高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实验室模拟研究大气二次有机气溶胶的形成

徐永福 贾龙

徐永福, 贾龙. 实验室模拟研究大气二次有机气溶胶的形成[J]. 大气科学, 2018, 42(4): 767-785. doi: 10.3878/j.issn.1006-9895.1805.17251
引用本文: 徐永福, 贾龙. 实验室模拟研究大气二次有机气溶胶的形成[J]. 大气科学, 2018, 42(4): 767-785. doi: 10.3878/j.issn.1006-9895.1805.17251
Yongfu XU, Long JIA. Laboratory Simulation Studies of the Formation of Secondary Organic Aerosols in the Atmosphere[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4): 767-785. doi: 10.3878/j.issn.1006-9895.1805.17251
Citation: Yongfu XU, Long JIA. Laboratory Simulation Studies of the Formation of Secondary Organic Aerosols in the Atmosphere[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4): 767-785. doi: 10.3878/j.issn.1006-9895.1805.17251

实验室模拟研究大气二次有机气溶胶的形成

doi: 10.3878/j.issn.1006-9895.1805.17251
基金项目: 

国家自然科学基金资助项目 41375129

国家重点基础研究发展计划项目 2017YFC0210005

详细信息
    作者简介:

    徐永福, 男, 1962年出生, 研究员, 主要从事大气化学、大气环境和全球环境变化方面的研究。E-mail:xyf@mail.iap.ac.cn

  • 中图分类号: P402

Laboratory Simulation Studies of the Formation of Secondary Organic Aerosols in the Atmosphere

Funds: 

National Natural Science Foundation of China 41375129

National Basic Research Program of China 2017YFC0210005

  • 摘要: 二次有机气溶胶(SOA)是大气中重要的气溶胶组分,主要由挥发性有机物(VOCs)经化学转化形成,对天气、气候、大气环境和人体健康有重要影响,但至今其确切的化学成分和形成机制还十分不清楚。研究SOA的方法主要采用实验室单个物种或多物种的化学过程的模拟研究,野外实际大气的SOA化学成分、源汇和多尺度分析的观测研究,以及大气中SOA形成的数值模拟的回报和预报研究。实验室研究是对SOA形成过程中获取基础数据和推究SOA生成机制的最主要手段。在过去的几十年中,特别是近五年,SOA的研究取得了较大的进展,其中包括SOA前体物、SOA形成机制及影响因子的进一步理解。本文就这些方面展开了概要性的综述,重点强调了我国研究人员所做的研究工作。在采用实验室烟雾箱系统模拟研究SOA方面,首先简述了烟雾系统的发展以及表征,讨论了跟烟雾箱箱体相关的壁效应问题,重点综述了萜烯类、芳香烃类、小分子类等化学物种转化形成SOA的研究进展。在采用流动管和其他反应器类模拟研究SOA方面,重点讨论了挥发性有机物在颗粒物表面或在液相中所形成的SOA的主要化学成分及其可能的作用。
  • 图  1  常见室内烟雾箱系统示意图

    Figure  1.  Schematic diagram of conventional indoor smog chamber

    图  2  苯光氧化生成SOA的主要反应通道(Jenkin et al., 1997, 2003; Jia and Xu, 2014; Huang et al., 2014

    Figure  2.  Major reaction channels for the SOA (secondary organic aerosol) formation from photochemical oxidation of benzene (Jenkin et al., 1997, 2003; Jia and Xu, 2014; Huang et al., 2014)

    图  3  异戊二烯由OH氧化生成SOA的两种反应通道(Surratt et al., 2010; Zhang et al., 2011a; Lin et al., 2013

    Figure  3.  Two reaction channels for the SOA formation from the OH induced oxidation of isoprene (Surratt et al., 2010; Zhang et al., 2011a; Lin et al., 2013)

    图  4  乙烯氧化生成SOA的关键反应通道(Sakamoto et al., 2013; Jia and Xu, 2016; Ge et al., 2017a

    Figure  4.  Key reaction channels for the SOA formation from the oxidation of ethylene (Sakamoto et al., 2013; Jia and Xu, 2016; Ge et al., 2017a)

  • [1] 白春礼. 2014.中国科学院大气灰霾研究进展及展望[J].中国科学院院刊, 29 (3):275-281. doi: 10.3969/j.issn.1000-3045.2014.03.001

    Bai C L. 2014. Progress and prospect on atmospheric haze research in Chinese Academy of Sciences[J]. Bull. Chinese Acad. Sci., 29 (3):275-281, doi:10.3969/j.issn.1000-3045.2014. 03.001.
    [2] Carter W P L, Cocker Ⅲ D R, Fitz D R, et al. 2005. A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation[J]. Atmos. Environ., 39 (40):7768-7788, doi: 10.1016/j.atmosenv.2005.08.040.
    [3] Chen F, Zhou H, Gao J X, et al. 2017. A chamber study of secondary organic aerosol (SOA) formed by ozonolysis of d-limonene in the presence of NO[J]. Aerosol Air Quality Res., 17 (1):59-68, doi: 10.4209/aaqr.2016.01.0029.
    [4] Chu B W, Hao J M, Takekawa H, et al. 2012. The remarkable effect of FeSO4 seed aerosols on secondary organic aerosol formation from photooxidation of α-pinene/NOx and toluene/NOx[J]. Atmos. Environ., 55:26-34, doi: 10.1016/j.atmosenv.2012.03.006.
    [5] Chu B W, Wang K, Takekawa H, et al. 2014. Hygroscopicity of particles generated from photooxidation of α-pinene under different oxidation conditions in the presence of sulfate seed aerosols[J]. J. Environ. Sci., 26 (1):129-139, doi: 10.1016/S1001-0742(13)60402-7.
    [6] Chu B W, Zhang X, Liu Y C, et al. 2016. Synergetic formation of secondary inorganic and organic aerosol:Effect of SO2 and NH3 on particle formation and growth[J]. Atmos. Chemi. Phys., 16 (22):14219-14230, doi: 10.5194/acp-16-14219-2016.
    [7] Claeys M, Graham B, Vas G, et al. 2004. Formation of secondary organic aerosols through photooxidation of isoprene[J]. Science, 303 (5661):1173-1176, doi: 10.1126/science.1092805.
    [8] Deng W, Liu T Y, Zhang Y L, et al. 2017. Secondary organic aerosol formation from photooxidation of toluene with NOx and SO2:Chamber simulation with purified air versus urban ambient air as matrix[J]. Atmos. Environ., 150:67-76, doi: 10.1016/j.atmosenv.2016.11.047.
    [9] 杜林, 徐永福, 葛茂发, 等. 2006.大气条件下O3与乙炔反应速率常数的测定[J].化学学报, 64 (21):2133-2137. doi: 10.3321/j.issn:0567-7351.2006.21.001

