Laboratory Simulation Studies of the Formation of Secondary Organic Aerosols in the Atmosphere
-
摘要: 二次有机气溶胶(SOA)是大气中重要的气溶胶组分,主要由挥发性有机物(VOCs)经化学转化形成,对天气、气候、大气环境和人体健康有重要影响,但至今其确切的化学成分和形成机制还十分不清楚。研究SOA的方法主要采用实验室单个物种或多物种的化学过程的模拟研究,野外实际大气的SOA化学成分、源汇和多尺度分析的观测研究,以及大气中SOA形成的数值模拟的回报和预报研究。实验室研究是对SOA形成过程中获取基础数据和推究SOA生成机制的最主要手段。在过去的几十年中,特别是近五年,SOA的研究取得了较大的进展,其中包括SOA前体物、SOA形成机制及影响因子的进一步理解。本文就这些方面展开了概要性的综述,重点强调了我国研究人员所做的研究工作。在采用实验室烟雾箱系统模拟研究SOA方面,首先简述了烟雾系统的发展以及表征,讨论了跟烟雾箱箱体相关的壁效应问题,重点综述了萜烯类、芳香烃类、小分子类等化学物种转化形成SOA的研究进展。在采用流动管和其他反应器类模拟研究SOA方面,重点讨论了挥发性有机物在颗粒物表面或在液相中所形成的SOA的主要化学成分及其可能的作用。Abstract: SOA (secondary organic aerosol) is an important component of aerosols, which forms from the chemical conversion of volatile organic compounds (VOCs) in the atmosphere and imposes great influence on weather, climate, atmospheric environment, and human health. However, so far the exact chemical composition and formation mechanism of SOA are still not clear. The approaches for the study of SOA include laboratory simulation of chemical conversion processes of individual species or multiple species, observational study of the chemical composition, sources and sinks, multiple scale analysis of SOA from the real atmosphere and hindcast and prediction studies of the formation of SOA in the atmosphere by numerical simulations. Laboratory studies are a main tool for obtaining basic parameters of the SOA formation and examining the formation mechanism for SOA. Over the last several decades, particularly in the recent five years, great progress has been made in the research of formation of SOA, including further understanding of SOA precursors, formation mechanisms for SOA and its influencing factors. This paper briefly reviews the progress on these aspects with a focus on the research conducted by Chinese researchers. In the study of SOA with indoor chamber system in the laboratory, the development and characteristics of the chamber system are summarized. The wall effects related to the chamber reactor are discussed. The research progress on the formation of SOA from the conversion of different kinds of organic species, such as terpenes, aromatics, and light-weight molecules are emphatically reviewed. In the study of SOA by flow reactors and other reactors, the main chemical composition and the role of SOA formed from VOCs on the surface of particles and in the liquid phase are particularly described.
-
图 2 苯光氧化生成SOA的主要反应通道(Jenkin et al., 1997, 2003; Jia and Xu, 2014; Huang et al., 2014)
Figure 2. Major reaction channels for the SOA (secondary organic aerosol) formation from photochemical oxidation of benzene (Jenkin et al., 1997, 2003; Jia and Xu, 2014; Huang et al., 2014)
图 3 异戊二烯由OH氧化生成SOA的两种反应通道(Surratt et al., 2010; Zhang et al., 2011a; Lin et al., 2013)
Figure 3. Two reaction channels for the SOA formation from the OH induced oxidation of isoprene (Surratt et al., 2010; Zhang et al., 2011a; Lin et al., 2013)
图 4 乙烯氧化生成SOA的关键反应通道(Sakamoto et al., 2013; Jia and Xu, 2016; Ge et al., 2017a)
Figure 4. Key reaction channels for the SOA formation from the oxidation of ethylene (Sakamoto et al., 2013; Jia and Xu, 2016; Ge et al., 2017a)
-
