高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

夏季青藏高原地区水汽向平流层的等熵绝热和非绝热传输的气候学特征及其与落基山地区的对比

唐南军 任荣彩 邹晓蕾 吴国雄

唐南军, 任荣彩, 邹晓蕾, 吴国雄. 夏季青藏高原地区水汽向平流层的等熵绝热和非绝热传输的气候学特征及其与落基山地区的对比[J]. 大气科学, 2019, 43(1): 183-201. doi: 10.3878/j.issn.1006-9895.1804.17255
引用本文: 唐南军, 任荣彩, 邹晓蕾, 吴国雄. 夏季青藏高原地区水汽向平流层的等熵绝热和非绝热传输的气候学特征及其与落基山地区的对比[J]. 大气科学, 2019, 43(1): 183-201. doi: 10.3878/j.issn.1006-9895.1804.17255
Nanjun TANG, Rongcai REN, Xiaolei ZOU, Guoxiong WU. Characteristic of Adiabatic and Diabatic Water Vapor Transport from the Troposphere to the Stratosphere over the Tibetan Plateau and its Comparison with the Rocky Mountains in the Summer[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(1): 183-201. doi: 10.3878/j.issn.1006-9895.1804.17255
Citation: Nanjun TANG, Rongcai REN, Xiaolei ZOU, Guoxiong WU. Characteristic of Adiabatic and Diabatic Water Vapor Transport from the Troposphere to the Stratosphere over the Tibetan Plateau and its Comparison with the Rocky Mountains in the Summer[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(1): 183-201. doi: 10.3878/j.issn.1006-9895.1804.17255

夏季青藏高原地区水汽向平流层的等熵绝热和非绝热传输的气候学特征及其与落基山地区的对比

doi: 10.3878/j.issn.1006-9895.1804.17255
基金项目: 

中国科学院战略先导科技专项(A类)项目 XDA17010105

国家自然科学基金项目 91437105

国家自然科学基金项目 41575041

中国科学院前沿科学重点研究项目 QYZDY-SSW-DQC018

详细信息
    作者简介:

    唐南军, 男, 1987年出生, 博士研究生, 主要从事对流层平流层物质输送研究。E-mail:tangnanjun@sina.com

    通讯作者:

    任荣彩, E-mail:rrc@lasg.iap.ac.cn

  • 中图分类号: P434

Characteristic of Adiabatic and Diabatic Water Vapor Transport from the Troposphere to the Stratosphere over the Tibetan Plateau and its Comparison with the Rocky Mountains in the Summer

Funds: 

Strategic Priority Research Program of Chinese Academy of Sciences XDA17010105

National Natural Science Foundation of China 91437105

National Natural Science Foundation of China 41575041

Key Research Program of Frontier Sciences of Chinese Academy of Sciences QYZDY-SSW-DQC018

  • 摘要: 夏季亚洲季风区是对流层向平流层物质输送的主要通道,其对平流层水汽的变化有重要贡献。以往的研究表明亚洲季风区向平流层的水汽传输主要在青藏高原及周边地区。本文利用多年平均的逐日ERAi、MERRA再分析数据和微波临边观测仪(Microwave Limb Sounder,MLS)数据,首先对比分析夏季青藏高原周边上空水汽的分布特征,再利用再分析资料分析了对流层—平流层水汽传输的特征。结果表明:青藏高原周边特定的等熵面和对流层顶结构分布有利于水汽向平流层的绝热输送;在南亚高压的东北侧,从青藏高原到中太平洋地区,340~360 K层次存在最为显著的水汽向平流层的纬向等熵绝热输送通道,7~8月平均输送强度可达约7×103 kg s-1。此外,在伊朗高原及南亚高压的西部,350~360 K层次也存在一支水汽向平流层的经向等熵绝热输送通道,但强度相对较弱(约2.5×103 kg s-1)。在青藏高原南侧370~380 K层次存在强的水汽向平流层的非绝热输送,主要由深对流和大尺度上升运动引起,7~8月平均输送强度约0.4×103 kg s-1。落基山以东到大西洋西部,350~360 K层次存在水汽向平流层的纬向等熵绝热输送通道,但强度也弱得多(约2.5×103 kg s-1)。
  • 图  1  1979~2013年平均的7~8月沿青藏高原纬度带(25°~40°N)水汽含量的纬向偏差百分比(填色)、位温(黑色实线, 单位:K)和对流层顶(粉色虚线)的气压-经度剖面:(a) MLS资料; (b) ERAi资料; (c) MERRA资料。图a中的对流层顶数据来源于同时段的NCEP对流层顶数据