    Du L, Xu Y F, Ge M F, et al. 2006. Determination of rate constants for ozone reactions with acetylene under atmospheric conditions[J]. Acta Chim. Sin., 64 (21):2133-2137, doi: 10.3321/j.issn:0567-7351.2006.21.001.
    [10] 杜林, 徐永福, 葛茂发, 等. 2007, 烟雾箱模拟乙炔和NOx的大气光化学反应[J], 环境科学, 28 (3):34-40. doi: 10.3321/j.issn:0250-3301.2007.03.007

    Du L, Xu Y F, Ge M F, et al. 2007. Smog chamber simulation of atmospheric photochemical reactions of acetylene and NOx[J]. Environ. Sci., 28 (3):34-40. doi: 10.3321/j.issn:0250-3301.2007.03.007
    [11] Du L, Xu Y F, Ge M F, et al. 2007a. Rate constant of the gas phase reaction of dimethyl sulfide (CH3SCH3) with ozone[J]. Chem. Phys. Lett., 436 (1-3):36-40. doi: 10.1016/j.cplett.2007.01.025
    [12] Du L, Xu Y F, Ge M F, et al. 2007b. Rate constant for the reaction of ozone with diethyl sulfide[J]. Atmos. Environ., 41 (35):7434-7439, doi: 10.1016/j.atmosenv.2007.05.041.
    [13] Fang W Z, Gong L, Sheng L S. 2017. Online analysis of secondary organic aerosols from OH-initiated photooxidation and ozonolysis of α-pinene, β-pinene, Δ3-carene and d-limonene by thermal desorption-photoionisation aerosol mass spectrometry[J]. Environ. Chem., 14 (2):75-90, doi: 10.1071/EN16128.
    [14] Fang W Z, Gong L, Zhang Q, et al. 2012. Measurements of secondary organic aerosol formed from OH-initiated photo-oxidation of isoprene using online photoionization aerosol mass spectrometry[J]. Environ. Sci. Technol., 46 (7):3898-3904, doi: 10.1021/es204669d.
    [15] Ge S S, Xu Y F, Jia L. 2016. Secondary organic aerosol formation from ethyne in the presence of NaCl in a smog chamber[J]. Environ. Chem., 13 (4):699-710, doi: 10.1071/EN15155.
    [16] Ge S S, Xu Y F, Jia L. 2017a. Secondary organic aerosol formation from ethylene ozonolysis in the presence of sodium chloride[J]. J. Aerosol Sci., 106:120-131, doi: 10.1016/j.jaerosci.2017.01.009.
    [17] Ge S S, Xu Y F, Jia L. 2017b. Secondary organic aerosol formation from propylene irradiations in a chamber study[J]. Atmos. Environ., 157:146-155, doi: 10.1016/j.atmosenv.2017.03.019.
    [18] Ge S S, Xu Y F, Jia L. 2017c. Effects of inorganic seeds on secondary organic aerosol formation from photochemical oxidation of acetone in a chamber[J]. Atmos. Environ., 170:205-215, doi:10.1016/j.atmosenv. 017.09.036.
    [19] 耿春梅, 杜莎莎, 殷宝辉, 等. 2011.异戊二烯与OH自由基光化学反应的二次有机气溶胶的生成[J].中国科学:化学, 41 (7):1206-1214. doi: 10.1360/032010-774

    Geng C M, Du S S, Yin B H, et al. 2011. Secondary organic aerosol formation from the photochemical reaction of isoprene with OH radical[J]. Science China Chemistry, 41 (7):1206-1214, doi: 10.1360/032010-774.
    [20] Goldstein A H, Galbally I E. 2007. Known and unexplored organic constituents in the Earth's atmosphere[J]. Environ. Sci. Technol., 41 (5):1514-1521, doi: 10.1021/es072476p.
    [21] Goodman A L, Bernard E T, Grassian V H. 2001. Spectroscopic study of nitric acid and water adsorption on oxide particles:Enhanced nitric acid uptake kinetics in the presence of adsorbed water[J]. J. Phys. Chem. A, 105 (26):6443-6457, doi: 10.1021/jp003722l.
    [22] Guo S, Hu M, Zamora M L, et al. 2014. Elucidating severe urban haze formation in China[J]. Proc. Natl. Acad. Sci., 111 (49):17373-17378, doi: 10.1073/pnas.1419604111.
    [23] Haagen-Smit A J. 1952. Chemistry and physiology of Los Angeles smog[J]. Ind. Eng. Chem., 44 (6):1342-1346, doi: 10.1021/ie50510a045.
    [24] Hallquist M, Wenger J C, Baltensperger U, et al. 2009. The formation, properties and impact of secondary organic aerosol:Current and emerging issues[J]. Atmos. Chem. Phys., 9 (14):5155-5236, doi: 10.5194/acp-9-5155-2009.
    [25] Hao L Q, Wang Z Y, Huang M Q, et al. 2005. Size distribution of the secondary organic aerosol particles from the photooxidation of toluene[J]. J. Environ. Sci., 17 (6):912-916, doi:10.3321/j.issn:1001-0742.2005.06. 006.
    [26] 韩力慧, 陈媛媛, 贾龙, 等. 2014. NO2在MgO颗粒物表面的非均相反应[J].中国科学:化学, 44 (12):2004-2012. doi: 10.1360/N032013-00054

