicated as a prime driver of shift in precipitation in eastern China in the late 1970s [J]. Atmos. Chem. Phys., 13 (24): 12433-12450, doi: 10.5194/acp-13-12433-2013.
    [180] Wang M H, Larson V E, Ghan S, et al. 2015. A multiscale modeling framework model (superparameterized CAM5) with a higher-order turbulence closure: Model description and low-cloud simulations [J]. J. Adv. Model. Earth Syst., 7 (2): 484-509, doi: 10.1002/2014ms000375.
    [181] Wang P X, Wang B, Cheng H, et al. 2017a. The global monsoon across time scales: Mechanisms and outstanding issues [J]. Earth-Sci. Rev., 174: 84-121, doi: 10.1016/j.earscirev.2017.07.006.
    [182] Wang Z L, Lin L, Yang M L, et al. 2017c. Disentangling fast and slow responses of the East Asian summer monsoon to reflecting and absorbing aerosol forcings [J]. Atmos. Chem. Phys., 17 (18): 11075-11088, doi: 10.5194/acp-17-11075-2017.
    [183] Wehner M F, Reed K A, Li F Y, et al. 2014. The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1 [J]. J. Adv. Model Earth Syst., 6 (4): 980-997, doi:10.1002/ 2013MS000276.
    [184] Weisman M L, Skamarock W C, Klemp J B. 1997. The resolution dependence of explicitly modeled convective systems [J]. Mon. Wea. Rev., 125 (4): 527-548, doi:10.1175/1520-0493(1997)125<0527:trdoem>2.0.co; 2.
    [185] 闻新宇, 王绍武, 朱锦红, 等. 2006.英国CRU高分辨率格点资料揭示的20世纪中国气候变化[J].大气科学, 30 (5): 894-904. doi: 10.3878/j.issn.1006-9895.2006.05.18

    Wen X Y, Wang S W, Zhu J H, et al. 2006. An overview of China climate change over the 20th century using UK UEA/CRU high resolution grid data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30 (5): 894-904, doi: 10.3878/j.issn.1006-9895.2006.05.18.
    [186] Wu G X, Liu H Z. 1998. Vertical vorticity development owing to down-sliding at slantwise isentropic surface [J]. Dyn. Atmos. Oceans, 27 (1-4): 715-743, doi: 10.1016/s0377-0265(97)00040-7.
    [187] Wu B, Zhou T J. 2016. Relationships between ENSO and the East Asian-western North Pacific monsoon: Observations versus 18 CMIP5 models [J]. Climate Dyn., 46 (3-4): 729-743, doi: 10.1007/s00382-015-2609-y.
    [188] 吴国雄, 刘屹岷, 刘平. 1999.空间非均匀加热对副热带高压带形成和变异的影响Ⅰ:尺度分析[J].气象学报, 57 (3): 257-263. doi: 10.11676/qxxb1999.025

