高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

江淮流域持续性强降水过程的多尺度物理模型

孙建华 卫捷 傅慎明 张元春 汪汇洁

孙建华, 卫捷, 傅慎明, 张元春, 汪汇洁. 江淮流域持续性强降水过程的多尺度物理模型[J]. 大气科学, 2018, 42(4): 741-754. doi: 10.3878/j.issn.1006-9895.1803.17246
引用本文: 孙建华, 卫捷, 傅慎明, 张元春, 汪汇洁. 江淮流域持续性强降水过程的多尺度物理模型[J]. 大气科学, 2018, 42(4): 741-754. doi: 10.3878/j.issn.1006-9895.1803.17246
Jianhua SUN, Jie WEI, Shenming FU, Yuanchun ZHANG, Huijie WANG. The Multi-scale Physical Model for Persistent Heavy Rainfall Events in the Yangtze-Huaihe River Valley[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4): 741-754. doi: 10.3878/j.issn.1006-9895.1803.17246
Citation: Jianhua SUN, Jie WEI, Shenming FU, Yuanchun ZHANG, Huijie WANG. The Multi-scale Physical Model for Persistent Heavy Rainfall Events in the Yangtze-Huaihe River Valley[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4): 741-754. doi: 10.3878/j.issn.1006-9895.1803.17246

江淮流域持续性强降水过程的多尺度物理模型

doi: 10.3878/j.issn.1006-9895.1803.17246
基金项目: 

国家自然科学基金项目 41375053

国家自然科学基金项目 41675045

国家自然科学基金项目 41775046

详细信息
    作者简介:

    孙建华, 女, 1972年生, 研究员, 主要从事中尺度气象学研究。E-mail:sjh@mail.iap.ac.cn

  • 中图分类号: P445

The Multi-scale Physical Model for Persistent Heavy Rainfall Events in the Yangtze-Huaihe River Valley

Funds: 

National Natural Science Foundation of China 41375053

National Natural Science Foundation of China 41675045

National Natural Science Foundation of China 41775046

  • 摘要: 本文对江淮流域持续性暴雨事件(PHREs)的多尺度物理模型和能量转换特征以及青藏高原东部对流系统东移影响下游地区降水的研究成果进行了总结。从欧亚大陆Rossby波列能量频散的角度揭示了江淮流域PHREs中纬度系统槽脊稳定的机制,定量分析了冷暖空气的源地和输送路径,提出了江南型和江北型PHREs的多尺度物理模型。从天气尺度和次天气尺度之间的能量转换角度呈现了不同尺度系统相互作用的物理图像,指出背景场的能量供给是直接触发暴雨的次天气尺度系统维持的最重要因子,尤其是在对流层的低层,动能的降尺度级串(即能量由背景场传递给次天气尺度系统)最强。研究表明青藏高原东部对流系统东移影响江淮流域的降水是一系列天气系统配合和活跃的结果,主要由青藏高原和四川盆地、二级地形和东部平原之间的热力环流、西南涡、二级地形以东中尺度涡旋和对流系统的共同影响。除了本文总结的内容,还有一些影响PHREs的因子值得深入研究,多尺度相互作用中的Rossby波源及其波列如何影响天气系统,中尺度系统对其背景场的能量反馈等。
  • 图  1  东亚地形高度分布(单位:m),红色框为本文选取的江淮区域,其中的黑线将江淮流域分成江南和江北部分

    Figure  1.  Distribution of topography (shadings, units: m). The red rectangle represents the YHRV (Yangtze–Huaihe River Valley), and the black solid line divides the YHRV into the northern and southern portions

    图  2  江淮流域(a)江南型和(b)江北型PHREs的200 hPa合成位势高度场(黑色线,单位:gpm)和标准化距平场(填色),粉色矩形框为研究的江淮流域,蓝色虚线为气候平均的南亚高压,绿色实线为200 hPa的急流带(风速≥25 m s−1),打点阴影区和橘红色箭头区分别为高度场和风场异常通过95%信度水平的显著性检验(t-test)的区域

    Figure  2.  Composite maps of geopotential height (black contours, units: gpm) and standard deviation (shadings) at 200 hPa corresponding to PHREs (Persistent Heavy Rainfall Events) in (a) the southern portion and (b) the northern portion of YHRV. Pink dashed box indicates the YHRV. Blue dashed lines denote the climatological mean of South Asia high. Green solid lines indicate the upper level jet (wind speeds ≥25 m s−1) at 200 hPa. Dots and orange arrows areas show height and wind anomalies respectively significant at the 95% confidence level based on the t-test