    Han L H, Chen Y Y, Jia L, et al. 2014. Heterogeneous reactions of NO2 on the surface of MgO particles[J]. Science China Chemistry, 44 (12):2004-2012, doi: 10.1360/N032013-00054.
    [27] Hu C J, Cheng Y, Pan G, et al. 2014. A smog chamber facility for qualitative and quantitative study on atmospheric chemistry and secondary organic aerosol[J]. Chin. J. Chem. Phys., 27 (6):631-639, doi: 10.1063/1674-0068/27/06/631-639.
    [28] 胡高硕, 徐永福, 贾龙. 2011.烟雾箱模拟丙烯-NOx的大气光化学反应[J].化学学报, 69 (14):1593-1600. https://www.wenkuxiazai.com/word/caca515e3968011ca2009162-1.doc

    Hu G S, Xu Y F, Jia L. 2011. Smog chamber simulation of atmospheric photochemical reactions of propene and NOx[J]. Acta Chim. Sin., 69 (14):1593-1600. https://www.wenkuxiazai.com/word/caca515e3968011ca2009162-1.doc
    [29] Hu G S, Xu Y F, Jia L. 2011. Effects of relative humidity on the characterization of a photochemical smog chamber[J]. J. Environ. Sci., 23 (12):2013-2018, doi: 10.1016/S1001-0742(10)60665-1.
    [30] Huang M Q, Hao L Q, Gu X J, et al. 2013. Effects of inorganic seed aerosols on the growth and chemical composition of secondary organic aerosol formed from OH-initiated oxidation of toluene[J]. J. Atmos. Chem., 70 (2):151-164, doi: 10.1007/s10874-013-9262-9.
    [31] Huang M Q, Lin Y H, Huang X Y, et al. 2014. Chemical analysis of aged benzene secondary organic aerosol using aerosol laser time-of-flight mass spectrometer[J]. J. Atmos. Chem., 71 (3):213-224, doi: 10.1007/s10874-014-9291-z.
    [32] Huang M Q, Lin Y H, Huang X Y, et al. 2015. Experimental study of particulate products for aging of 1, 3, 5-trimethylbenzene secondary organic aerosol[J]. Atmos. Pollut. Res., 6 (2):209-219, doi:10.5094/APR. 2015.025.
    [33] Huang M Q, Zhang J H, Cai S Y, et al. 2016a. Mass spectrometric study of aged benzene secondary organic aerosol in the presence of dry ammonium sulfate[J]. J. Atmos. Chem., 73 (3):329-344, doi: 10.1007/s10874-016-9328-6.
    [34] Huang M Q, Zhang J H, Cai S Y, et al. 2016b. Characterization of particulate products for aging of ethylbenzene secondary organic aerosol in the presence of ammonium sulfate seed aerosol[J]. J. Environ. Sci., 47:219-229, doi: 10.1016/j.jes.2015.11.033.
    [35] Huang M Q, Hao L Q, Cai S Y, et al. 2017. Effects of inorganic seed aerosols on the particulate products of aged 1, 3, 5-trimethylbenzene secondary organic aerosol[J]. Atmos. Environ., 152:490-502, doi: 10.1016/j.atmosenv.2017.01.010.
    [36] Jacobson M C, Hansson H C, Noone K J, et al. 2000. Organic atmospheric aerosols:Review and state of the science[J]. Rev. Geophys., 38 (2):267-294, doi: 10.1029/1998RG000045.
    [37] Jenkin M E, Saunders S M, Pilling M J. 1997. The tropospheric degradation of volatile organic compounds:A protocol for mechanism development[J]. Atmos. Environ., 31 (1):81-104, doi:10.1016/S1352-2310(96) 00105-7.
    [38] Jenkin M E, Saunders S M, Wagner V, et al. 2003. Protocol for the development of the master chemical mechanism, MCM v3 (Part B):Tropospheric degradation of aromatic volatile organic compounds[J]. Atmos. Chem. Phys., 3 (1):181-193, doi: 10.5194/acp-3-181-2003.
    [39] 贾龙, 徐永福. 2010.苯乙烯-NOx光照的二次有机气溶胶生成[J].化学学报, 68 (23):2429-2435. https://www.doc88.com/p-1847446928730.html

    Jia L, Xu Y F. 2010. Formation of secondary organic aerosol from the styrene-NOx irradiation[J]. Acta Chim. Sin., 68 (23):2429-2435. https://www.doc88.com/p-1847446928730.html
    [40] 贾龙, 徐永福. 2014.烟雾箱与数值模拟研究苯和乙苯的臭氧生成潜势[J].环境科学, 35 (2):495-503. http://www.cqvip.com/QK/91181X/201402/48675375.html