    Figure  1.  Height-longitude cross sections of percentage (shadings) of water vapor content difference relative to zonal mean, potential temperature (black solid lines, units:K), and tropopause (pink dashed lines) averaged over the Tibetan Plateau latitude belt (25°-40°N) in July-August during 1979-2013 based on data (a) MLS (Microwave Limb Sounder), (b) ERAi (European Centre for Medium-Range Weather Forecasts Interim Re-Analysis), (c) MERRA (Modern Era Retrospective-analysis for Research and Applications).The tropopause data in Fig.a are derived from the NCEP dataset for the same period

    图  2  图 1,但为等熵坐标下的结果,黑色实线为气压(单位:hPa)

    Figure  2.  As in Fig. 1, but in isentropic coordinate, and black lines denote pressure (units:hPa)

    图  3  1979~2013年平均的7~8月沿(a-c)青藏高原(70°~105°E)和(d-f)落基山(120°~100°W)经度带大气水汽含量(填色, 单位:ppm, 1 ppm=10−6)、位温(黑色实线, 单位:K)、纬向风(红色实线, 单位:m s−1)和对流层顶(粉色虚线)的气压-纬度剖面:(a、d) MLS; (b、e) ERAi; (c、f) MERRA。图a、d中对流层顶和纬向风分别来源于同时段的NCEP对流层顶数据和ERAi纬向风数据

    Figure  3.  Height-latitude cross sections of water vapor content (shadings, units:ppm, 1 ppm=10−6), potential temperature (black lines, units:K), zonal wind (red lines, units:m s−1), and tropopause (pink dashed line) averaged over (a-c) the Tibetan Plateau (70°-105°E) and (d-f) the Rocky Mountains (120°-100°W) in July-August during 1979-2013 based on data (a, d) MLS, (b, e) ERAi, (c, f) MERRA.The tropopause data and zonal wind data in Fig.a and Fig.d are derived from the NCEP and ERAi datasets for the same period, respectively

    图  4  1979~2013年平均的7~8月大气水汽含量(填色, 单位:ppm)、风场(矢量, 单位:m s−1)、气压(白色实线, 单位:hPa)和对流层顶(粉色实线)在340 K、350 K、360 K、370 K层的水平分布:(a-d) MLS; (e-h) ERAi; (i-l) MERRA。图a中的水平风场和对流层顶分别来源于同时段的ERAi水平风场数据和NCEP对流层顶数据

    Figure  4.  Horizontal structures of water vapor content (shadings, units:ppm), wind (vectors, units:m s-1), tropopause (pink solid lines), and pressure (white solid lines, units:hPa) averaged at 340 K, 350 K, 360 K, and 370 K in July-August during 1979-2013 based on (a-d) MLS, (e-h) ERAi, (i-l) MERRA.The wind data and tropopause data in Fig.a are derived from the ERAi and NCEP datasets for the same period, respectively

    图  5  1979~2013年平均的7~8月沿青藏高原经度带(70°~105°E) ERAi资料的水汽质量通量散度各分量(填色, 单位:104 kg s−1)和对流层顶(粉色实线)的等熵-纬度剖面:(a)纬向绝热分量; (b)经向绝热分量; (c)非绝热分量。(d)青藏高原地区(25°~40°N, 70°~105°E)水汽质量通量散度累加的垂直廓线, 红色为纬向分量, 蓝色为经向分量, 黑色为非绝热分量。图d中不同层次水汽质量通量散度的单位:300~360 K层单位为108 kg s−1; 370~390 K层单位为104 kg s−1

    Figure  5.  Height-latitude cross sections of (a) zonal adiabatic component, (b) meridional adiabatic component, and (c) diabatic component of water vapor mass fluxes divergence (shadings, units:104 kg s−1) and the tropopause (pink solid lines) averaged over the Tibetan Plateau longitude belt (70°-105°E) in July-August during 1979-2013 based on ERAi.(d) Vertical profiles of water vapor mass fluxes divergence components accumulated over the Tibetan Plateau (25°-40°N, 70°-105°E), red line denotes zonal adiabatic component, blue line denotes meridional adiabatic component, and black line denotes diabatic component.In Fig.d, units of water vapor mass fluxes divergence in 300-360 K layer:108 kg s−1, units of water vapor mass fluxes divergence in 370-390 K:104 kg s−1

    图  6  1979~2013年平均的7~8月沿落基山经度带(120°~100°W) ERAi资料的水汽质量通量散度(填色, 单位:104 kg s−1)和对流层顶(粉色实线)的等熵-纬度剖面:(a)纬向绝热分量; (b)经向绝热分量; (c)非绝热分量。(d)落基山地区(25°~45°N, 120°~100°W)水汽质量通量散度累加的垂直廓线, 红色为纬向分量, 蓝色为经向分量, 黑色为非绝热分量。图d中不同层次水汽质量通量散度的单位:300~340 K层单位为108 kg s−1; 350~390 K层单位为103 kg s−1