    图  3  江南型PHREs的(a)300 hPa和(b)700 hPa合成波作用通量(箭头,单位:m2 s-2)及其散度(阴影,单位:10-6 m s-2)、流函数距平(紫色等值线,等值线的间隔为2×106 m2 s-1,粗实线为零线)

    Figure  3.  Composite horizontal components of wave activity fluxes (arrows, units: m2 s-2), the divergence of wave activity fluxes (shadings, units: 10-6 m s-2), and corresponding stream function anomalies (purple contours, isolines are drawn at 2×106 m2 s-1 interval, and zero lines are bold) associated with the PHREs in the southern portion of YHRV at (a) 300 hPa and (b) 700 hPa

    图  4  图 3,但为江北型

    Figure  4.  Same as Fig. 3, but for PHREs in the northern portion of YHRV

    图  5  江淮地区(a)江南型和(b)江北型PHREs的多尺度天气学概念模型图。(a、b)中上层为200 hPa上的位势高度距平(阴影;黄色和蓝色分别代表正值和负值;单位:gpm)和高空急流(绿色实线,风速≥25 m s-1);中层为500 hPa的位势高度(黑色实线,单位:gpm);下层为对流层低层的水汽(绿色粗实线)和冷空气(蓝色粗线)的路径。粗粉色箭头为Rossby波列能量频散的路径

    Figure  5.  Multi-scale schematic model for PHREs (a) in the southern portion of YHRV and (b) in the northern portion of YHRV. In (a, b), upper panel: the anomaly of geopotential height at 200 hPa (shadings, yellow and blue represent positive and negative values respectively) and upper-level jet (green line, wind speed ≥25 m s-1); middle panel: geopotential height at 500 hPa (black solid lines, units: gpm); lower panel: the lower troposphere water vapor (green solid line) and cold air (blue line) paths. The bold pink arrow is the path of energy dispersion of the Rossby wave train

    图  6  江南型(左列)和江北型(右列)PHREs(a、e)所有层次、(b、f)高层、(c、g)中层和(d、h)低层的能量转换图。AMAIAT分别是有效位能的时间平均项、相互作用项和扰动项;KMKIKT分别是动能的时间平均项、相互作用项和扰动项。GAM和GATAMAT的非绝热生消率。DKM代表KM的耗散率,B(X)是与能量X有关的三维输送。R(AM)代表热量的垂直输送。BCEC代表斜压能量转换,DNEC代表降尺度能量级串,UPEC是升尺度能量级串。引自Zhang et al.(2017b)

    Figure  6.  Main energy paths in different levels for PHREs in the southern portion of YHRV (left column; TL_A, UL_A, ML_A and LL_A mean the energy paths integrated over all levels, upper levels, middle levels and lower levels, respectively) and PHREs in the northern portion of YHRV (right column; TL_B, UL_B, ML_B and LL_B mean the energy paths integrated over all levels, upper levels, middle levels and lower levels, respectively). AM, AI and AT are the time-average, interaction and perturbation APE; KM, KI and KT are the time-average, interaction and perturbation KE. GAM and GAT are the diabatic generation or extinction of AM and AT. DKM denotes the dissipation of KM. B(X) is the three-dimensional transport associated with energy 'X'. R(AM) represents the vertical transport of heat. BCEC is baroclinic energy conversion; DNEC means the downscaled energy cascade and UPEC is the upscaled energy cascade. Cited from Zhang et al. (2017b)

    图  7  江南和江北型持续性降水过程能量转换概念图,A代表江南型,B代表江北型;KE为动能,APE为有效位能;BCE为斜压能量转换,正号代表有效位能释放,负号代表有效位能制造;UPECP为升尺度能量级串,DNECP为降尺度能量级串,background为背景场,eddy为扰动场,大于号和小于号代表了江南型和江北型能量的相对强弱

    Figure  7.  The schematic illustration of PHREs in the northern portion of YHRV (type B) and in the southern portion of YHRV (type A), where KE is the kinetic energy, APE is the available potential energy, BCE is the baroclinic energy conversion (plus/minus signs represent release/production of APE), UPECP is the upscaled energy cascade process, and DNECP is the downscaled energy cascade process. ' < ' and ' > ' in the parentheses following 'background' and 'eddy' show the comparisons between type A and type B of the energy values of background and eddy fields, respectively

    图  8  江淮流域低涡发展期与其背景场相互作用的概念图。黑色的空心曲线箭头代表了背景流场,红色的虚线代表了温度场,绿色的椭圆和蓝色风向杆标出了低涡的位置;KE为动能,APE为有效位能,UPECP为升尺度能量级串,DNECP为降尺度能量级串