    Jia L, Xu Y F. 2014. Studies of ozone formation potentials for benzene and ethylbenzene using a smog chamber and model simulation[J]. Environ. Sci., 35 (2):495-503. http://www.cqvip.com/QK/91181X/201402/48675375.html
    [41] Jia L, Xu Y F. 2014. Effects of relative humidity on ozone and secondary organic aerosol formation from the photooxidation of benzene and ethylbenzene[J]. Aerosol Sci. Technol., 48 (1):1-12, doi: 10.1080/02786826.2013.847269.
    [42] Jia L, Xu Y F. 2016. Ozone and secondary organic aerosol formation from ethylene-NOx-NaCl irradiations under different relative humidity conditions[J]. J. Atmos. Chem., 73 (1):81-100, doi: 10.1007/s10874-015-9317-1.
    [43] Jia L, Xu Y F. 2018. Different roles of water in secondary organic aerosol formation from toluene and isoprene[J]. Atmos. Chem. Phys., 18, 8137-8154, doi: 10.5194/acp-18-8137-2018..
    [44] 贾龙, 徐永福, 石玉珍. 2011.光化学烟雾箱的表征及初步应用[J].环境科学, 32 (2):351-361. http://mall.cnki.net/magazine/Article/HJKZ201102015.htm

    Jia L, Xu Y F, Shi Y Z. 2011. Characterization of photochemical smog chamber and initial experiments[J]. Environ. Sci., 32 (2):351-361. http://mall.cnki.net/magazine/Article/HJKZ201102015.htm
    [45] Jia L, Xu Y F, Shi Y Z. 2012. Investigation of the ozone formation potential for ethanol using a smog chamber[J]. Chinese Sci. Bull., 57 (34):4472-4481, doi: 10.1007/s11434-012-5375-9.
    [46] 贾龙, 徐永福, 葛茂发, 等. 2006.丙烯的臭氧化反应动力学研究[J].物理化学学报, 22 (10):1260-1265. doi: 10.1016/S1872-1508(06)60060-0

    Jia L, Xu Y F, Ge M F, et al. 2006. Kinetic study of the gas-phase ozonolysis of propylene[J]. Acta Phys. -Chim. Sin., 22 (10):1260-1265, doi: 10.1016/S1872-1508(06)60060-0.
    [47] Jia L, Xu Y F, Ge M F, et al. 2009. Smog chamber studies of ozone formation potentials for isopentane[J]. Chin. Sci. Bull., 54 (24):4624-4632, doi: 10.1007/s11434-009-0482-y.
    [48] Kalberer M, Paulsen D, Sax M, et al. 2004. Identification of polymers as major components of atmospheric organic aerosols[J]. Science, 303 (5664):1659-1662, doi: 10.1126/science.1092185.
    [49] Kesselmeier J, Staudt M. 1999. Biogenic Volatile Organic Compound (VOC):An overview on emissions, physiology and ecology[J]. J. Atmos. Chem., 33 (1):23-88, doi: 10.1023/A:1006127516791.
    [50] Kroll J H, Ng N L, Murphy S M. et al. 2005. Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds[J]. J. Geophys. Res., 110 (D23):D23207, doi: 10.1029/2005JD006004.
    [51] Lai C Y, Liu Y C, Ma J Z, et al. 2015. Heterogeneous kinetics of cis-pinonic acid with hydroxyl radical under different environmental conditions[J]. J. Phys. Chem. A, 119 (25):6583-6593, doi: 10.1021/acs.jpca.5b01321.
    [52] Lambe A T, Cappa C D, Massoli P, et al. 2013. Relationship between oxidation level and optical properties of secondary organic aerosol[J]. Environ. Sci. Technol., 47 (12):6349-6357, doi: 10.1021/es401043j.
    [53] Li J L, Li K, Wang W G, et al. 2017c. Optical properties of secondary organic aerosols derived from long-chain alkanes under various NOx and seed conditions[J]. Sci. Total Environ., 579:1699-1705, doi:10.1016/j. scitotenv.2016.11.189.
    [54] Li K, Wang W G, Ge M F, et al. 2014. Optical properties of secondary organic aerosols generated by photooxidation of aromatic hydrocarbons[J]. Sci. Rep., 4:4922, doi: 10.1038/srep04922.
    [55] Li K, Li J L, Liggio J, et al. 2017a. Enhanced light scattering of secondary organic aerosols by multiphase reactions[J]. Environ. Sci. Technol., 51 (3):1285-1292, doi: 10.1021/acs.est.6b03229.
    [56] Li K W, Chen L H, Han K, et al. 2017b. Smog chamber study on aging of combustion soot in isoprene/SO2/NOx system:Changes of mass, size, effective density, morphology and mixing state[J]. Atmos. Res., 184:139-148. doi: 10.1016/j.atmosres.2016.10.011
    [57] Lin Y H, Zhang H F, Pye H O T, et al. 2013. Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides[J]. Proc. Natl. Acad. Sci., 110 (17):6718-6723, doi: 10.1073/pnas.1221150110.
    [58] Lindfors V, Laurila T. 2000. Biogenic volatile organic compound (VOC) emissions from forests in Finland[J]. Boreal Environ. Res., 5 (2):95-113.
    [59] Liu C, Chu B W, Liu Y C, et al. 2013. Effect of mineral dust on secondary organic aerosol yield and aerosol size in α-pinene/NOx photo-oxidation[J]. Atmos. Environ., 77:781-789, doi: 10.1016/j.atmosenv.2013.05.064.
    [60] Liu C, Ma Q X, Chu B W, et al. 2015. Effect of aluminium dust on secondary organic aerosol formation in m-xylene/NOx photo-oxidation[J]. Sci. China Earth Sci., 58 (2):245-254, doi: 10.1007/s11430-014-5023-0.
    [61] 刘佳, 尚静. 2015.小型室内烟雾箱的设计和搭建[J].环境科学与技术, 38 (8):191-195. doi: 10.3969/j.issn.1003-6504.2015.08.035