    Figure  6.  Height-latitude cross sections of (a) zonal adiabatic component, (b) meridional adiabatic component, and (c) diabatic component of water vapor mass fluxes divergence (shadings, units:104 kg s−1) and the tropopause (pink solid lines) averaged over the Rocky Mountains longitude belt (120°-100°W) in July-August during 1979-2013 based on ERAi.(d) Vertical profiles of water vapor mass fluxes divergence components accumulated over the Rocky Mountains (25°-45°N, 120°-100°W), red line denotes zonal adiabatic component, blue line denotes meridional adiabatic component, and black line denotes diabatic component.In Fig.d, units of water vapor mass fluxes divergence in 300-340 K layer:108 kg s−1; units of water vapor mass fluxes divergence at 350-390 K:103 kg s−1

    图  7  1979~2013年平均的7~8月ERAi资料的经向绝热水汽质量通量(填色, 单位:104 kg s−1)、绝热水汽质量通量矢量(矢量, 单位:104 kg s−1)和对流层顶位置(粉色实线)在(a)370 K和(b)350 K层的水平分布。图b中黑框表示水汽向平流层纬向输送的区域

    Figure  7.  Horizontal structures of meridional adiabatic water vapor mass fluxes (shadings, units:104 kg s−1), adiabatic water vapor mass fluxes vector (units:104 kg s−1), and the tropopause location (pink solid lines) averaged at layers (a)370 K and (b)350 K based on ERAi in July-August during 1979-2013.In Fig.b, the black boxes denote the regions of meridional water vapor transport from the troposphere to the stratosphere

    图  8  1979~2013年平均的7~8月沿(a)40°~50°N、(b)30°~40°N和(c)20°~30°N经度带ERAi资料的非绝热水汽质量通量(填色, 单位:104 kg s−1)和对流层顶(粉色实线)的等熵-经度剖面

    Figure  8.  Height-longitude cross sections of diabatic water vapor mass fluxes (shadings, units:104 kg s−1) and tropopause (pink solid lines) averaged over (a) 40°-50°N, (b)30°-40°N, and (c)20°-30°N based on ERA in July-August during 1979-2013

    图  9  1979~2013年平均的7~8月ERAi资料的穿越对流层顶向平流层的水汽输送强度(单位:104 kg s−1)在340~390 K层次内的累加:(a)纬向等熵绝热; (b)经向等熵绝热; (c)非绝热。水平分辨率为5°×5°

    Figure  9.  Mean water vapor transport (units:104 kg s−1) from the troposphere to the stratosphere accumulated from 340-K layer to 390-K layer at 5°×5° horizontal resolution from ERAi in July-August during 1979-2013:(a) Zonal adiabatic component along isentropes; (b) meridional adiabatic component along isentropes; (c) diabatic component

    图  10  1979~2013年平均的7~8月ERAi资料中340~390 K层次内水汽向平流层的输送的层次(填色)及其强度的相对大小(实心圆点):(a)纬向等熵绝热分量、(b)经向等熵绝热分量、(c)非绝热分量。水汽输送强度的相对大小用相对于(0°~60°N, 0°~180°~0°)区域平均的强度偏差百分比r表示。黑色圆点表示50%≤r < 100%, 蓝色圆点表示100%≤r < 200%, 白色圆点表示r≥200%。黑色实线为各等熵层上对流层顶的位置

    Figure  10.  Layers (shadings) and relative intensity (solid dots) of water vapor transport components from the troposphere to the stratosphere in 340-390 K layers from ERAi in July-August during 1979-2013:(a) Zonal adiabatic component along isentropes; (b) meridional adiabatic component along isentropes; (c) diabatic component.The percentage (r) water vapor transport difference relative to the transport averaged over (0°-60°N, 0°-180°-0°) denote the relative intensity of water vapor transport.Black dots indicate 50%≤r < 100%, blue dots indicate 100%≤r < 200%, and white dots denote r≥200%.Black lines denote the tropopause location on respective isentropic surfaces

    图  11  1979~2013年平均的7~8月ERAi资料中向平流层的水汽输送强度在10°~60°N纬度带的相对大小:(a)纬向等熵绝热分量、(b)经向等熵绝热分量、(c)非绝热分量。相对大小用各分量在纬度带的累加相对于所有水汽输送分量纬向累加的百分比表示。黑色圆点表示该水汽输送分量的百分比大于另外两个水汽输送分量

