高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全球变化背景下北半球冬季MJO传播的年代际变化

修军艺 温敏 王遵娅 张人禾

修军艺, 温敏, 王遵娅, 张人禾. 全球变化背景下北半球冬季MJO传播的年代际变化[J]. 大气科学, 2019, 43(1): 155-170. doi: 10.3878/j.issn.1006-9895.1804.17278
引用本文: 修军艺, 温敏, 王遵娅, 张人禾. 全球变化背景下北半球冬季MJO传播的年代际变化[J]. 大气科学, 2019, 43(1): 155-170. doi: 10.3878/j.issn.1006-9895.1804.17278
Junyi XIU, Min WEN, Zunya WANG, Renhe ZHANG. Interdecadal Variation of the MJO Propagation during the Boreal Winter in the Context of Global Climate Change[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(1): 155-170. doi: 10.3878/j.issn.1006-9895.1804.17278
Citation: Junyi XIU, Min WEN, Zunya WANG, Renhe ZHANG. Interdecadal Variation of the MJO Propagation during the Boreal Winter in the Context of Global Climate Change[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(1): 155-170. doi: 10.3878/j.issn.1006-9895.1804.17278

全球变化背景下北半球冬季MJO传播的年代际变化

doi: 10.3878/j.issn.1006-9895.1804.17278
基金项目: 

国家重点研发计划项目 Grant 2016YFA0600602

国家自然科学基金项目 Grant 41775060

中国气象科学研究院科技发展基金项目 Grant 2018KJ029

详细信息
    作者简介:

    修军艺, 女, 1991年出生, 硕士研究生, 主要从事低频振荡方面的研究。E-mail:xjy12138@163.com

    通讯作者:

    温敏, E-mail:wenmin@cma.gov.cn

  • 中图分类号: P467

Interdecadal Variation of the MJO Propagation during the Boreal Winter in the Context of Global Climate Change

Funds: 

National Key Research and Development Program of China Grant 2016YFA0600602

National Natural Science Foundation of China (NSFC) Grant 41775060

Science and Technology Development Fund Program of the Chinese Academy of Meteorological Sciences Grant 2018KJ029

  • 摘要: 利用1979~2013年实时多要素MJO(Madden-Julian Oscillation)监测(RMM)指数,美国NOAA逐日长波辐射资料和NCEP/NCAR再分析资料等,分析了全球变化背景下北半球冬季MJO传播的年代际变化特征。从全球平均气温快速增暖期(1985~1997)到变暖趋缓期(2000~2012),MJO 2~4位相频次减少,5~7位相频次增多,即MJO对流活跃区在热带印度洋地区停留时间缩短、传播速度加快,而在热带西太平洋停留时间加长、传播明显减缓。进一步分析发现,以上MJO的年代际变化特征与全球变化年代际波动有关。当太平洋年代际涛动(PDO)处于负位相时,全球变暖趋缓,热带东印度洋—西太平洋海温异常偏暖,使其上空对流加强,垂直上升运动加强,对流层低层辐合,大气中的水汽含量增多,该区域的湿静力能(MSE)为正异常。当MJO对流活跃区位于热带印度洋地区时,MJO异常环流对季节平均MSE的输送在强对流中心东侧为正、西侧为负,有利于东侧MSE扰动增加,使得MJO对流扰动东移加快;而当MJO对流活跃区在热带西太平洋地区,MJO异常环流对平均MSE的输送形成东负西正的形势,东侧MSE扰动减小,不利于MJO快速东传。因此,全球变化背景下PDO引起的大气中水汽含量及MSE的变化可能是MJO传播年代际变化的重要原因。
  • 图  1  1979~2012年全球地表平均温度异常(黑线, 各异常均相对于1961~1990年的平均值, 红色直线分别表示1985~1997年和2000~2012年平均值, 蓝色虚线为线性趋势)。来自英国气象局HadCRUT 4资料