    Liu J, Shang J. 2015. Design and construction of indoor small-scale smog chamber[J]. Environ. Sci. Technol., 38 (8):191-195, doi: 10.3969/j.issn.1003-6504.2015.08.035.
    [62] 刘宪云, 黄明强, 王振亚, 等. 2009.用于模拟SOA形成的烟雾腔的构造和表征[J].环境科学与技术, 32 (9):105-109. doi: 10.3969/j.issn.1003-6504.2009.09.024

    Liu X Y, Huang M Q, Wang Z Y, et al. 2009. Construction and characterization of a new smog chamber for simulating the formation of secondary organic aerosol[J]. Environ. Sci. Technol., 32 (9):105-109, doi:10.3969/j. issn.1003-6504.2009.09.024.
    [63] Liu S J, Jia Long, Xu Y F, et al. 2017. Photooxidation of cyclohexene in the presence of SO2:SOA yield and chemical composition[J]. Atmos Chem. Phys., 17 (21):13329-13343, doi: 10.5194/acp-17-13329-2017.
    [64] Liu T, Wang X, Deng W, et al. 2015a. Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber[J]. Atmos. Chem. Phys., 15 (15):9049-9062, doi:10. 5194/acp-15-9049-2015.
    [65] Liu T Y, Wang X M, Deng W, et al. 2015b. Role of ammonia in forming secondary aerosols from gasoline vehicle exhaust[J]. Sci. China Chem., 58 (9):1377-1384, doi: 10.1007/s11426-015-5414-x.
    [66] Liu T, Wang X, Hu Q, et al. 2016. Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO2[J]. Atmos. Chem. Phys., 16 (2):675-689, doi: 10.5194/acp-16-675-2016.
    [67] 陆思华, 白郁华, 陈运宽, 等. 2003.北京市机动车排放挥发性有机化合物的特征[J].中国环境科学, 23 (2):127-130. doi: 10.3321/j.issn:1000-6923.2003.02.004

    Lu S H, Bai Y H, Chen Y K, et al. 2003. The characteristics of volatile organic compounds (VOCs) emitted from motor vehicle in Beijing[J]. China Environ. Sci., 23 (2):127-130, doi: 10.3321/j.issn:1000-6923.2003.02.004.
    [68] Lu Z F, Hao J M, Takekawa H, et al. 2009. Effect of high concentrations of inorganic seed aerosols on secondary organic aerosol formation in the m-xylene/NOx photooxidation system[J]. Atmos. Environ., 43 (4):897-904, doi: 10.1016/j.atmosenv.2008.10.047.
    [69] 吕子峰, 郝吉明, 李俊华, 等. 2008.硫酸钙及硫酸铵气溶胶对二次有机气溶胶生成的影响[J].化学学报, 66 (4):419-423. doi: 10.3321/j.issn:0567-7351.2008.04.004

    Lü Z F, Hao J M, Li J H, et al. 2008. Effect of calcium sulfate and ammonium sulfate aerosol on secondary organic aerosol formation[J]. Acta Chim. Sin., 66 (4):419-423, doi: 10.3321/j.issn:0567-7351.2008.04.004.
    [70] Ma J Z, Zhu C Z, Lu J, et al. 2017. Photochemical reaction between triclosan and nitrous acid in the atmospheric aqueous environment[J]. Atmos. Environ., 157:38-48, doi: 10.1016/j.atmosenv.2017.03.011.
    [71] Martín-Reviejo M, Wirtz K. 2005. Is benzene a precursor for secondary organic aerosol?[J] Environ. Sci. Technol., 39 (4):1045-1054, doi: 10.1021/es049802a.
    [72] Meagher J F, Olszyna K J, Simonaitis R. 1990. Smog chamber study of H2O2 formation in ethane-NOx and propene-NOx mixtures[J]. Int. J. Chem. Kinet., 22 (7):719-740, doi: 10.1002/kin.550220708.
    [73] Nakayama T, Sato K, Tsuge M, et al. 2015. Complex refractive index of secondary organic aerosol generated from isoprene/NOx photooxidation in the presence and absence of SO2[J]. J. Geophys. Res. Atmos., 120 (15):7777-7787, doi: 10.1002/2015JD023522.
    [74] 聂劲松, 秦敏, 杨勇, 等. 2002a.一种用于研究光化学反应烟雾腔的结构和性能[J].原子与分子物理学报, 19 (2):186-190. doi: 10.3969/j.issn.1000-0364.2002.02.014

    Nie J S, Qin M, Yang Y, et al. 2002a. The structure and performance of a kind of photo chemical smog chamber[J]. Chinese J. Atomic Mol. Phys., 19 (2):186-190, doi: 10.3969/j.issn.1000-0364.2002.02.014.
    [75] 聂劲松, 秦敏, 杨勇, 等. 2002b.用烟雾箱研究甲苯与OH自由基光化学反应[J].原子与分子物理学报, 19 (3):304-306. doi: 10.3969/j.issn.1000-0364.2002.03.012