    Figure  11.  The relative intensity of water vapor transport from troposphere to stratosphere within (10°-60°N) from ERAi in July-August during 1979-2013:(a) Zonal adiabatic component along isentropes; (b) meridional adiabatic component along isentropes; (c) diabatic transport component.The relative intensity is expressed by percentages of individual troposphere to stratosphere water vapor transport components relative to all transport components zonally accumulated. The black dots denote the percentage of the transport component larger than those of the other two transport components

  • [1] Anderson J G, Wilmouth D M, Smith J B, et al. 2012. UV dosage levels in summer:Increased risk of ozone loss from convectively injected water vapor[J]. Science, 337 (6096):835-839, doi: 10.1126/science.1222978.
    [2] Appenzeller C, Holton J R, Rosenlof K H. 1996. Seasonal variation of mass transport across the tropopause[J]. J. Geophys. Res., 101 (D10):15071-15078, doi: 10.1029/96jd00821.
    [3] Berthet G, Esler J G, Haynes P H. 2007. A Lagrangian perspective of the tropopause and the ventilation of the lowermost stratosphere[J]. J. Geophys. Res., 112 (D18):D18102, doi: 10.1029/2006jd008295.
    [4] 卞建春, 严仁嫦, 陈洪滨. 2011.亚洲夏季风是低层污染物进入平流层的重要途径[J].大气科学, 35 (5):897-902. doi: 10.3878/j.issn.1006-9895.2011.05.09

    Bian J C, Yan R C, Chen H B. 2011. Tropospheric pollutant transport to the stratosphere by Asian summer monsoon[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35 (5):897-902, doi: 10.3878/j.issn.1006-9895.2011.05.09.
    [5] Brewer A W. 1949. Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere[J]. Quart. J. Roy. Meteor. Soc., 75 (326):351-363, doi:10.1002/qj. 49707532603.
    [6] 陈斌, 徐祥德, 施晓晖. 2009. 2005年夏季亚洲季风区下平流层水汽的对流源区[J].自然科学进展, 19 (10):1094-1099. doi: 10.3321/j.issn:1002-008X.2009.10.011

    Chen B, Xu X D, Shi X H. 2009. The dominant sources of water vapor in the low stratosphere over Asian monsoon region during the boreal summer in 2005[J]. Progress in Natural Science (in Chinese), 19 (10):1094-1099, doi:10. 3321/j.issn:1002-008X.2009.10.011.
    [7] 陈斌, 徐祥德, 卞建春, 等. 2010.夏季亚洲季风区对流层向平流层输送的源区、路径及其时间尺度的模拟研究[J].大气科学, 34 (3):495-505. doi: 10.3878/j.issn.1006-9895.2010.03.03

    Chen B, Xu X D, Bian J C, et al. 2010. Sources, pathways and timescales for the troposphere to stratosphere transport over Asian monsoon regions in boreal summer[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34 (3):495-505, doi:10.3878/j.issn.1006-9895. 2010.03.03.
    [8] 陈斌, 徐祥德, 施晓晖. 2011.南亚高压对亚洲季风区夏季对流层上层水汽异常分布的动力效应[J].气象学报, 69 (3):464-471. http://d.old.wanfangdata.com.cn/Periodical/qxxb201103008

    Chen B, Xu X D, Shi X H. 2011. A study of the dynamic effect of the South Asian high on the upper troposphere water vapor abnormal distribution over the Asian monsoon region in boreal summer[J]. Acta Meteorologica Sinica (in Chinese), 69 (3):464-471. http://d.old.wanfangdata.com.cn/Periodical/qxxb201103008
    [9] 陈斌, 徐祥德, 杨帅, 等. 2012.夏季青藏高原地区近地层水汽进入平流层的特征分析[J].地球物理学报, 55 (2):406-414. doi: 10.6038/j.issn.0001-5733.2012.02.005

    Chen B, Xu X D, Yang S, et al. 2012. On the characteristics of water vapor transport from atmosphere boundary layer to stratosphere over Tibetan Plateau regions in summer[J]. Chinese Journal of Geophysics (in Chinese), 2012, 55 (2):406-414, doi: 10.6038/j.issn.0001-5733.2012.02.005.
    [10] 陈洪滨, 卞建春, 吕达仁. 2006.上对流层-下平流层交换过程研究的进展与展望[J].大气科学, 30 (5):813-820. doi: 10.3878/j.issn.1006-9895.2006.05.10