    Wu G X, Liu Y M, Liu P. 1999. The effect of spatially nonuniform heating on the formation and variation of subtropical High. Ⅰ. Scale analysis [J]. Acta Meteor. Sinica (in Chinese), 57 (3): 257-263, doi: 10.11676/qxxb1999.025.
    [189] Wu B, Zhou T J, Li T. 2009. Seasonally evolving dominant interannual variability modes of East Asian climate [J]. J. Climate, 22 (11): 2992-3005, doi: 10.1175/2008jcli2710.1.
    [190] Wu B, Li T, Zhou T. 2010a. Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer [J]. J. Climate, 23 (11): 2974-2986, doi: 10.1175/2010jcli3300.1.
    [191] Wu R G, Wen Z P, Yang S, et al. 2010b. An interdecadal change in southern China summer rainfall around 1992/93 [J]. J. Climate, 23 (9): 2389-2403, doi: 10.1175/2009jcli3336.1.
    [192] Wu G X, Li Z Q, Fu C B, et al. 2016. Advances in studying interactions between aerosols and monsoon in China [J]. Sci. China Earth Sci., 59 (1): 1-16, doi: 10.1007/s11430-015-5198-z.
    [193] Xie S P, Hu K M, Hafner J, et al. 2009. Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño [J]. J. Climate, 22 (3): 730-747, doi: 10.1175/2008jcli2544.1.
    [194] Xu Q. 2001. Abrupt change of the mid-summer climate in central East China by the influence of atmospheric pollution [J]. Atmos. Environ., 35(30): 5029-5040, doi: 10.1016/s1352-2310(01)00315-6.
    [195] Xu W X, Zipser E J. 2011. Diurnal variations of precipitation, deep convection, and lightning over and East of the eastern Tibetan Plateau [J]. J. Climate, 24 (2): 448-465, doi: 10.1175/2010jcli3719.1.
    [196] Yan H, Qian Y, Lin G, et al. 2014. Parametric sensitivity and calibration for the Kain-Fritsch convective parameterization scheme in the WRF model [J]. Climate Res., 59 (2): 135-147, doi: 10.3354/cr01213.
    [197] Yang G Y, Slingo J. 2001. The diurnal cycle in the tropics [J]. Mon. Wea. Rev., 129 (4): 784-801, doi:10.1175/1520-0493(2001)129<0784: TDCITT>2.0.CO; 2.
    [198] Yang J L, Liu Q Y, Xie S P, et al. 2007. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon [J]. Geophys. Res. Lett., 34 (2): L02708, doi: 10.1029/2006GL028571.
    [199] Yang B, Qian Y, Lin G, et al. 2013. Uncertainty quantification and parameter tuning in the CAM5 Zhang-McFarlane convection scheme and impact of improved convection on the global circulation and climate [J]. J. Geophys. Res., 118 (2): 395-415, doi: 10.1029/2012JD018213.
    [200] Yang B, Zhang Y C, Qian Y, et al. 2015a. Calibration of a convective parameterization scheme in the WRF model and its impact on the simulation of East Asian summer monsoon precipitation [J]. Climate Dyn., 44 (5-6): 1661-1684, doi: 10.1007/s00382-014-2118-4.
    [201] Yang B, Zhang Y C, Qian Y, et al. 2015b. Parametric sensitivity analysis for the Asian summer monsoon precipitation simulation in the Beijing climate center AGCM [J]. J. Climate, 28 (14): 5622-5644, doi:10.1175/ jcli-d-14-00655.1.
    [202] Yao J C, Zhou T J, Guo Z, et al. 2017. Improved performance of high-resolution atmospheric models in simulating the East Asian summer monsoon rain belt [J]. J. Climate, 30 (21): 8825-8840, doi:10.1175/ JCLI-D-16-0372.1.
    [203] Yu R C, Zhou T J. 2007. Seasonality and three-dimensional structure of interdecadal change in the East Asian monsoon [J]. J. Climate, 20 (21): 5344-5355, doi: 10.1175/2007jcli1559.1.
    [204] Yu R C, Wang B, Zhou T J. 2004. Tropospheric cooling and summer monsoon weakening trend over East Asia [J]. Geophys. Res. Lett., 31 (22): L22212, doi: 10.1029/2004GL021270.
    [205] Yu R C, Xu Y P, Zhou T J, et al. 2007a. Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China [J]. Geophys. Res. Lett., 34 (13): L13703, doi:10.1029/ 2007GL030315.
    [206] Yu R C, Zhou T J, Xiong A Y, et al. 2007b. Diurnal variations of summer precipitation over contiguous China [J]. Geophys. Res. Lett., 34 (1): L01704, doi: 10.1029/2006GL028129.
    [207] 宇如聪, 周天军, 李建, 等. 2008.中国东部气候年代际变化三维特征的研究进展[J].大气科学, 32 (4): 893-905. doi: 10.3878/j.issn.1006-9895.2008.04.16

    Yu R C, Zhou T J, Li J, et al. 2008. Progress in the studies of three-dimensional structure of interdecadal climate change over eastern China [J]. Chinese Journal of Atmospheric Sciences, 32 (4): 893-905, doi:10.3878/j.issn.1006-9895. 2008.04.16.
    [208] Yu R C, Yuan W H, Li J, et al. 2010. Diurnal phase of late-night against late-afternoon of stratiform and convective precipitation in summer southern contiguous China [J]. Climate Dyn., 35 (4): 567-576, doi: 10.1007/s00382-009-0568-x.
    [209] 宇如聪, 李建, 陈昊明, 等. 2014.中国大陆降水日变化研究进展[J].气象学报, 72 (5): 948-968. doi: 10.11676/qxxb2014.047