    Nie J S, Qin M, Yang Y, et al. 2002b. The photo chemical reaction study of toluene by smog chamber[J]. Chinese J. Atomic Mol. Phys., 19 (3):304-306, doi: 10.3969/j.issn.1000-0364.2002.03.012.
    [76] Pan G, Hu C J, Huang M Q, et al. 2012. A VUV photoionization mass spectrometric study on the OH-initiated photooxidation of isoprene with synchrotron radiation[J]. J. Environ. Sci., 24 (12):2075-2082, doi: 10.1016/S1001-0742(11)61051-6.
    [77] Peng C, Wang W G, Li K, et al. 2018. The optical properties of limonene secondary organic aerosols:The role of NO3, OH, and O3 in the oxidation processes[J]. J. Geophys. Res. Atmos., 123 (6):3292-3303, doi: 10.1002/2017JD028090.
    [78] Peng J F, Hu M, Du Z F, et al. 2017. Gasoline aromatics:A critical determinant of urban secondary organic aerosol formation[J]. Atmos. Chem. Phys., 17 (17):10743-10752, doi: 10.5194/acp-17-10743-2017.
    [79] Pope Ⅲ C A, Dockery D W. 2006. Health effects of fine particulate air pollution:Lines that connect[J]. J. Air Waste Manage. Assoc., 56 (6):709-742, doi: 10.1080/10473289.2006.10464485.
    [80] 祁骞, 周学华, 王文兴. 2014.二次有机气溶胶的水相形成研究[J].化学进展, 26 (2-3):458-466. doi: 10.7536/PC130827

    Qi Q, Zhou X H, Wang W X. 2014. Studies on formation of aqueous secondary organic aerosols[J]. Prog. Chem., 26 (2-3):458-466, doi: 10.7536/PC130827.
    [81] 任凯锋, 李建军, 王文丽, 等. 2005.光化学烟雾模拟实验系统[J].环境科学学报, 25 (11):1431-1435. doi: 10.3321/j.issn:0253-2468.2005.11.001

    Ren K F, Li J J, Wang W L, et al. 2005. Investigation on experiment system for modeling of photochemical smog[J]. Acta Sci. Circumst., 25 (11):1431-1435, doi: 10.3321/j.issn:0253-2468.2005.11.001.
    [82] Sakamoto Y, Inomata S, Hirokawa J. 2013. Oligomerization reaction of the Criegee intermediate leads to secondary organic aerosol formation in ethylene ozonolysis[J]. J. Phys. Chem. A, 117 (48):12912-12921, doi: 10.1021/jp408672m.
    [83] Svensson R, Ljungström E, Lindqvist O. 1987. Kinetics of the reaction between nitrogen dioxide and water vapour[J]. Atmos. Environ., 21 (7):1529-1539, doi: 10.1016/0004-6981(87)90315-5.
    [84] 申晓莉, 陈忠明, 赵岳, 等. 2012.乙二醛在沙尘颗粒物表面吸附与转化的红外光谱研究[J].光谱学与光谱分析, 32 (11):2946-2949. doi: 10.3964/j.issn.1000-0593(2012)11-2946-04

    Shen X L, Chen Z M, Zhao Y, et al. 2012. In-situ FTIR study on the absorption and transformation of glyoxal on the surface of dust particles[J]. Spectrosc. Sepct. Anal., 32 (11):2946-2949, doi:10.3964/j. issn.1000-0593(2012)11-2946-04.
    [85] Shen X L, Zhao Y, Chen Z M, et al. 2013. Heterogeneous reactions of volatile organic compounds in the atmosphere[J]. Atmos. Environ., 68:297-314, doi: 10.1016/j.atmosenv.2012.11.027.
    [86] Shen X L, Wu H H, Zhao Y, et al. 2016. Heterogeneous reactions of glyoxal on mineral particles:A new avenue for oligomers and organosulfate formation[J]. Atmos. Environ., 131:133-140, doi:10.1016/j.atmosenv. 2016.01.048.
    [87] Shi Y Z, Xu Y F, Jia L. 2011. Arrhenius parameters for the gas-phase reactions of O3 with two butenes and two methyl-substituted butenes over the temperature range of 295-351 K[J]. Int. J. Chem. Kinet., 43 (5):238-246, doi: 10.1002/kin.20553.
    [88] Spracklen D V, Jimenez J L, Carslaw K S, et al. 2011. Aerosol mass spectrometer constraint on the global secondary organic aerosol budget[J]. Atmos. Chem. Phys., 11 (23):12109-12136, doi: 10.5194/acp-11-12109-2011.
    [89] Suda S R, Petters M D, Yeh G K, et al. 2014. Influence of functional groups on organic aerosol cloud condensation nucleus activity[J]. Environ. Sci. Technol., 48 (17):10182-10190, doi: 10.1021/es502147y.
    [90] Surratt J D, Chan A W H, Eddingsaas N C, et al. 2010. Reactive intermediates revealed in secondary organic aerosol formation from isoprene[J]. Proc. Natl. Acad. Sci., 107 (15):6640-6645, doi: 10.1073/pnas.0911114107.
    [91] 唐孝炎, 毕木天, 李金龙, 等. 1982.光化学烟雾箱的试制和性能实验[J].环境化学, 1 (5):344-351. https://core.ac.uk/display/155585939

    Tang X Y, Bi M T, Li J L, et al. 1982. Trial manufacture and capability experiment of a photochemical smog chamber[J]. Environ. Chem., 1 (5):344-351. https://core.ac.uk/display/155585939
    [92] Underwood G M, Li P, Usher C R, et al. 2000. Determining accurate kinetic parameters of potentially important heterogeneous atmospheric reactions on solid particle surfaces with a Knudsen cell reactor[J]. J. Phys. Chem. A, 104 (4):819-829, doi: 10.1021/jp9930292.
    [93] Volkamer R, Ziemann P J, Molina M J. 2009. Secondary organic aerosol formation from acetylene (C2H2):Seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase[J]. Atmos. Chem. Phys., 9 (6):1907-1928, doi: 10.5194/acp-9-1907-2009.
    [94] Wang H L, Huang D, Zhang X, et al. 2012. Understanding the aqueous phase ozonolysis of isoprene:Distinct product distribution and mechanism from the gas phase reaction[J]. Atmos. Chem. Phys., 12 (15):7187-7198, doi: 10.5194/acp-12-7187-2012.
    [95] Wang M Y, Yao L, Zheng J, et al. 2016a. Reactions of atmospheric particulate stabilized Criegee intermediates lead to high-molecular-weight aerosol components[J]. Environ. Sci. Technol., 50 (11):5702-5710, doi: 10.1021/acs.est.6b02114.
    [96] Wang W G, Li K, Zhou L, et al. 2015. Evaluation and application of dual-reactor chamber for studying atmospheric oxidation processes and mechanisms[J]. Acta Phys. -Chim. Sin., 31 (7):1251-1259, doi: 10.3866/PKU.WHXB201504161.
    [97] 王文兴, 束勇辉, 李金花. 1997.煤烟粒子中PAHs光化学降解的动力学[J].中国环境科学, 17 (2):97-102. https://www.wenkuxiazai.com/word/0694b2f5daef5ef7ba0d3ccb-1.doc