    Figure  8.  Schematic illustration of interaction between the YHRV vortex and its background circulation during the developing stage, where the black open curved arrows show the stream field of the background circulation, the red dashed lines are the temperature, the green ellipse with blue wind barbs shows the vortex, KE is the kinetic energy, APE is the available potential energy, UPECP is the upscaled energy cascade process, and DNECP is the downscaled energy cascade process

    图  9  2003~2010年梅雨日经向平均(27°N~35°N)的标准化后的降水偏差的时间—经度剖面(横坐标为经度,纵坐标为北京时。引自Zhang et al.(2017a)

    Figure  9.  Time–longitude cross sections of normalized precipitation anomalies averaged between 27°N–35°N during typical Meiyu period (the abscissa is longitude and the ordinate is Beijing time). Cited from Zhang et al. (2017a)

    图  10  扰动风场(扰动纬向风和扰动垂直风×100的合成)和垂直运动(填色,单位:cm s-1)日变化的高度—经度剖面:(a)00:00;(b)03:00;(c)06:00;(d)09:00;(e)12:00;(f)15:00;(g)18:00;(h)21:00。时间均为协调世界时,底部白色区域表示地形,黑色圆圈表示MPS环流。引自Zhang et al.(2014b)

    Figure  10.  Height–longitude cross section of diurnal evolution of the perturbation of vertical velocity (colored areas, units: cm s-1) and vectors of anomalous zonal wind and anomalous vertical velocity (×100) at three-hour intervals for the final seven-day simulation at (a) 0000 UTC, (b) 0300 UTC, (c) 0600 UTC, (d) 0900 UTC, (e) 1200 UTC, (f) 1500 UTC, (g) 1800 UTC and (h) 2100 UTC. The bottom white (unshaded) areas represent the topography, and the black circles indicate the MPS (Mountain Plain solenoid) circulations. Cited from Zhang et al. (2014b)

    图  11  江淮流域梅雨期PHREs过程的地形影响示意图:(a)日间环流;(b)夜间环流。箭头表示垂直环流,风向杆表示在四川盆地和江淮地区的涡旋环流

    Figure  11.  The schematic model for topographic effects on PHREs over the YHRV: (a) Daytime circulation; (b) nighttime circulation. The arrow represents the vertical circulation, and the wind barbs represents the vortex in Sichuan basin and the YHRV

  • [1] Chen G X, Sha W M, Sawada M, et al. 2013. Influence of summer monsoon diurnal cycle on moisture transport and precipitation over eastern China[J]. J. Geophys. Res., 118 (8):3163-3177, doi: 10.1002/jgrd.50337.
    [2] Chen G X, Yoshida R, Sha W M, et al. 2014. Convective instability associated with the eastward-propagating rainfall episodes over eastern China during the warm season[J]. J. Climate, 27 (6):2331-2339, doi: 10.1175/JCLI-D-13-00443.1.
    [3] Chen H M, Yu R C, Li J, et al. 2010. Why nocturnal long-duration rainfall presents an eastward-delayed diurnal phase of rainfall down the Yangtze River valley[J]. J. Climate, 23 (4):905-917, doi: 10.1175/2009JCLI3187.1.
    [4] Chen Y, Zhai P M. 2013. Persistent extreme precipitation events in China during 1951-2010[J]. Climate Res., 57 (2):143-155, doi: 10.3354/cr01171.
    [5] Chen Y, Zhai P M. 2014. Two types of typical circulation pattern for persistent extreme precipitation in central-eastern China[J]. Quart. J. Roy. Meteor. Soc., 140 (682):1467-1478, doi: 10.1002/qj.2231.
    [6] 丁一汇. 1993. 1991年江淮流域持续性特大暴雨研究[M].北京:气象出版社, 254-255.