[1] 白春礼. 2014.中国科学院大气灰霾研究进展及展望[J].中国科学院院刊, 29 (3):275-281. doi: 10.3969/j.issn.1000-3045.2014.03.001Bai C L. 2014. Progress and prospect on atmospheric haze research in Chinese Academy of Sciences[J]. Bull. Chinese Acad. Sci., 29 (3):275-281, doi:10.3969/j.issn.1000-3045.2014. 03.001. [2] Carter W P L, Cocker Ⅲ D R, Fitz D R, et al. 2005. A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation[J]. Atmos. Environ., 39 (40):7768-7788, doi: 10.1016/j.atmosenv.2005.08.040. [3] Chen F, Zhou H, Gao J X, et al. 2017. A chamber study of secondary organic aerosol (SOA) formed by ozonolysis of d-limonene in the presence of NO[J]. Aerosol Air Quality Res., 17 (1):59-68, doi: 10.4209/aaqr.2016.01.0029. [4] Chu B W, Hao J M, Takekawa H, et al. 2012. The remarkable effect of FeSO4 seed aerosols on secondary organic aerosol formation from photooxidation of α-pinene/NOx and toluene/NOx[J]. Atmos. Environ., 55:26-34, doi: 10.1016/j.atmosenv.2012.03.006. [5] Chu B W, Wang K, Takekawa H, et al. 2014. Hygroscopicity of particles generated from photooxidation of α-pinene under different oxidation conditions in the presence of sulfate seed aerosols[J]. J. Environ. Sci., 26 (1):129-139, doi: 10.1016/S1001-0742(13)60402-7. [6] Chu B W, Zhang X, Liu Y C, et al. 2016. Synergetic formation of secondary inorganic and organic aerosol:Effect of SO2 and NH3 on particle formation and growth[J]. Atmos. Chemi. Phys., 16 (22):14219-14230, doi: 10.5194/acp-16-14219-2016. [7] Claeys M, Graham B, Vas G, et al. 2004. Formation of secondary organic aerosols through photooxidation of isoprene[J]. Science, 303 (5661):1173-1176, doi: 10.1126/science.1092805. [8] Deng W, Liu T Y, Zhang Y L, et al. 2017. Secondary organic aerosol formation from photooxidation of toluene with NOx and SO2:Chamber simulation with purified air versus urban ambient air as matrix[J]. Atmos. Environ., 150:67-76, doi: 10.1016/j.atmosenv.2016.11.047. [9] 杜林, 徐永福, 葛茂发, 等. 2006.大气条件下O3与乙炔反应速率常数的测定[J].化学学报, 64 (21):2133-2137. doi: 10.3321/j.issn:0567-7351.2006.21.001Du L, Xu Y F, Ge M F, et al. 2006. Determination of rate constants for ozone reactions with acetylene under atmospheric conditions[J]. Acta Chim. Sin., 64 (21):2133-2137, doi: 10.3321/j.issn:0567-7351.2006.21.001. [10] 杜林, 徐永福, 葛茂发, 等. 2007, 烟雾箱模拟乙炔和NOx的大气光化学反应[J], 环境科学, 28 (3):34-40. doi: 10.3321/j.issn:0250-3301.2007.03.007Du L, Xu Y F, Ge M F, et al. 2007. Smog chamber simulation of atmospheric photochemical reactions of acetylene and NOx[J]. Environ. Sci., 28 (3):34-40. doi: 10.3321/j.issn:0250-3301.2007.03.007 [11] Du L, Xu Y F, Ge M F, et al. 2007a. Rate constant of the gas phase reaction of dimethyl sulfide (CH3SCH3) with ozone[J]. Chem. Phys. Lett., 436 (1-3):36-40. doi: 10.1016/j.cplett.2007.01.025 [12] Du L, Xu Y F, Ge M F, et al. 2007b. Rate constant for the reaction of ozone with diethyl sulfide[J]. Atmos. Environ., 41 (35):7434-7439, doi: 10.1016/j.atmosenv.2007.05.041. [13] Fang W Z, Gong L, Sheng L S. 2017. Online analysis of secondary organic aerosols from OH-initiated photooxidation and ozonolysis of α-pinene, β-pinene, Δ3-carene and d-limonene by thermal desorption-photoionisation aerosol mass