    Wang W X, Shu Y H, Li J H. 1997. Photochemical degradation of PAHs on smoke particles in atmosphere[J]. China Environ. Sci., 17 (2):97-102. https://www.wenkuxiazai.com/word/0694b2f5daef5ef7ba0d3ccb-1.doc
    [98] 王文兴, 谢英, 林子瑜, 等. 1995.甲烷光氧化反应速率常数及其在大气中的寿命[J].中国环境科学, 15 (4):258-261. http://www.cqvip.com/qk/91370X/199504

    Wang W X, Xie Y, Lin Z Y, et al. 1995. Study on reaction rate constants of CH4 and its life-time[J]. China Environ. Sci., 15 (4):258-261. http://www.cqvip.com/qk/91370X/199504
    [99] Wang X M, Liu T Y, Bernard F, et al. 2014. Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation[J]. Atmos. Meas. Techn., 7 (1):301-313, doi: 10.5194/amt-7-301-2014.
    [100] Wang Y J, Luo H, Jia L, et al. 2016b. Effect of particle water on ozone and secondary organic aerosol formation from benzene-NO2-NaCl irradiations[J]. Atmos. Environ., 140:386-394, doi:10.1016/j.atmosenv. 2016.06.022.
    [101] 王宗爽, 徐舒, 王晟, 等. 2016.国外环境烟雾箱及其应用研究[J].环境工程技术学报, 6 (4):363-370. doi: 10.3969/j.issn.1674-991X.2016.04.054

    Wang Z S, Xu S, Wang S, et al. 2016. Foreign Environmental smog chambers and current application researches[J]. J. Environ. Eng. Technol., 6 (4):363-370, doi: 10.3969/j.issn.1674-991X.2016.04.054.
    [102] Went F W. 1960. Blue hazes in the atmosphere[J]. Nature, 187 (4738):641-643, doi: 10.1038/187641a0.
    [103] 吴海, 牟玉静, 张晓山, 等. 2001a.相对速率法测OH自由基与几种低碳醇的反应速率常数[J].环境科学学报, 21 (5):525-529. doi: 10.3321/j.issn:0253-2468.2001.05.003

    Wu H, Mu Y J, Zhang X S, et al. 2001a. Rate constants for reactions of hydroxyl radicals with a series of alcohols by relative rate method[J]. Acta Sci. Circumst., 21 (5):525-529, doi: 10.3321/j.issn:0253-2468.2001.05.003.
    [104] 吴海, 牟玉静, 张晓山, 等. 2001b.相对速率法测氯原子与一系列低碳醇的反应速率常数[J].环境科学学报, 21 (6):649-653. doi: 10.3321/j.issn:0253-2468.2001.06.001

    Wu H, Mu Y J, Zhang X S, et al. 2001b. Rate constants for reactions of chlorine atoms with a series of alcohols by relative rate method[J]. Acta Sci. Circumst., 21 (6):649-653, doi: 10.3321/j.issn:0253-2468.2001.06.001.
    [105] 武山, 郝吉明, 吕子峰, 等. 2007.硫酸铵气溶胶对甲苯-NOx-空气体系光化学反应的影响[J].环境科学, 28 (6):1183-1187. doi: 10.3321/j.issn:0250-3301.2007.06.003

    Wu S, Hao J M, Lü Z F, et al. 2007. Effect of ammonium sulfate aerosol on the photochemical reaction of toluene/NOx/air mixture[J]. Environ. Sci., 28 (6):1183-1187, doi: 10.3321/j.issn:0250-3301.2007.06.003.
    [106] Wu S, Lü Z F, Hao J M, et al. 2007. Construction and characterization of an atmospheric simulation smog chamber[J]. Adv. Atmos. Sci., 24 (2):250-258, doi: 10.1007/s00376-007-0250-3.
    [107] 谢绍东, 田晓雪. 2010.挥发性和半挥发性有机物向二次有机气溶胶转化的机制[J].化学进展, 22 (4):727-733. http://manu56.magtech.com.cn/progchem/CN/abstract/abstract11807.shtml

    Xie S D, Tian X X. 2010. Formation mechanism of secondary organic aerosols from the reaction of volatile and semi-volatile compounds[J]. Prog. Chem., 22 (4):727-733. http://manu56.magtech.com.cn/progchem/CN/abstract/abstract11807.shtml
    [108] 徐冰烨, 朱彤, 唐孝炎, 等. 2006.甲醛在α-Al2O3颗粒物表面的非均相反应研究[J].高等学校化学学报, 27 (10):1912-1917. doi: 10.3321/j.issn:0251-0790.2006.10.022

    Xu B Y, Zhu T, Tang X Y, et al. 2006. Heterogeneous reaction of formaldehyde on surface of α-Al2O3 particles[J]. Chem. J. Chinese Univ., 27 (10):1912-1917, doi: 10.3321/j.issn:0251-0790.2006.10.022.
    [109] 徐冰烨, 朱彤, 唐孝炎, 等. 2010.甲醛在TiO2颗粒物表面的非均相反应[J].中国科学:化学, 40 (12):1757-1764.