    Figure  1.  Global annual mean surface temperature anomalies (black line, the anomalies compared to the average over 1961-1990) derived from the UK Met Office HadCRUT 4 data.Red lines represent the average values during 1985-1997 and 2000-2012, and blue dashed lines are linear trends

    图  2  1979~2012年冬季(12~2月) MJO (a)2~4位相和(b)5~7位相出现频次(天数)的时间序列(蓝色实线)。红色实线为年代际变化, 绿色直线为1979~1999年和2000~2012年的平均值

    Figure  2.  Time series of MJO frequencies (days) in (a)2-4 phases and (b)5-7 phases during the winters of 1979-2012.Red solid lines are the decadal parts of frequencies, and green lines are the averages during 1979-1999 and 2000-2012

    图  3  冬季MJO 2~4位相(左)和5~7位相(右)30~60天滤波OLR异常(阴影, 单位:W m−2)和850 hPa风场异常(矢量, 单位:m s−1)合成图:(a, d) 1979~2012年; (b, e) 1985~1997年; (c, f) 2000~2012年。OLR异常仅给出通过95%显著性检验部分, 通过95%显著性检验的风场用黑色矢量箭头表示。绿色方框表示图 4中使用的参考区域(5°S~5°N, 80°~90°E)

    Figure  3.  Composites of MJO 2-4 phases (left) and 5-7 phases (right) of 30-60-day filtered OLR anomalies (shadings, units:W m−2) and 850 hPa wind field anomalies (vectors, units:m s−1) in the boreal winter:(a, d) 1979-2012;(b, e) 1985-1997;(c, f) 2000-2012.OLR anomalies below the 95% confidence level are omitted, and vectors with black arrows indicate winds at the 95% confidence level.Green boxes are the reference area (5°S-5°N, 80°-90°E) used in Fig. 4

    图  4  基于赤道印度洋(5°S~5°N, 80°~90°E)30~60天OLR序列时滞回归(−30~30天)的OLR异常沿赤道(15°S~15°N)的时间-经度剖面。阴影为1985~1997年, 等值线为2000~2012年, 绿色和黑色粗实线分别为两个阶段对流扰动的大值轴线。回归系数基于参考序列的标准差进行了缩放

    Figure  4.  Longitude-time evolution of lag regression (−30 to 30 days) of OLR anomalies along the equator (15°S-15°N) on the 30-60-day filtered OLR reference time series over the equatorial Indian Ocean (5°S-5°N, 80°-90°E), while shadings are for 1985-1997 and contours for 2000-2012.Green and black bold lines represent the maximum axes of the convective disturbances.Regression coefficients are scaled by the standard deviation of the reference time series

    图  5  基于赤道印度洋中部(5°S~5°N, 80°E~90°E)30~60天OLR序列滞后0天回归的(a-c) OLR异常扰动(单位:W m−2)、(d-f)$\left\langle {m'} \right\rangle $(单位:105J kg−1)、(g-i)$\left\langle {\partial m'/\partial t} \right\rangle $(单位:W kg−1)和(j-l)$\left\langle { - \mathit{\boldsymbol{v'}} \cdot \nabla \bar m} \right\rangle $(单位:W kg−1)。左栏为1985~1997年, 中栏为2000~2012年, 右栏为2000~ 2012年与1985~1997年的差值。所有回归系数均基于参考序列标准差进行了缩放

    Figure  5.  Lag-0 day regressed (a-c) OLR anomalies (units:W m−2), (d-f) $\left\langle {m'} \right\rangle $(units:105J kg−1), (g-i)$\left\langle {\partial m'/\partial t} \right\rangle $(units:W kg−1), and (j-l)$\left\langle { - \mathit{\boldsymbol{v'}} \cdot \nabla \bar m} \right\rangle $(units:W kg−1) on the 30-60-day filtered OLR reference time series over the equatorial Indian Ocean (5°S-5°N, 80°-90°E).The left column is for 1985-1997, the middle column is for 2000-2012, and the right column is the differences between 2000-2012 and 1985-1997.All regression coefficients are scaled by the standard deviation of the reference time series