    Chen H B, Bian J C, Lü D R. 2006. Advances and prospects in the study of stratosphere-troposphere exchange[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30 (5):813-820, doi:10.3878/j.issn.1006-9895. 2006.05.10.
    [11] Chen P. 1995. Isentropic cross tropopause mass exchange in the extratropics[J]. J. Geophys. Res., 100 (D8):16661-16673, doi: 10.1029/95JD01264.
    [12] 丛春华, 李维亮, 周秀骥. 2001.青藏高原及其邻近地区上空平流层-对流层之间大气的质量交换[J].科学通报, 46 (22):1914-1918. doi: 10.3321/j.issn:0023-074X.2001.22.017
    [13] Cong C H, Li W L, Zhou X J. 2002. The exchange of mass between stratosphere and troposphere over the Tibetan Plateau and its surroundings in 1998[J]. Chinese Science Bulletin, 47 (6):508-512. doi: 10.1360/02tb9117
    [14] Davis S M, Hegglin M I, Fujiwara M, et al. 2017. Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP[J]. Atmospheric Chemistry and Physics, 17 (20):12743-12778, doi: 10.5194/acp-17-12743-2017.
    [15] Dessler A E, Schoeberl M R, Wang T, et al. 2013. Stratospheric water vapor feedback[J]. Proceedings of the National Academy of Sciences of the United States of America, 110 (45):18087-18091, doi:10.1073/pnas. 1310344110.
    [16] Dethof A, O'Neill A, Slingo J M, et al. 1999. A mechanism for moistening the lower stratosphere involving the Asian summer monsoon[J]. Quart. J. Roy. Meteor. Soc., 125 (556):1079-1106, doi:10.1002/qj.1999. 49712555602.
    [17] Dethof A, O'Neill A, Slingo J M, et al. 2000. Quantification of isentropic water vapour transport into the lower stratosphere[J]. Quart. J. Roy. Meteor. Soc., 126 (566):1771-1788, doi: 10.1002/qj.49712656611.
    [18] Fadnavis S, Semeniuk K, Pozzoli L, et al. 2013. Transport of aerosols into the UTLS and their impact on the Asian monsoon region as seen in a global model simulation[J]. Atmospheric Chemistry and Physics, 13 (17):8771-8786, doi: 10.5194/acp-13-8771-2013.
    [19] 樊雯璇, 王卫国, 卞建春, 等. 2008.青藏高原及其邻近区域穿越对流层顶质量通量的时空演变特征[J].大气科学, 32 (6):1309-1318. doi: 10.3878/j.issn.1006-9895.2008.06.06

    Fan W X, Wang W G, Bian J C, et al. 2008. The distribution of cross-tropopause mass flux over the Tibetan Plateau and its surrounding regions[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32 (6):1309-1318, doi: 10.3878/j.issn.1006-9895.2008.06.06.
    [20] Forster P M., Shine K P. 2002. Assessing the climate impact of trends in stratospheric water vapor[J]. Geophys. Res. Lett., 29 (6):1086, doi: 10.1029/2001GL013909.
    [21] Fu R, Hu Y L, Wright J S, et al. 2006. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 103 (15):5664-5569, doi:10.1073/pnas. 0601584103.
    [22] Garny H, Randel W J. 2013. Dynamic variability of the Asian monsoon anticyclone observed in potential vorticity and correlations with tracer distributions[J]. J. Geophys. Res., 118 (24):13421-13433, doi: 10.1002/2013jd020908.
    [23] Gettelman A, Kinnison D E, Dunkerton T J, et al. 2004. Impact of monsoon circulations on the upper troposphere and lower stratosphere[J]. J. Geophys. Res., 109 (22):D22101, doi: 10.1029/2004JD004878.
    [24] Gettelman A, Hoor P, Pan L L, et al. 2011. The extratropical upper troposphere and lower stratosphere[J]. Rev. Geophys., 49 (3):RG3003, doi: 10.1029/2011rg000355.
    [25] 郭冬, 吕达仁, 孙照渤. 2007.全球平流层、对流层质量交换的季节变化特征[J].自然科学进展, 17 (10):1391-1400. doi: 10.3321/j.issn:1002-008x.2007.10.009