    Ding Yihui. 1993. Study on the Lasting Heavy Rainfalls Over the Yangtze-Huaihe River Basin in 1991 (in Chinese)[M]. Beijing:China Meteorological Press, 254-255.
    [7] Fu S M, Li W L, Ling J. 2015. On the evolution of a long-lived mesoscale vortex over the Yangtze River basin:Geometric features and interactions among systems of different scales[J]. J. Geophys. Res., 120 (23):11889-11917, doi: 10.1002/2015JD023700.
    [8] Fu S M, Wang H J, Sun J H, et al. 2016a. Energy budgets on the interactions between the mean and eddy flows during a persistent heavy rainfall event over the Yangtze River valley in summer 2010[J]. J. Meteor. Res., 30 (4):513-527, doi: 10.1007/s13351-016-5121-3.
    [9] Fu S M, Sun J H, Ling J, et al. 2016b. Scale interactions in sustaining persistent torrential rainfall events during the Mei-yu season[J]. J. Geophys. Res., 121 (21):12856-12876, doi: 10.1002/2016JD025446.
    [10] Hui P H, Fang J. 2016a. Comparison of the multi-scale features in two persistent heavy rainfall events in the middle and lower reaches of Yangtze River[J]. J. Meteor. Res., 30 (4):528-546, doi: 10.1007/s13351-016-6028-8.
    [11] Hui P H, Fang J. 2016b. Impact of multi-scale oscillations at high and low latitudes on two persistent heavy rainfall events in the middle and lower reaches of the Yangtze River[J]. J. Meteor. Res., 30 (5):662-677, doi: 10.1007/s13351-016-6082-2.
    [12] Kucharski F, Thorpe A J. 2000. Local energetics of an idealized baroclinic wave using extended exergy[J]. J. Atmos. Sci., 57 (19):3272-3284, doi:10.1175/1520-0469(2000)057<3272:LEOAIB>2.0.CO;2.
    [13] 李明刚, 管兆勇, 梅士龙. 2016.夏季长江中下游地区降水持续性年(代)际变异及其与环流和Rossby波活动的联系[J].大气科学, 40 (6):1199-1214. doi: 10.3878/j.issn.1006-9895.1511.15257

    Li Minggang, Guan Zhaoyong, Mei Shilong. 2016. Interannual and interdecadal variations of summer rainfall duration over the middle and lower reaches of the Yangtze River in association with anomalous circulation and Rossby wave activities[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40 (6):1199-1214, doi:10.3878/j. issn.1006-9895.1511.15257.
    [14] Murakami S. 2011. Atmospheric local energetics and energy interactions between mean and eddy fields. Part Ⅰ:Theory[J]. J. Atmos. Sci., 68 (4):760-768, doi: 10.1175/2010JAS3664.1.
    [15] 齐艳军, 张人禾, Li T. 2016. 1998年夏季长江流域大气季节内振荡的结构演变及其对降水的影响[J].大气科学, 40 (3):451-462. doi: 10.3878/j.issn.1006-9895.1507.15107

    Qi Yanjun, Zhang Renhe, Li T. 2016. Structure and evolution characteristics of atmospheric intraseasonal oscillation and its impact on the summer rainfall over the Yangtze River basin in 1998[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40 (3):451-462, doi:10.3878/j.issn. 1006-9895.1507.15107.
    [16] 孙建华, 汪汇洁, 卫捷, 等. 2016.江淮区域持续性暴雨过程的水汽源地和输送特征[J].气象学报, 74 (4):542-555. doi: 10.11676/qxxb2016.047

    Sun Jianhua, Wang Huijie, Wei Jie, et al. 2016. The sources and transportation of water vapor in persistent heavy rainfall events in the Yangtze-Huaihe River valley[J]. Acta Meteor. Sinica, 74 (4):542-555, doi: 10.11676/qxxb2016.047.
    [17] 陶诗言, 倪允琪, 赵思雄, 等. 2001. 1998年夏季中国暴雨的形成机理与预报研究[M].北京:气象出版社, 183-184.

    Tao Shiyan, Ni Yunqi, Zhao Sixiong, et al. 2001. The Study on Formation Mechanism and Forecasting of Heavy Rainfall in the Summer 1998 (in Chinese)[M]. Beijing:China Meteorological Press, 183-184.
    [18] 陶诗言, 张小玲, 张顺利. 2004.长江流域梅雨锋暴雨灾害研究[M].北京:气象出版社, 1-192.

    Tao Shiyan, Zhang Xiaoling, Zhang Shunli. 2004. A Study on the Disaster of Heavy Rainfalls Over the Yangtze River Basin in the Meiyu Period (in Chinese)[M]. Beijing:China Meteorological Press, 1-192.
    [19] 汪汇洁. 2014. 我国南方暖季持续性暴雨的多尺度特征及机理研究[D]. 中国科学院大学博士学位论文, 1-141. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2609636

    Wang Huijie. 2014. Study on multi-scale characteristics and development mechanisms of persistent heavy rainfall during warm season in southern China[D]. Ph. D. dissertation (in Chinese), University of Chinese Academy of Sciences, 1-141. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2609636
    [20] 汪汇洁, 孙建华, 卫捷, 等. 2014.近30年我国南方区域持续性暴雨过程的分类研究[J].气候与环境研究, 19 (6):713-725. doi: 10.3878/j.issn.1006-9585.2013.13143