    Yu R C, Li J, Chen H M, et al. 2014. Progress in studies of the precipitation diurnal variation over contiguous China [J]. Acta Meteor. Sinica (in Chinese), 72 (5): 948-968, doi: 10.11676/qxxb2014.047.
    [210] Yuan W H. 2013. Diurnal cycles of precipitation over subtropical China in IPCC AR5 AMIP simulations [J]. Adv. Atmos. Sci., 30 (6): 1679-1694, doi: 10.1007/s00376-013-2250-9.
    [211] Yuan W H, Yu R C, Chen H M, et al. 2010. Subseasonal characteristics of diurnal variation in summer monsoon rainfall over central eastern China [J]. J. Climate, 23 (24): 6684-6695, doi: 10.1175/2010jcli3805.1.
    [212] Yuan W H, Yu R C, Zhang M H, et al. 2013. Diurnal cycle of summer precipitation over subtropical East Asia in CAM5[J]. J. Climate, 26 (10): 3159–3172, doi: 10.1175/jcli-d-12-00119.1.
    [213] 张顺利, 陶诗言. 2001.青藏高原积雪对亚洲夏季风影响的诊断及数值研究[J].大气科学, 25 (3): 372-390. doi: 10.3878/j.issn.1006-9895.2001.03.07

    Zhang S L, Tao S Y. 2001. The influences of snow cover over the Tibetan Plateau on Asian summer monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 25 (3): 372-390, doi: 10.3878/j.issn.1006-9895.2001.03.07.
    [214] Zhang L X, Zhou T J. 2011. An assessment of monsoon precipitation changes during 1901-2001 [J]. Climate Dyn., 37 (1-2): 279-296, doi: 10.1007/s00382-011-0993-5.
    [215] Zhang L X, Zhou T J. 2015. Decadal change of East Asian summer tropospheric temperature meridional gradient around the early 1990s [J]. Sci. China Earth Sci., 58 (9): 1609-1622, doi: 10.1007/s11430-015-5117-3.
    [216] Zhang Y, Chen H M. 2016. Comparing CAM5 and superparameterized CAM5 simulations of summer precipitation characteristics over continental East Asia: Mean state, frequency-intensity relationship, diurnal cycle, and influencing factors [J]. J. Climate, 29 (3): 1067-1089, doi: 10.1175/JCLI-D-15-0342.1.
    [217] Zhang L X, Wu P L, Zhou T J. 2017. Aerosol forcing of extreme summer drought over North China [J]. Environ. Res. Lett., 12 (3): 034020, doi: 10.1088/1748-9326/aa5fb3.
    [218] Zhang P Z, Cheng H, Edwards R L, et al. 2008. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record [J]. Science, 322 (5903): 940-942, doi: 10.1126/science.1163965.
    [219] 张德二, 李红春, 顾德隆, 等. 2010.从降水的时空特征检证季风与中国朝代更替之关联[J].科学通报, 55 (1): 60-67. doi: 10.1007/s11434-009-0584-6

    Zhang D E, Li H C, Gu D L, et al. 2010. On linking climate to Chinese dynastic change: Spatial and temporal variations of monsoonal rain [J]. Chin. Sci. Bull, 55 (1): 77-83, doi: 10.1007/s11434-009-0584-6.
    [220] Zhang D L, Lin Y H, Zhao P, et al. 2013. The Beijing extreme rainfall of 21 July 2012: "Right results" but for wrong reasons [J]. Geophys. Res. Lett., 40 (7): 1426-1431, doi: 10.1002/grl.50304.
    [221] Zhang L X, Wu P L, Zhou T J, et al. 2016. Added value of high resolution models in simulating global precipitation characteristics [J]. Atmos. Sci. Lett., 17 (12): 646-657, doi: 10.1002/asl.715.
    [222] 赵振国. 1999.中国夏季旱涝及环境场[M].北京:气象出版社.