    Guo D, Lü D R, Sun Z B. 2007. Seasonal variaiton of global stratosphere-troposphere mass exchange[J]. Progress in Natural Science (in Chinese), 17 (10):1391-1400, doi: 10.3321/j.issn:1002-008x.2007.10.009.
    [26] Homeyer C R, Bowman K P. 2013. Rossby wave breaking and transport between the tropics and extratropics above the subtropical jet[J]. J. Atmos. Sci., 70 (2):607-626, doi: 10.1175/jas-d-12-0198.1.
    [27] James R, Bonazzola M, Legras B, et al. 2008. Water vapor transport and dehydration above convective outflow during Asian monsoon[J]. Geophys. Res. Lett., 35 (20):L20810, doi: 10.1029/2008gl035441.
    [28] Jiang J H, Su H, Zhai C X, et al. 2015. An assessment of upper troposphere and lower stratosphere water vapor in MERRA, MERRA2, and ECMWF reanalyses using Aura MLS observations[J]. J. Geophys. Res., 120 (22):11468-11485, doi: 10.1002/2015JD023752.
    [29] Jin J J, Livesey N J, Manney G L, et al. 2013. Chemical discontinuity at the extratropical tropopause and isentropic stratosphere-troposphere exchange pathways diagnosed using Aura MLS data[J]. J. Geophys. Res., 118 (9):3832-3847, doi: 10.1002/jgrd.50291.
    [30] Kunz A, Sprenger M, Wernli H. 2015. Climatology of potential vorticity streamers and associated isentropic transport pathways across PV gradient barriers[J]. J. Geophys. Res., 120 (9):3802-3821, doi: 10.1002/2014jd022615.
    [31] Li D, Bian J C. 2015. Observation of a summer tropopause fold by ozonesonde at Changchun, China:Comparison with reanalysis and model simulation[J]. Advances in Atmospheric Sciences, 32 (10):1354-1364, doi: 10.1007/s00376-015-5022-x.
    [32] 吕达仁, 陈泽宇, 卞建春, 等. 2008.平流层-对流层相互作用的多尺度过程特征及其与天气气候关系——研究进展[J].大气科学, 32 (4):782-793. doi: 10.3878/j.issn.1006-9895.2008.04.07

    Lü D R, Chen Z Y, Bian J C, et al. 2008. Advances in researches on the characteristics of multi-scale processes of interactions between the stratosphere and the troposphere and its relations with weather and climate[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32 (4):782-793, doi: 10.3878/j.issn.1006-9895.2008.04.07.
    [33] 吕达仁, 卞建春, 陈洪滨, 等. 2009.平流层大气过程研究的前沿与重要性[J].地球科学进展, 24 (3):221-228. doi: 10.11867/j.issn.1001-8166.2009.03.0221

    Lü D R, Bian J C, Chen H B, et al. 2009. Frontiers and significance of research on stratospheric processes[J]. Advances in Earth Science (in Chinese), 2009, 24 (3):221-227, doi: 10.11867/j.issn.1001-8166.2009.03.0221.
    [34] Mote P W, Rosenlof K H, McIntyre M E, et al. 1996. An atmospheric tape recorder:The imprint of tropical tropopause temperatures on stratospheric water vapor[J]. J. Geophys. Res., 101 (D2):3989-4006, doi: 10.1029/95jd03422.
    [35] Olsen M A. 2004. Stratosphere-troposphere exchange of mass and ozone[J]. J. Geophys. Res., 109 (D24):D24114, doi: 10.1029/2004jd005186.
    [36] Park M, Randel W J, Emmons L K, et al. 2008. Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data[J]. Atmospheric Chemistry and Physics, 8 (3):757-764, doi: 10.5194/acp-8-757-2008.
    [37] Ploeger F, Günther G, Konopka P, et al. 2013. Horizontal water vapor transport in the lower stratosphere from subtropics to high latitudes during boreal summer[J]. J. Geophys. Res., 118 (14):8111-8127, doi: 10.1002/jgrd.50636.
    [38] Randel W J, Park M. 2006. Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS)[J]. J. Geophys. Res., 111 (D12):D12314, doi: 10.1029/2005jd006490.
    [39] Randel W J, Seidel D J, Pan L L. 2007. Observational characteristics of double tropopauses[J]. J. Geophys. Res., 112 (D7):D07309, doi: 10.1029/2006jd007904.
    [40] Randel W J, Park M, Emmons L, et al. 2010. Asian monsoon transport of pollution to the stratosphere[J]. Science, 328 (5978):611-613, doi: 10.1126/science.1182274.
    [41] Randel W J, Moyer E, Park M, et al. 2012. Global variations of HDO and HDO/H2O ratios in the upper troposphere and lower stratosphere derived from ACE-FTS satellite measurements[J]. J. Geophys. Res., 117 (D6):D06303, doi: 10.1029/2011JD016632.
    [42] Randel W J, Zhang K, Fu R. 2015. What controls stratospheric water vapor in the NH summer monsoon regions?[J] J. Geophys. Res., 120 (15):7988-8001, doi: 10.1002/2015jd023622.
    [43] Read W G, Lambert A, Bacmeister J, et al. 2007. Aura microwave limb sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation[J]. J. Geophys. Res., 112 (D24):D24S35, doi: 10.1029/2007jd008752.
    [44] Reichler T, Dameris M, Sausen R. 2003. Determining the tropopause height from gridded data[J]. Geophys. Res. Lett., 30 (20):2042, doi: 10.1029/2003GL018240.
    [45] 任荣彩, 吴国雄, Cai M, 等. 2014.平流层-对流层相互作用研究进展:等熵位涡理论的应用及青藏高原影响[J].气象学报, 72 (5):853-868. doi: 10.11676/qxxb2014.076