    图  6  图 5, 但为滞后13天

    Figure  6.  Same as Fig. 5, but for lag-13 day

    图  7  冬季平均整层积分的湿静力能($\left\langle m \right\rangle $)异常分布(单位:105 J kg−1):(a) 1985~1997年; (b) 2000~2012年; (c) 2000~2012年与1985~ 1997年的差值。黑点表示通过95%显著性检验区域

    Figure  7.  Anomalous patterns of vertically integrated MSE ($\left\langle m \right\rangle $) in the winter (shadings, units:105 J kg−1):(a) 1985-1997;(b) 2000-2012;(c) the difference between 2000-2012 and 1985-1997.Dark dots indicate the 95% confidence level area

    图  10  (a) 1985~1997年与2000~2012年冬季平均海表温度异常差值分布(单位:℃); (b) 基于PDO指数回归的1979~2012年的海温异常分布(单位:℃)

    Figure  10.  (a) Differences in the mean sea surface temperature anomalies between 2000-2012 and 1985-1997(units:℃); (b) regressed anomalous distribution of mean sea surface temperature anomalies based on PDO index in 1979-2012(units:℃)

    图  8  海洋大陆上空(10°S~10°N, 115°~135°E)区域平均的MSE及各贡献项年代际差值图(单位:105 J kg−1), 差值为2000~2012年平均值减去1985~1997年平均值

    Figure  8.  Interdecadal differences in MSE and individual items contributing to the MSE difference over the Maritime Continent (10°S-10°N, 115°- 135°E)(units:105 J kg−1).The differences are values during 2000-2012 minus values during 1985-1997

    图  9  图 7, 但为可降水量异常分布(单位:mm d−1)

    Figure  9.  Same as Fig. 7, but for precipitable water vapor (units:mm d−1)

    图  11  1985~1997年与2000~2012年冬季平均(a) OLR异常(阴影, 单位:W m−2)及(b) 200 hPa和(c) 850 hPa速度势异常(阴影, 单位: 105m2s−1)和辐散风异常(矢量, 单位:m s−1)的差值分布, 差值均为2000~2012年减去1985~1997年

    Figure  11.  Differences in winter average (a) OLR anomalies (shadings, units:W m−2), velocity potential anomalies (shadings, units:105m2s−1) and divergent wind anomalies (vectors, units:m s−1) at (b) 200 hPa and (c) 850 hPa.Differences are values during 2000-2012 minus those during 1985-1997

    表  1  1985~1997年和2000~2012年冬季MJO各位相出现频次(天数)和平均强度

    Table  1.   Frequencies (number of days) and average intensities in individual phases of MJO in the winters of 1985–1997 and 2000–2012