    Zhao Z G 1999. Summer flood and its related large-scale circulations in China (in Chinses). Beijing: China Meteorological Press
    [223] 赵天保, 涂锴, 严中伟. 2013.大气水汽变化及其反馈效应研究进展[J].气候变化研究进展, 9 (2): 79-88. doi: 10.3969/j.issn.1673-1719.2013.02.001

    Zhao T B, Tu K, Yan Z W. 2013. Advances of atmospheric water vapor change and its feedback effect [J]. Advances in Climate Change Research (in Chinese), 9 (2): 79-88, doi: 10.3969/j.issn.1673-1719.2013.02.001.
    [224] Zheng J Y, Wang W C, Ge Q S, et al. 2006. Precipitation variability and extreme events in eastern China during the past 1500 years [J]. Terr. Atmos. Ocean Sci., 17 (3): 579-592, doi: 10.3319/tao.2006.17.3.579(A).
    [225] 中国气象局. 2016.中国气象灾害年鉴(2016) [M], 北京:气象出版社, 1-232.

    China Meteorological Administration. 2016. Year book of Meteorological Disasters in China (2016) [M] (in Chinese). Beijing: China Meteorological Press.
    [226] 周天军, 陈晓龙. 2015.气候敏感度、气候反馈过程与2 ℃升温阈值的不确定性问题[J].气象学报, 73 (4): 624-634. doi: 10.11676/qxxb2015.057

    Zhou T J, Chen X L. 2015. The uncertainty in the 2 ℃ warming threshold issue as related to climate sensitivity and climate feedback [J]. Acta Meteor. Sinica (in Chinese), 73 (4): 624-634, doi: 10.11676/qxxb2015.057.
    [227] Zhou T J, Wu B, Wang B. 2009b. How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian monsoon? [J]. J. Climate, 22 (5): 1159-1173, doi: 10.1175/2008jcli2245.1.
    [228] Zhou T J, Yu R C, Chen H M, et al. 2008. Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations [J]. J. Climate, 21 (16): 3997-4010, doi: 10.1175/2008jcli2028.1.
    [229] Zhou T J, Gong D Y, Li J, et al. 2009a. Detecting and understanding the multi-decadal variability of the East Asian summer monsoon recent progress and state of affairs [J]. Meteor. Z., 18 (4): 455-467, doi:10.1127/ 0941-2948/2009/0396.
    [230] Zhou T J, Yu R C, Zhang J, et al. 2009c. Why the western Pacific subtropical high has extended westward since the late 1970s [J]. J. Climate, 22 (8): 2199-2215, doi: 10.1175/2008jcli2527.1.
    [231] 周天军, 邹立维, 吴波, 等. 2014.中国地球气候系统模式研究进展: CMIP计划实施近20年回顾[J].气象学报, 72 (5): 892-907. doi: 10.11676/qxxb2014.083

    Zhou T J, Zou L W, Wu B, et al. 2014. Development of earth/climate system models in China: A review from the coupled model intercomparison project perspective [J]. Acta Meteor. Sinica (in Chinese), 72 (5): 892-907, doi: 10.11676/qxxb2014.083.
    [232] Zhou B T, Wen Q Z, Xu Y, et al. 2014. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles [J]. J. Climate, 27 (17): 6591-6611, doi: 10.1175/jcli-d-13-00761.1.
    [233] Zhou T J, Wu B, Wang B. 2009b. How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian monsoon? [J]. J. Climate, 22 (5): 1159-1173, doi: 10.1175/2008jcli2245.1.
    [234] Zhou T J, Turner A G, Kinter J L, et al. 2016. GMMIP (v1.0) contribution to CMIP6: Global monsoons model inter-comparison project [J]. Geosci. Model Dev., 9 (10): 3589-3604, doi: 10.5194/gmd-9-3589-2016.
    [235] Zhou T J, Chen X L, Wu B, et al. 2017. A robustness analysis of CMIP5 models over the East Asia-western North Pacific domain [J]. Engineering, 3 (5): 773-778, doi: 10.1016/J.ENG.2017.05.018.
    [236] 周天军, 邹立维, 韩振宇, 等. 2016.区域海气耦合模式FROALS的发展及其应用[J].大气科学, 40 (1): 86-101. doi: 10.3878/j.issn.1006-9895.1508.15153

    Zhou T J, Zou L W, Han Z Y, et al. 2016. Development and applications of a regional atmosphere-ocean coupled model (FROALS): A review [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40 (1): 86-101, doi: 10.3878/j.issn. 1006-9895.1508.15153.
    [237] 朱永春, 黄士松. 1996.包含详细水分循环和海冰物理过程的一维气候模式与气候系统内反馈机制的研究[J].大气科学, 20 (6): 691-702. doi: 10.3878/j.issn.1006-9895.1996.06.06