spectrometry[J]. Environ. Chem., 14 (2):75-90, doi: 10.1071/EN16128. [14] Fang W Z, Gong L, Zhang Q, et al. 2012. Measurements of secondary organic aerosol formed from OH-initiated photo-oxidation of isoprene using online photoionization aerosol mass spectrometry[J]. Environ. Sci. Technol., 46 (7):3898-3904, doi: 10.1021/es204669d. [15] Ge S S, Xu Y F, Jia L. 2016. Secondary organic aerosol formation from ethyne in the presence of NaCl in a smog chamber[J]. Environ. Chem., 13 (4):699-710, doi: 10.1071/EN15155. [16] Ge S S, Xu Y F, Jia L. 2017a. Secondary organic aerosol formation from ethylene ozonolysis in the presence of sodium chloride[J]. J. Aerosol Sci., 106:120-131, doi: 10.1016/j.jaerosci.2017.01.009. [17] Ge S S, Xu Y F, Jia L. 2017b. Secondary organic aerosol formation from propylene irradiations in a chamber study[J]. Atmos. Environ., 157:146-155, doi: 10.1016/j.atmosenv.2017.03.019. [18] Ge S S, Xu Y F, Jia L. 2017c. Effects of inorganic seeds on secondary organic aerosol formation from photochemical oxidation of acetone in a chamber[J]. Atmos. Environ., 170:205-215, doi:10.1016/j.atmosenv. 017.09.036. [19] 耿春梅, 杜莎莎, 殷宝辉, 等. 2011.异戊二烯与OH自由基光化学反应的二次有机气溶胶的生成[J].中国科学:化学, 41 (7):1206-1214. doi: 10.1360/032010-774Geng C M, Du S S, Yin B H, et al. 2011. Secondary organic aerosol formation from the photochemical reaction of isoprene with OH radical[J]. Science China Chemistry, 41 (7):1206-1214, doi: 10.1360/032010-774. [20] Goldstein A H, Galbally I E. 2007. Known and unexplored organic constituents in the Earth's atmosphere[J]. Environ. Sci. Technol., 41 (5):1514-1521, doi: 10.1021/es072476p. [21] Goodman A L, Bernard E T, Grassian V H. 2001. Spectroscopic study of nitric acid and water adsorption on oxide particles:Enhanced nitric acid uptake kinetics in the presence of adsorbed water[J]. J. Phys. Chem. A, 105 (26):6443-6457, doi: 10.1021/jp003722l. [22] Guo S, Hu M, Zamora M L, et al. 2014. Elucidating severe urban haze formation in China[J]. Proc. Natl. Acad. Sci., 111 (49):17373-17378, doi: 10.1073/pnas.1419604111. [23] Haagen-Smit A J. 1952. Chemistry and physiology of Los Angeles smog[J]. Ind. Eng. Chem., 44 (6):1342-1346, doi: 10.1021/ie50510a045. [24] Hallquist M, Wenger J C, Baltensperger U, et al. 2009. The formation, properties and impact of secondary organic aerosol:Current and emerging issues[J]. Atmos. Chem. Phys., 9 (14):5155-5236, doi: 10.5194/acp-9-5155-2009. [25] Hao L Q, Wang Z Y, Huang M Q, et al. 2005. Size distribution of the secondary organic aerosol particles from the photooxidation of toluene[J]. J. Environ. Sci., 17 (6):912-916, doi:10.3321/j.issn:1001-0742.2005.06. 006. [26] 韩力慧, 陈媛媛, 贾龙, 等. 2014. NO2在MgO颗粒物表面的非均相反应[J].中国科学:化学, 44 (12):2004-2012. doi: 10.1360/N032013-00054Han L H, Chen Y Y, Jia L, et al. 2014. Heterogeneous reactions of NO2 on the surface of MgO particles[J]. Science China Chemistry, 44 (12):2004-2012, doi: 10.1360/N032013-00054. [27] Hu C J, Cheng Y, Pan G, et al. 2014. A smog chamber facility for qualitative and quantitative study on atmospheric chemistry and secondary organic aerosol[J]. Chin. J. Chem. Phys., 27 (6):631-639, doi: 10.1063/1674-0068/27/06/631-639. [28] 胡高硕, 徐永福, 贾龙. 2011.