    位相 冬季MJO各位相出现频次 平均强度
    1985~1997 2000~2012 1985~1997 2000~2012
    1 73 54 1.60 1.52
    2 93 79 1.62 1.60
    3 131 98 1.73 1.97
    4 112 86 1.77 1.73
    5 87 116 1.68 1.67
    6 85 131 1.77 1.69
    7 113 146 1.78 1.87
    8 90 83 1.81 1.76
    总天数/平均强度 784 793 1.72 1.73
    下载: 导出CSV
  • [1] Adames Á F, Kim D. 2016. The MJO as a dispersive, convectively coupled moisture wave:Theory and observations[J]. J. Atmos. Sci., 73 (3):913-941, doi: 10.1175/JAS-D-15-0170.1.
    [2] Adames Á F, Wallace J M. 2015. Three-dimensional structure and evolution of the moisture field in the MJO[J]. J. Atmos. Sci., 72 (10):3733-3754, doi: 10.1175/JAS-D-15-0003.1.
    [3] Andersen J A, Kuang Z M. 2012. Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet[J]. J. Climate, 25 (8):2782-2804, doi: 10.1175/jcli-d-11-00168.1.
    [4] Cadet D L. 1986. Fluctuations of precipitable water over the Indian Ocean during the 1979 summer monsoon[J]. Tellus, 38A (2):170-177, doi: 10.3402/tellusa.v38i2.11710.
    [5] Donald A, Meinke H, Power B, et al. 2006. Near-global impact of the Madden-Julian Oscillation on rainfall[J]. Geophys. Res. Lett., 33 (9):L09704, doi: 10.1029/2005GL025155.
    [6] Dong L, Zhou T J. 2014. The formation of the recent cooling in the eastern tropical Pacific Ocean and the associated climate impacts:A competition of global warming, IPO, and AMO[J]. J. Geophys. Res., 119 (19):11272-11287, doi: 10.1002/2013JD021395.
    [7] Dong L, Zhou T J, Chen X L. 2014. Changes of Pacific decadal variability in the twentieth century driven by internal variability, greenhouse gases, and aerosols[J]. Geophys. Res. Lett., 41 (23):8570-8577, doi: 10.1002/2014GL062269.
    [8] Ferranti L, Palmer T N, Molteni F, et al. 1990. Tropical-extratropical interaction associated with the 30-60 day oscillation and its impact on medium and extended range prediction[J]. J. Atmos. Sci., 47 (18):2177-2199, doi:10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO; 2.
    [9] Fink A, Speth P. 1997. Some potential forcing mechanisms of the year-to-year variability of the tropical convection and its intraseasonal (25-70-day) variability[J]. International Journal of Climatology, 17(14):1513-1534, doi:10.1002/(SICI)1097-0088(19971130)17:14<1513::AID-JOC210>3.0.CO; 2-U.
    [10] Gonzalez A O, Jiang X N. 2017. Winter mean lower tropospheric moisture over the maritime continent as a climate model diagnostic metric for the propagation of the Madden-Julian Oscillation[J]. Geophys. Res. Lett., 44 (5):2588-2596, doi: 10.1002/2016GL072430.
    [11] Gruber A, Krueger A F. 1984. The status of the NOAA outgoing longwave radiation data set[J]. Bull. Amer. Meteor. Soc., 65 (9):958-962, doi:10.1175/1520-0477(1984)065<0958:TSOTNO>2.0.CO; 2.
    [12] Hendon H H, Zhang C D, Glick J D, et al. 1999. Interannual variation of the Madden-Julian Oscillation during Austral summer[J]. J. Climate, 12 (8):2538-2550, doi:10.1175/1520-0442(1999)012<2538:IVOTMJ>2.0.CO; 2.
    [13] Hurrell J, Meehl G A, Bader D, et al. 2009. A unified modeling approach to climate system prediction[J]. Bull. Amer. Meteor. Soc., 90 (12):1819-1832, doi: 10.1175/2009BAMS2752.1.
    [14] Jeong J H, Kim B M, Ho C H, et al. 2008. Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion[J]. J. Climate, 21 (4):788-801, doi: 10.1175/2007JCLI1801.1.
    [15] Jia X L, Chen L J, Ren F M, et al. 2011. Impacts of the MJO on winter rainfall and circulation in China[J]. Advances in Atmospheric Sciences, 28 (3):521-533, doi: 10.1007/s00376-010-9118-z.
    [16] Jiang X N. 2017. Key processes for the eastward propagation of the Madden-Julian Oscillation based on multimodel simulation[J]. J. Geophys. Res., 122 (2):755-770, doi: 10.1002/2016JD025955.
    [17] 贾小龙, 袁媛, 任福民, 等. 2012.热带大气季节内振荡(MJO)实时监测预测业务[J].气象, 38 (4):425-431. doi: 10.7519/j.issn.1000-0526.2012.04.006