    Zhu Y C, Huang S S. 1996. A one-dimensional climate model with hydrological cycle and sea ice physics to analyse feedback mechanisms of climate system [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 20 (6): 691-702, doi:10.3878/j.issn. 1006-9895.1996.06.06.
    [238] Zhu C W, Wang B, Qian W H, et al. 2012. Recent weakening of northern East Asian summer monsoon: A possible response to global warming [J]. Geophys. Res. Lett., 39 (9): L09701, doi: 10.1029/2012GL051155.
    [239] Zhu K F, Xue M. 2016. Evaluation of WRF-based convection-permitting multi-physics ensemble forecasts over China for an extreme rainfall event on 21 July 2012 in Beijing [J]. Adv. Atmos. Sci., 33 (11): 1240-1258, doi: 10.1007/s00376-016-6202-z.
    [240] Zhu Y L, Wang H J, Zhou W, et al. 2011. Recent changes in the summer precipitation pattern in East China and the background circulation [J]. Climate Dyn., 36 (7-8): 1463-1473, doi: 10.1007/s00382-010-0852-9.
    [241] Zhuo Z H, Gao C C, Pan Y Q. 2014. Proxy evidence for China's monsoon precipitation response to volcanic aerosols over the past seven centuries [J]. J. Geophys. Res., 119 (11): 6638-6652, doi: 10.1002/2013JD021061.
    [242] Zou L W, Zhou T J. 2011. Sensitivity of a regional ocean-atmosphere coupled model to convection parameterization over western North Pacific [J]. J. Geophys. Res., 116 (D18): D18106, doi: 10.1029/2011JD015844.
    [243] 邹立维, 周天军. 2012.一个区域海气耦合模式的发展及其在西北太平洋季风区的性能检验:不同大气分量的影响[J].中国科学:地球科学, 42 (4): 614-628. doi: 10.1007/s11430-011-4281-3

    Zou L W, Zhou T J. 2012. Development and evaluation of a regional ocean-atmosphere coupled model with focus on the western North Pacific summer monsoon simulation: Impacts of different atmospheric components [J]. Sci. China Earth Sci. (in Chinsese), 42 (4): 614-628, doi: 10.1007/s11430-011-4281-3.
    [244] Zou L W, Zhou T J. 2013a. Near future (2016-40) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario: Comparison between RCM downscaling and the driving GCM [J]. Adv. Atmos. Sci., 30 (3): 806-818, doi: 10.1007/s00376-013-2209-x.
    [245] Zou L W, Zhou T J. 2013b. Improve the simulation of western North Pacific summer monsoon in RegCM3 by suppressing convection [J]. Meteor. Atmos. Phys., 121 (1-2): 29-38, doi: 10.1007/s00703-013-0255-7.
    [246] Zou L W, Zhou T J. 2013c. Can a Regional Ocean-Atmosphere Coupled Model improve the simulation of the interannual variability of the western North Pacific summer monsoon? [J]. J. Climate, 26 (7):2353-2367, doi: 10.1175/JCLI-D-11-00722.1.
    [247] Zou L W, Zhou T J. 2016. Future summer precipitation changes over CORDEX-East Asia domain downscaled by a regional ocean-atmosphere coupled model: A comparison to the stand-alone RCM [J]. J. Geophys. Res., 121 (6): 2691-2704, doi: 10.1002/2015JD024519.
    [248] Zou L W, Zhou T J, Peng D D. 2016. Dynamical downscaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean-atmosphere coupled model to stand-alone RCM simulations [J]. J. Geophys. Res., 121 (4): 1442-1458, doi: 10.1002/2015JD023912.
    [249] Zou L W, Qian Y, Zhou T J, et al. 2014. Parameter tuning and calibration of RegCM3 with MIT-Emanuel cumulus parameterization scheme over CORDEX East Asia domain [J]. J. Climate, 27 (20): 7687-7701, doi: 10.1175/JCLI-D-14-00229.1.
  • 加载中
图(12)
计量
  • 文章访问数:  1966
  • HTML全文浏览量:  2
  • PDF下载量:  1381
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-26
  • 网络出版日期:  2018-04-08
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回