烟雾箱模拟丙烯-NOx的大气光化学反应[J].化学学报, 69 (14):1593-1600. https://www.wenkuxiazai.com/word/caca515e3968011ca2009162-1.docHu G S, Xu Y F, Jia L. 2011. Smog chamber simulation of atmospheric photochemical reactions of propene and NOx[J]. Acta Chim. Sin., 69 (14):1593-1600. https://www.wenkuxiazai.com/word/caca515e3968011ca2009162-1.doc [29] Hu G S, Xu Y F, Jia L. 2011. Effects of relative humidity on the characterization of a photochemical smog chamber[J]. J. Environ. Sci., 23 (12):2013-2018, doi: 10.1016/S1001-0742(10)60665-1. [30] Huang M Q, Hao L Q, Gu X J, et al. 2013. Effects of inorganic seed aerosols on the growth and chemical composition of secondary organic aerosol formed from OH-initiated oxidation of toluene[J]. J. Atmos. Chem., 70 (2):151-164, doi: 10.1007/s10874-013-9262-9. [31] Huang M Q, Lin Y H, Huang X Y, et al. 2014. Chemical analysis of aged benzene secondary organic aerosol using aerosol laser time-of-flight mass spectrometer[J]. J. Atmos. Chem., 71 (3):213-224, doi: 10.1007/s10874-014-9291-z. [32] Huang M Q, Lin Y H, Huang X Y, et al. 2015. Experimental study of particulate products for aging of 1, 3, 5-trimethylbenzene secondary organic aerosol[J]. Atmos. Pollut. Res., 6 (2):209-219, doi:10.5094/APR. 2015.025. [33] Huang M Q, Zhang J H, Cai S Y, et al. 2016a. Mass spectrometric study of aged benzene secondary organic aerosol in the presence of dry ammonium sulfate[J]. J. Atmos. Chem., 73 (3):329-344, doi: 10.1007/s10874-016-9328-6. [34] Huang M Q, Zhang J H, Cai S Y, et al. 2016b. Characterization of particulate products for aging of ethylbenzene secondary organic aerosol in the presence of ammonium sulfate seed aerosol[J]. J. Environ. Sci., 47:219-229, doi: 10.1016/j.jes.2015.11.033. [35] Huang M Q, Hao L Q, Cai S Y, et al. 2017. Effects of inorganic seed aerosols on the particulate products of aged 1, 3, 5-trimethylbenzene secondary organic aerosol[J]. Atmos. Environ., 152:490-502, doi: 10.1016/j.atmosenv.2017.01.010. [36] Jacobson M C, Hansson H C, Noone K J, et al. 2000. Organic atmospheric aerosols:Review and state of the science[J]. Rev. Geophys., 38 (2):267-294, doi: 10.1029/1998RG000045. [37] Jenkin M E, Saunders S M, Pilling M J. 1997. The tropospheric degradation of volatile organic compounds:A protocol for mechanism development[J]. Atmos. Environ., 31 (1):81-104, doi:10.1016/S1352-2310(96) 00105-7. [38] Jenkin M E, Saunders S M, Wagner V, et al. 2003. Protocol for the development of the master chemical mechanism, MCM v3 (Part B):Tropospheric degradation of aromatic volatile organic compounds[J]. Atmos. Chem. Phys., 3 (1):181-193, doi: 10.5194/acp-3-181-2003. [39] 贾龙, 徐永福. 2010.苯乙烯-NOx光照的二次有机气溶胶生成[J].化学学报, 68 (23):2429-2435. https://www.doc88.com/p-1847446928730.htmlJia L, Xu Y F. 2010. Formation of secondary organic aerosol from the styrene-NOx irradiation[J]. Acta Chim. Sin., 68 (23):2429-2435. https://www.doc88.com/p-1847446928730.html [40] 贾龙, 徐永福. 2014.烟雾箱与数值模拟研究苯和乙苯的臭氧生成潜势[J].