    Xu B Y, Zhu T, Tang X Y, et al. 2010. Heterogeneous reaction of formaldehyde on the surface of titanium dioxide particles[J]. Sci. Sin. Chim., 40 (12):1757-1764.
    [110] Xu B Y, Shang J, Zhu T, et al. 2011. Heterogeneous reaction of formaldehyde on the surface of γ-Al2O3 particles[J]. Atmos. Environ., 45 (21):3569-3575, doi: 10.1016/j.atmosenv.2011.03.067.
    [111] Xu Y F, Jia L, Ge M F, et al. 2006. A kinetic study of the reaction of ozone with ethylene in a smog chamber under atmospheric conditions[J]. Chin. Sci. Bull., 51 (23):2839-2843, doi: 10.1007/s11434-006-2180-3.
    [112] 杨宗苓, 石鑫, 乔星, 等. 2016.用于汽车尾气光氧化的烟雾箱研究及其表征实验[J].环境科学与技术, 39 (12):7-11. doi: 10.3969/j.issn.1003-6504.2016.12.002

    Yang Z L, Shi X, Qiao X, et al. 2016. Characterization experiments and studies on smog chamber of automobile exhaust photo-oxidation[J]. Environ. Sci. Technol., 39 (12):7-11, doi: 10.3969/j.issn.1003-6504.2016.12.002.
    [113] Yao L, Ma Y, Wang L, et al. 2014. Role of stabilized Criegee intermediate in secondary organic aerosol formation from the ozonolysis of α-cedrene[J]. Atmos. Environ., 94:448-457, doi: 10.1016/j.atmosenv.2014.05.063.
    [114] 叶兴南, 陈健民. 2009.大气二次细颗粒物形成机理的前沿研究[J].化学进展, 21 (2-3):288-296. https://www.researchgate.net/profile/Xingnan_Ye/publication/231222474_Advances_in_the_Mechanism_of_Secondary_Fine_Particulate_Matters_Formation/links/0fcfd50664e149c69b000000.pdf

    Ye X N, Chen J M. 2009. Advances in the mechanism of secondary fine particulate matters formation[J]. Prog. Chem., 21 (2-3):288-296. https://www.researchgate.net/profile/Xingnan_Ye/publication/231222474_Advances_in_the_Mechanism_of_Secondary_Fine_Particulate_Matters_Formation/links/0fcfd50664e149c69b000000.pdf
    [115] Yuan C, Ma Y, Diao Y W, et al. 2017. CCN activity of secondary aerosols from terpene ozonolysis under atmospheric relevant conditions[J]. J. Geophys. Res. Atmos., 122 (8):4654-4669, doi: 10.1002/2016JD026039.
    [116] Zhang H, Surratt J D, Lin Y H, et al. 2011a. Effect of relative humidity on SOA formation from isoprene/NO photooxidation:Enhancement of 2-methylglyceric acid and its corresponding oligoesters under dry conditions[J]. Atmos. Chem. Phys., 11 (13):6411-6424, doi: 10.5194/acp-11-6411-2011.
    [117] Zhang H F, Hu D W, Chen J M, et al. 2011b. Particle size distribution and polycyclic aromatic hydrocarbons emissions from agricultural crop residue burning[J]. Environ. Sci. Technol., 45 (13):5477-5482, doi: 10.1021/es1037904.
    [118] 张泽锋, 朱彤, 尚静, 等. 2011. NO2在高岭石表面的非均相反应研究[J].环境科学学报, 31 (10):2073-2079.

    Zhang Z F, Zhu T, Shang J, et al. 2011. Heterogeneous reaction of NO2 on the surface of kaolinite particles[J]. Acta Sci. Circumst., 31 (10):2073-2079.
    [119] Zhao Y, Huang D, Huang L B, et al. 2014. Hydrogen peroxide enhances the oxidation of oxygenated volatile organic compounds on mineral dust particles:A case study of methacrolein[J]. Environ. Sci. Technol., 48 (18):10614-10623, doi: 10.1021/es5023416.
    [120] 赵喆, 郝吉明, 李俊华, 等. 2008.大气模拟烟雾箱中HONO的表征[J].环境科学学报, 28 (12):2465-2469. doi: 10.3321/j.issn:0253-2468.2008.12.010

    Zhao Z, Hao J M, Li J H, et al. 2008. Characterization of the HONO source in an atmosphere simulation chamber[J]. Acta Sci. Circumst., 28 (12):2465-2469, doi: 10.3321/j.issn:0253-2468.2008.12.010.
    [121] Zhao Z, Hao J M, Li J H, et al. 2008a. Second organic aerosol formation by irradiation of α-pinene-NOx-H2O in an indoor smog chamber for atmospheric chemistry and physics[J]. Chinese Sci. Bull., 53 (21):3294-3300, doi: 10.1007/s11434-008-0478-z.
    [122] Zhao Z, Hao J M, Li J H, et al. 2008b. Second organic aerosol formation from the ozonolysis of α-pinene in the presence of dry submicron ammonium sulfate aerosol[J]. J. Environ. Sci., 20 (10):1183-1188, doi: 10.1016/S1001-0742(08)62207-X.
  • 加载中
图(4)
计量
  • 文章访问数:  1584
  • HTML全文浏览量:  178
  • PDF下载量:  2014
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-15
  • 网络出版日期:  2018-05-29
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回