    Wang Huijie, Sun Jianhua, Wei Jie, et al. 2014. Classification of persistent heavy rainfall events over southern China during recent 30 years[J]. Climatic Environ. Res. (in Chinese), 19 (6):713-725, doi: 10.3878/j.issn.1006-9585.2013.13143.
    [21] 王淑莉, 徐祥德, 康红文, 等. 2016.应用谱逼近方法模拟2008年初南方持续性降水过程及其水汽通道周期特征分析[J].大气科学, 40 (3):476-488. doi: 10.3878/j.issn.1006-9895.1507.14332

    Wang Shuli, Xu Xiangde, Kang Hongwen, et al. 2016. Simulation of continuous rainfall over South China in early 2008 with the spectral nudging method and the periodicity characteristics of the water vapor channel[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40 (3):476-488, doi: 10.3878/j.issn.1006-9895.1507.14332.
    [22] 宇如聪, 李建, 陈昊明, 等. 2014.中国大陆降水日变化研究进展[J].气象学报, 72 (5):948-968. doi: 10.11676/qxxb2014.047

    Yu Rucong, Li Jian, Chen Haoming, et al. 2014. Progress in studies of the precipitation diurnal variation over contiguous China[J]. Acta Meteor. Sinica (in Chinese), 72 (5):948-968, doi: 10.11676/qxxb2014.047.
    [23] 张敬萍, 傅慎明, 孙建华, 等. 2015.夏季长江流域两类中尺度涡旋的统计与合成研究[J].气候与环境研究, 20 (3):319-336. doi: 10.3878/j.issn.1006-9585.2015.14164

    Zhang Jingping, Fu Shenming, Sun Jianhua, et al. 2015. A statistical and compositional study on the two types of mesoscale vortices over the Yangtze River basin[J]. Climatic Environ. Res. (in Chinese), 20 (3):319-336, doi: 10.3878/j.issn.1006-9585.2015.14164.
    [24] 张庆云, 王会军, 林朝晖, 等. 2004.中国天气气候异常成因研究——2003年[M].北京:气象出版社, 166-170.

    Zhang Qingyun, Wang Huijun, Lin Zhaohui, et al. 2004. The Mechanism of Abnormal Weather and Climate in China-2003 (in Chinese)[M]. Beijing:China Meteorological Press, 166-170.
    [25] Zhang S L, Tao S Y, Zhang Q Y, et al. 2002. Large and meso-α scale characteristics of intense rainfall in the mid-and lower reaches of the Yangtze River[J]. Chinese Sci. Bull., 47(9):779-786, doi: 10.1360/02tb9176.
    [26] Zhang Y C, Zhang F Q, Sun J H. 2014a. Comparison of the diurnal variations of warm-season precipitation for East Asia vs. North America downstream of the Tibetan Plateau vs. The Rocky Mountains[J]. Atmos. Chem. Phys., 14 (19):10741-10759, doi: 10.5194/acp-14-10741-2014.
    [27] Zhang Y C, Sun J H, Fu S M. 2014b. Impacts of diurnal variation of mountain-plain solenoid circulations on precipitation and vortices east of the Tibetan Plateau during the Mei-yu season[J]. Adv. Atmos. Sci., 31 (1):139-153, doi: 10.1007/s00376-013-2052-0.
    [28] Zhang Y C, Sun J H. 2017a. Comparison of the diurnal variations of precipitation east of the Tibetan Plateau among sub-periods of Meiyu season[J]. Meteor. Atmos. Phys., 129:539-554, doi: 10.1007/s00703-016-0484-7.
    [29] Zhang Y C, Sun J H, Fu S M. 2017b. Main energy paths and energy cascade processes of the two types of persistent heavy rainfall events over the Yangtze River-Huaihe River basin[J]. Adv. Atmos. Sci., 34 (2):129-143, doi: 10.1007/s00376-016-6117-8.
    [30] 赵思雄, 陶祖钰, 孙建华, 等. 2004.长江流域梅雨锋暴雨机理的分析研究[M].北京:气象出版社, 281-282.

    Zhao Sixiong, Tao Zuyu, Sun Jianhua, et al. 2004. Study on Mechanism of Formation and Development of Heavy Rainfalls on Meiyu Front in Yangtze River (in Chinese)[M]. Beijing:China Meteorological Press, 281-282.
  • 加载中
图(11)
计量
  • 文章访问数:  1411
  • HTML全文浏览量:  6
  • PDF下载量:  1080
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-29
  • 网络出版日期:  2018-03-29
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回