    Ren R C, Wu G X, Cai M, et al. 2014. Progress in research of stratosphere-troposphere interactions:Application of isentropic potential vorticity dynamics and the effects of the Tibetan Plateau[J]. Acta Meteorologica Sinica (in Chinese), 72 (5):853-868, doi: 10.11676/qxxb2014.076.
    [46] Schneider T, Smith K L, O'Gorman P A, et al. 2006. A climatology of tropospheric zonal mean water vapor fields and fluxes in isentropic coordinates[J]. J. Climate, 19 (22):5918-5933, doi: 10.1175/JCLI3931.1.
    [47] Schoeberl M R, Dessler A E, Wang T. 2013. Modeling upper tropospheric and lower stratospheric water vapor anomalies[J]. Atmospheric Chemistry and Physics, 13 (15):7783-7793, doi: 10.5194/acp-13-7783-2013.
    [48] Škerlak B, Sprenger M, Wernli H. 2014. A global climatology of stratosphere-troposphere exchange using the ERA-Interim data set from 1979 to 2011[J]. Atmospheric Chemistry and Physics, 14 (2):913-937, doi: 10.5194/acp-14-913-2014.
    [49] Solomon S, Rosenlof K H, Portmann R W, et al. 2010. Contributions of stratospheric water vapor to decadal changes in the rate of global warming[J]. Science, 327 (5970):1219-1223, doi:10.1126/science. 1182488.
    [50] Sprenger M, Wernli H. 2003. A northern hemispheric climatology of cross-tropopause exchange for the ERA15 time period (1979-1993)[J]. J. Geophys. Res., 108 (D12):8521, doi: 10.1029/2002jd002636.
    [51] Stohl A, Wernli H, James P, et al. 2003. A new perspective of stratosphere-troposphere exchange[J]. Bull. Amer. Meteor. Soc., 84 (11):1565-1573, doi: 10.1175/bams-84-11-1565.
    [52] 唐南军, 任荣彩, 吴国雄. 2018.青藏高原及周边UTLS水汽时空特征的多源资料对比[J].大气科学学报, 待刊.

    Tang N J, Ren R C, Wu G X. 2018. Comparison of upper troposphere and lower stratosphere water vapor spatial and temporal distribution over Tibetan Plateau in reanalysis data and MLS observations[J]. Transactions of Atmospheric Sciences (in Chinese), in press, doi: 10.13878/j.cnki.dakxxb.20170706001.
    [53] 田红瑛, 田文寿, 雒佳丽, 等. 2014.青藏高原地区上对流层-下平流层区域水汽分布和变化特征[J].高原气象, 33 (1):1-13. doi: 10.7522/j.issn.1000-0534.2013.00074

    Tian H Y, Tian W S, Luo J L, et al. 2014. Characteristics of water vapor distribution and variation in upper troposphere and lower stratosphere over Qinghai-Xizang Plateau[J]. Plateau Meteorology (in Chinese), 33 (1):1-13, doi: 10.7522/j.issn.1000-0534.2013.00074.
    [54] Uma K N, Das S K, Das S S. 2014. A climatological perspective of water vapor at the UTLS region over different global monsoon regions:Observations inferred from the Aura-MLS and reanalysis data[J]. Climate Dyn., 43 (1-2):407-420, doi: 10.1007/s00382-014-2085-9.
    [55] 王卫国, 梁俊平, 王颢樾, 等. 2010.青藏高原及附近区域穿越对流层顶的质量和臭氧通量研究[J].高原气象, 29 (3):554-562. http://d.old.wanfangdata.com.cn/Periodical/gyqx201003002