    Jia Xiaolong, Yuan Yuan, Ren Fumin, et al. 2012. The real-time MJO monitoring and prediction operation in NCC[J]. Meteorological Monthly (in Chinese), 38 (4):425-431, doi: 10.7519/j.issn.1000-0526.2012.04.006.
    [18] Jiang X N, Li T, Wang B. 2004. Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation[J]. J. Climate, 17 (5):1022-1039, doi:10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO; 2.
    [19] Jiang X N, Waliser D E, Xavier P K, et al. 2015. Vertical structure and physical processes of the Madden-Julian Oscillation:Exploring key model physics in climate simulations[J]. Geophys. Res. Atmos., 120 (10):4718-4748, doi: 10.1002/2014JD022375.
    [20] Jiang X N, Zhao M, Maloney E D, et al. 2016. Convective moisture adjustment time scale as a key factor in regulating model amplitude of the Madden-Julian Oscillation[J]. Geophys. Res. Lett., 43 (19):10412-10419, doi: 10.1002/2016GL070898.
    [21] Kiladis G N, Dias J, Straub K H, et al. 2014. A comparison of OLR and circulation-based indices for tracking the MJO[J]. Mon. Wea. Rev., 142 (5):1697-1715, doi: 10.1175/MWR-D-13-00301.1.
    [22] Kim D, Kug J S, Sobel A H. 2014. Propagating versus nonpropagating Madden-Julian Oscillation events[J]. J. Climate, 27 (1):111-125, doi: 10.1175/JCLI-D-13-00084.1.
    [23] Knutson T R, Weickmann K M. 1987. 30-60 day atmospheric oscillations:Composite life cycles of convection and circulation anomalies[J]. Mon. Wea. Rev., 115 (7):1407-1436, doi:10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO; 2.
    [24] Kosaka Y, Xie S P. 2013. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature, 501 (7467):403-407, doi: 10.1038/nature12534.
    [25] Lawrence D M, Webster P J. 2002. The boreal summer intraseasonal oscillation:Relationship between northward and eastward movement of convection[J]. J. Atmos. Sci., 59 (9):1593-1606, doi:10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO; 2.
    [26] Li J P, Wu Z W. 2012. Importance of autumn Arctic sea ice to northern winter snowfall[J]. Proc. Natl. Acad. Sci. U.S.A., 109 (28):E1898, doi: 10.1073/pnas.1205075109.
    [27] Li J P, Wu Z W, Jiang Z H, et al. 2010. Can global warming strengthen the East Asian summer monsoon?[J]. J. Climate, 23 (24):6696-6705, doi: 10.1175/2010JCLI3434.1.
    [28] Lin A L, Li T. 2008. Energy spectrum characteristics of boreal summer intraseasonal oscillations:Climatology and variations during the ENSO developing and decaying phases[J]. J. Climate, 21 (23):6304-6320., doi: 10.1175/2008JCLI2331.1.
    [29] Lin H, Brunet G. 2009. The influence of the Madden-Julian Oscillation on Canadian wintertime surface air temperature[J]. Mon. Wea. Rev., 137 (7):2250-2262, doi: 10.1175/2009MWR2831.1.
    [30] 刘芸芸, 俞永强, 何金海, 等. 2006.全球变暖背景下热带大气季节内振荡的变化特征及数值模拟[J].气象学报, 64 (6):723-733. doi: 10.3321/j.issn:0577-6619.2006.06.005

    Liu Yunyun, Yu Yongqiang, He Jinhai, et al. 2006. Characteristics and numerical simulation of the tropical intraseasonal oscillations under global warming[J]. Acta Meteorologica Sinica (in Chinese), 64 (6):723-733, doi: 10.3321/j.issn:0577-6619.2006.06.005.
    [31] Lo F, Hendon H H. 2000. Empirical extended-range prediction of the Madden-Julian Oscillation[J]. Mon. Wea. Rev., 128 (7):2528-2543, doi:10.1175/1520-0493(2000)128<2528:EERPOT>2.0.CO; 2.
    [32] Luo J J, Sasaki W, Masumoto Y. 2012. Indian Ocean warming modulates Pacific climate change[J]. Proc. Natl. Acad. Sci. U.S.A., 109 (46):18701-18706, doi: 10.1073/pnas.1210239109.
    [33] Madden R A, Julian P R. 1971. Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific[J]. J. Atmos. Sci., 28 (5):702-708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO; 2.
    [34] Madden R A, Julian P R. 1972. Description of global-scale circulation cells in the tropics with a 40-50 day period[J]. J. Atmos. Sci., 29 (6):1109-1123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO; 2.
    [35] Madden R A, Julian P R. 1994. Observations of the 40-50-day tropical oscillation-A review[J]. Mon. Wea. Rev., 122 (5):814-837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO; 2.
    [36] Maher N, Gupta A S, England M H. 2014. Drivers of decadal hiatus periods in the 20th and 21st centuries[J]. Geophys. Res. Lett., 41 (16):5978-5986, doi: 10.1002/2014GL060527.
    [37] Maloney E D. 2009. The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model[J]. J. Climate, 22 (3):711-729, doi: 10.1175/2008JCLI2542.1.
    [38] Sikka D R, Gadgil S. 1980. On the maximum cloud zone and the ITCZ over Indian, longitudes during the southwest monsoon[J]. Mon Wea. Rev., 108 (11):1840-1853, doi:10.1175/1520-0493(1980)108<1840:OTMCZA>2.0.CO; 2.
    [39] Slingo J M, Rowell D P, Sperber K R, et al. 1999. On the predictability of the interannual behaviour of the Madden-Julian Oscillation and its relationship with El Niño[J]. Quart. J. Roy. Meteor. Soc., 125 (554):583-610, doi: 10.1002/qj.49712555411.
    [40] Sobel A, Maloney E. 2012. An idealized semi-empirical framework for modeling the Madden-Julian Oscillation[J]. J. Atmos. Sci., 69 (5):1691-1705, doi: 10.1175/jas-d-11-0118.1.
    [41] Sobel A, Maloney E. 2013. Moisture modes and the eastward propagation of the MJO[J]. J. Atmos. Sci., 70 (1):187-192, doi: 10.1175/Jas-D-12-0189.1.
    [42] Sobel A, Wang S G, Kim D. 2014. Moist static energy budget of the MJO during DYNAMO[J]. J. Atmos. Sci., 71 (11):4276-4291, doi: 10.1175/JAS-D-14-0052.1.
    [43] Sobel A H, Nilsson J, Polvani L M. 2001. The weak temperature gradient approximation and balanced tropical moisture waves[J]. J. Atmos. Sci., 58 (23):3650-3665, doi:10.1175/1520-0469(2001)058<3650:TWTGAA> 2.0.CO; 2.
    [44] Steinman B A, Mann M E, Miller S K. 2015. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures[J]. Science. 347 (6225):988-991, doi: 10.1126/science.1257856.
    [45] Straub K H. 2013. MJO initiation in the real-time multivariate MJO index[J]. J. Climate, 26 (4):1130-1151, doi: 10.1175/JCLI-D-12-00074.1.
    [46] 苏京志, 温敏, 丁一汇, 等. 2016.全球变暖趋缓研究进展[J].大气科学, 40 (6):1143-1153. doi: 10.3878/j.issn.1006-9895.1512.15242