    Wang W G, Liang J P, Wang H Y, et al. 2010. Comparative study on mass and ozone fluxes cross tropopause over Qinghai-Xizang Plateau and its surrounding areas[J]. Plateau Meteorology (in Chinese), 29 (3):554-562. http://d.old.wanfangdata.com.cn/Periodical/gyqx201003002
    [56] Wei M Y. 1987. A new formulation of the exchange of mass and trace constituents between the stratosphere and troposphere[J]. J. Atmos. Sci., 44 (20):3079-3086, doi:10.1175/1520-0469(1987)044<3079:ANFOTE>2.0.CO;2.
    [57] World Meteorological Organization. 1957. Meteorology-A three dimensional science: Second session of the commission for aerology[S]. WMO Bull., 6: 134-138.
    [58] Wright J S, Fu R, Fueglistaler S, et al. 2011. The influence of summertime convection over Southeast Asia on water vapor in the tropical stratosphere[J]. J. Geophys. Res., 116 (D12):D12302, doi: 10.1029/2010jd015416.
    [59] 夏昕, 任荣彩, 吴国雄, 等. 2016.青藏高原周边对流层顶的时空分布、热力成因及动力效应分析[J].气象学报, 74 (4):525-541. doi: 10.11676/qxxb2016.036

    Xia X, Ren R C, Wu G X, et al. 2016. An analysis on the spatio-temporal variations and dynamic effects of the tropopause and the related stratosphere-troposphere coupling surrounding the Tibetan Plateau area[J]. Acta Meteorologica Sinica (in Chinese), 74 (4):525-541, doi: 10.11676/qxxb2016.036.
    [60] 杨健, 吕达仁. 2003.东亚地区一次切断低压引起的平流层、对流层交换数值模拟研究[J].大气科学, 27 (6):1031-1044. doi: 10.3878/j.issn.1006-9895.2003.06.07

    Yang J, Lü D R. 2003. A simulation study of stratosphere-troposphere exchange due to Cut-off-low over eastern Asia[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27 (6):1031-1044, doi: 10.3878/j.issn.1006-9895.2003.06.07.
    [61] 杨健, 吕达仁. 2004. 2000年北半球平流层、对流层质量交换的季节变化[J].大气科学, 28 (2):294-300. doi: 10.3878/j.issn.1006-9895.2004.02.12

    Yang J, Lü D R. 2004. Diagnosed seasonal variation of stratosphere-troposphere exchange in the Northern Hemisphere by 2000 data[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28 (2):294-300, doi: 10.3878/j.issn.1006-9895.2004.02.12.
    [62] Yang S Y, Hu J G, Qin Y L. 2016. Annual variations of the tropopause height over the Tibetan Plateau compared with those over other regions[J]. Dyn. Atmos. Oceans, 76:83-92, doi: 10.1016/j.dynatmoce.2016.09.003.
    [63] Yu Y Y, Ren R C, Hu J G, et al. 2014. A mass budget analysis on the interannual variability of the polar surface pressure in the winter season[J]. J. Atmos. Sci., 71 (9):3539-3553, doi: 10.1175/jas-d-13-0365.1.
    [64] 占瑞芬, 李建平. 2008.青藏高原和热带西北太平洋大气热源在亚洲地区夏季平流层-对流层水汽交换的年代际变化中的作用[J].中国科学D辑:地球科学, 38 (8):1028-1040. doi: 10.1007/s11430-008-0082-8

    Zhan R F, Li J P. 2008. Influence of atmospheric heat sources over the Tibetan Plateau and the tropical western North Pacific on the inter-decadal variations of the stratosphere-troposphere exchange of water vapor[J]. Science in China (Series D:Earth Sciences), 51 (8):1179-1193, doi: 10.1007/s11430-008-0082-8.
    [65] 占瑞芬, 李建平. 2012.亚洲夏季平流层-对流层水汽交换年际变化与亚洲夏季风的联系[J].地球物理学报, 55 (10):3181-3193. doi: 10.6038/j.issn.0001-5733.2012.10.001

    Zhan R F, Li J P. 2012. Relationship of interannual variations of the stratosphere-troposphere exchange of water vapor with the Asian summer monsoon[J]. Chinese Journal of Geophysics (in Chinese), 55 (10):3181-3193, doi: 10.6038/j.issn.0001-5733.2012.10.001.
    [66] 周秀骥, 李维亮, 陈隆勋, 等. 2004.青藏高原地区大气臭氧变化的研究[J].气象学报, 62 (5):513-527. doi: 10.3321/j.issn:0577-6619.2004.05.001

    Zhou X J, Li W L, Chen L X, et al. 2004. Study of ozone change over Tibetan Plateau[J]. Acta Meteorologica Sinica (in Chinese), 62 (5):513-527, doi: 10.3321/j.issn:0577-6619.2004.05.001.
  • 加载中
图(11)
计量
  • 文章访问数:  3724
  • HTML全文浏览量:  94
  • PDF下载量:  727
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-22
  • 网络出版日期:  2018-05-02
  • 刊出日期:  2019-01-15

目录

    /

    返回文章
    返回