    Su Jingzhi, Wen Min, Ding Yihui, et al. 2016. Hiatus of global warming:A review[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40 (6):1143-1153, doi:10.3878/j.issn.1006-9895. 1512.15242.
    [47] Su J Z, Zhang R H, Wang H J. 2017. Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming[J]. Scientific Reports, 7:43735, doi: 10.1038/srep43735.
    [48] Tollefson J. 2014. Climate change:The case of the missing heat[J]. Nature, 505 (7483):276-278, doi: 10.1038/505276a.
    [49] von Storch H, Xu J S. 1990. Principal oscillation pattern analysis of the 30-to 60-day oscillation in the tropical troposphere. Part I:Definition of an index and its prediction[J]. Climate Dyn., 4 (3):179-190, doi: 10.1007/BF00209520.
    [50] Waliser D E, Lau K M, Kim J H. 1999. The influence of coupled sea surface temperatures on the Madden-Julian Oscillation:A model perturbation experiment[J]. J. Atmos. Sci., 56 (3):333-358, doi:10.1175/1520-0469(1999)056<0333:TIOCSS>2.0.CO; 2.
    [51] Wang B. 2005. Theory[M]//Intraseasonal Variability in the Atmosphere-Ocean Climate System. Lau W K M, Waliser D E, Eds. Chichester, UK: Praxis Publishing, 307-360, doi: 10.1007/3-540-27250-X_10.
    [52] Wang H, Fu R. 2000. Influences of ENSO SST anomalies and winter storm tracks on the interannual variability of upper-troposphere water vapor over the Northern Hemisphere extratropics[J]. J. Climate, 13 (1):59-73, doi:10.1175/1520-0442(2000)013<0059:IOESAA>2.0.CO; 2.
    [53] Wang B, Webster P, Kikuchi K, et al. 2006. Boreal summer quasi-monthly oscillation in the global tropics[J]. Climate Dyn., 27 (7-8):661-675, doi: 10.1007/s00382-006-0163-3.
    [54] Wang B, Wu Z W, Chang C P. 2010. Another look at interannual-to-interdecadal variations of the East Asian winter monsoon:The northern and southern temperature modes[J]. J. Climate, 23 (6):1495-1512, doi: 10.1175/2009JCLI3243.1.
    [55] Weickmann K M, Khalsa S J S. 1990. The shift of convection from the Indian Ocean to the western Pacific Ocean during a 30-60 day oscillation[J]. Mon. Wea. Rev., 118 (4):964-978, doi:10.1175/1520-0493(1990)118<0964:TSOCFT>2.0.CO; 2.
    [56] Wheeler M, Weickmann K M. 2001. Real-time monitoring and prediction of modes of coherent synoptic to intraseasonal tropical variability[J]. Mon. Wea. Rev., 129 (11):2677-2694, doi:10.1175/1520-0493(2001)129<2677:RTMAPO>2.0.CO; 2.
    [57] Wheeler M C, Hendon H H. 2004. An all-season real-time multivariate MJO index:Development of an index for monitoring and prediction[J]. Mon. Wea. Rev., 132 (8):1917-1932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO; 2.
    [58] Wheeler M C, Hendon H H, Cleland S, et al. 2009. Impacts of the Madden-Julian Oscillation on Australian rainfall and circulation[J]. J. Climate, 22 (6):1482-1498, doi: 10.1175/2008JCLI2595.1.
    [59] Wu Z W, Dou J, Lin H. 2015. Potential influence of the November-December Southern Hemisphere annular mode on the East Asian winter precipitation:A new mechanism[J]. Climate Dyn., 44 (5-6):1215-1226, doi: 10.1007/s00382-014-2241-2.
    [60] Yao S L, Huang G, Wu R G, et al. 2016. The global warming hiatus-A natural product of interactions of a secular warming trend and a multi-decadal oscillation[J]. Theor. Appl. Climatol., 123 (1-2):34-360, doi: 10.1007/s00704-014-1358-x.
    [61] Yoo C, Feldstein S, Lee S. 2011. The impact of the Madden-Julian Oscillation trend on the Arctic amplification of surface air temperature during the 1979-2008 boreal winter[J]. Geophys. Res. Lett., 38 (24):L24804, doi: 10.1029/2011GL049881.
    [62] Zhang C D. 2005. Madden-Julian Oscillation[J]. Rev. Geophys., 43 (2):1-36, doi: 10.1029/2004RG000158.
    [63] Zhang C D. 2013. Madden-Julian Oscillation:Bridging weather and climate[J]. Bull. Amer. Meteor Soc., 94 (12):1849-1870, doi: 10.1175/BAMS-D-12-00026.1.
    [64] Zhang L N, Wang B Z, Zeng Q C. 2009. Impact of the Madden-Julian Oscillation on summer rainfall in Southeast China[J]. J. Climate, 22 (2):201-216, doi: 10.1175/2008JCLI1959.1.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  849
  • HTML全文浏览量:  1
  • PDF下载量:  797
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-14
  • 网络出版日期:  2018-04-27
  • 刊出日期:  2019-01-15

目录

    /

    返回文章
    返回