环境科学, 35 (2):495-503. http://www.cqvip.com/QK/91181X/201402/48675375.htmlJia L, Xu Y F. 2014. Studies of ozone formation potentials for benzene and ethylbenzene using a smog chamber and model simulation[J]. Environ. Sci., 35 (2):495-503. http://www.cqvip.com/QK/91181X/201402/48675375.html [41] Jia L, Xu Y F. 2014. Effects of relative humidity on ozone and secondary organic aerosol formation from the photooxidation of benzene and ethylbenzene[J]. Aerosol Sci. Technol., 48 (1):1-12, doi: 10.1080/02786826.2013.847269. [42] Jia L, Xu Y F. 2016. Ozone and secondary organic aerosol formation from ethylene-NOx-NaCl irradiations under different relative humidity conditions[J]. J. Atmos. Chem., 73 (1):81-100, doi: 10.1007/s10874-015-9317-1. [43] Jia L, Xu Y F. 2018. Different roles of water in secondary organic aerosol formation from toluene and isoprene[J]. Atmos. Chem. Phys., 18, 8137-8154, doi: 10.5194/acp-18-8137-2018.. [44] 贾龙, 徐永福, 石玉珍. 2011.光化学烟雾箱的表征及初步应用[J].环境科学, 32 (2):351-361. http://mall.cnki.net/magazine/Article/HJKZ201102015.htmJia L, Xu Y F, Shi Y Z. 2011. Characterization of photochemical smog chamber and initial experiments[J]. Environ. Sci., 32 (2):351-361. http://mall.cnki.net/magazine/Article/HJKZ201102015.htm [45] Jia L, Xu Y F, Shi Y Z. 2012. Investigation of the ozone formation potential for ethanol using a smog chamber[J]. Chinese Sci. Bull., 57 (34):4472-4481, doi: 10.1007/s11434-012-5375-9. [46] 贾龙, 徐永福, 葛茂发, 等. 2006.丙烯的臭氧化反应动力学研究[J].物理化学学报, 22 (10):1260-1265. doi: 10.1016/S1872-1508(06)60060-0Jia L, Xu Y F, Ge M F, et al. 2006. Kinetic study of the gas-phase ozonolysis of propylene[J]. Acta Phys. -Chim. Sin., 22 (10):1260-1265, doi: 10.1016/S1872-1508(06)60060-0. [47] Jia L, Xu Y F, Ge M F, et al. 2009. Smog chamber studies of ozone formation potentials for isopentane[J]. Chin. Sci. Bull., 54 (24):4624-4632, doi: 10.1007/s11434-009-0482-y. [48] Kalberer M, Paulsen D, Sax M, et al. 2004. Identification of polymers as major components of atmospheric organic aerosols[J]. Science, 303 (5664):1659-1662, doi: 10.1126/science.1092185. [49] Kesselmeier J, Staudt M. 1999. Biogenic Volatile Organic Compound (VOC):An overview on emissions, physiology and ecology[J]. J. Atmos. Chem., 33 (1):23-88, doi: 10.1023/A:1006127516791. [50] Kroll J H, Ng N L, Murphy S M. et al. 2005. Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds[J]. J. Geophys. Res., 110 (D23):D23207, doi: 10.1029/2005JD006004. [51] Lai C Y, Liu Y C, Ma J Z, et al. 2015. Heterogeneous kinetics of cis-pinonic acid with hydroxyl radical under different environmental conditions[J]. J. Phys. Chem. A, 119 (25):6583-6593, doi: 10.1021/acs.jpca.5b01321. [52] Lambe A T, Cappa C D, Massoli P, et al. 2013. Relationship between oxidation level and optical properties of secondary organic aerosol[J]. Environ. Sci. Technol., 47 (12):6349-6357, doi: 10.1021/es401043j. [53] Li J L, Li K, Wang W G, et al. 2017c. Optical properties of secondary organic aerosols derived from long-chain alkanes under various NOx and seed conditions[J]. Sci. Total Environ., 579:1699-1705, doi:10.1016/j. scitotenv.2016.11.189. [54] Li K, Wang W G, Ge M F, et al. 2014. Optical properties of secondary organic aerosols generated by photooxidation of aromatic hydrocarbons[J]. Sci. Rep., 4:4922, doi: 10.1038/srep04922. [55] Li K, Li J L, Liggio J, et al. 2017a. Enhanced light scattering of secondary organic aerosols by multiphase reactions[J]. Environ. Sci. Technol., 51 (3):1285-1292, doi: 10.1021/acs.est.6b03229. [56] Li K W, Chen L H, Han K, et al. 2017b. Smog chamber study on aging of combustion soot in isoprene/SO2/NOx system:Changes of mass, size, effective density, morphology and mixing state[J]. Atmos. Res., 184:139-148. doi: 10.1016/j.atmosres.2016.10.011 [57] Lin Y H, Zhang H F, Pye H O T, et al. 2013. Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides[J]. Proc. Natl. Acad. Sci., 110 (17):6718-6723, doi: 10.1073/pnas.1221150110. [58] Lindfors V, Laurila T. 2000. Biogenic volatile organic compound (VOC) emissions from forests in Finland[J]. Boreal Environ. Res., 5 (2):95-113. [59] Liu C, Chu B W, Liu Y C, et al. 2013. Effect of mineral dust on secondary organic aerosol yield and aerosol size in α-pinene/NOx photo-oxidation[J]. Atmos. Environ., 77:781-789, doi: 10.1016/j.atmosenv.2013.05.064. [60] Liu C, Ma Q X, Chu B W, et al. 2015. Effect of aluminium dust on secondary organic aerosol formation in m-xylene/NOx photo-oxidation[J]. Sci. China Earth Sci., 58 (2):245-254, doi: 10.1007/s11430-014-5023-0. [61] 刘佳, 尚静. 2015.小型室内烟雾箱的设计和搭建[J].环境科学与技术, 38 (8):191-195. doi: 10.3969/j.issn.1003-6504.2015.08.035Liu J, Shang J. 2015. Design and construction of indoor small-scale smog chamber[J]. Environ. Sci. Technol., 38 (8):191-195, doi: 10.3969/j.issn.1003-6504.2015.08.035. [62] 刘宪云, 黄明强, 王振亚, 等. 2009.用于模拟SOA形成的烟雾腔的构造和表征[J].环境科学与技术, 32 (9):105-109. doi: 10.3969/j.issn.1003-6504.2009.09.024Liu X Y, Huang M Q, Wang Z Y, et al. 2009. Construction and characterization of a new smog chamber for simulating the formation of secondary organic aerosol[J]. Environ. Sci. Technol., 32 (9):105-109, doi:10.3969/j. issn.1003-6504.2009.09.024. [63] Liu S J, Jia Long, Xu Y F, et al. 2017. Photooxidation of cyclohexene in the presence of SO2:SOA yield and chemical composition[J]. Atmos Chem. Phys., 17 (21):13329-13343, doi: 10.5194/acp-17-13329-2017. [64] Liu T, Wang X, Deng W, et al. 2015a. Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber[J]. Atmos. Chem. Phys., 15 (15):9049-9062, doi:10. 5194/acp-15-9049-2015. [65] Liu T Y, Wang X M, Deng W, et al. 2015b. Role of ammonia in forming secondary aerosols from gasoline vehicle exhaust[J]. Sci. China Chem., 58 (9):1377-1384, doi: 10.1007/s11426-015-5414-x. [66] Liu T, Wang X, Hu Q, et al. 2016. Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO2[J]. Atmos. Chem. Phys., 16 (2):675-689, doi: 10.5194/acp-16-675-2016. [67] 陆思华, 白郁华, 陈运宽, 等. 2003.北京市机动车排放挥发性有机化合物的特征[J].中国环境科学, 23 (2):127-130. doi: 10.3321/j.issn:1000-6923.2003.02.004Lu S H, Bai Y H, Chen Y K, et al. 2003. The characteristics of volatile organic compounds (VOCs) emitted from motor vehicle in Beijing[J]. China Environ. Sci., 23 (2):127-130, doi: 10.3321/j.issn:1000-6923.2003.02.004. [68] Lu Z F, Hao J M, Takekawa H, et al. 2009. Effect of high concentrations of inorganic seed aerosols on secondary organic aerosol formation in the m-xylene/NOx photooxidation system[J]. Atmos. Environ., 43 (4):897-904, doi: 10.1016/j.atmosenv.2008.10.047. [69] 吕子峰, 郝吉明, 李俊华, 等. 2008.硫酸钙及硫酸铵气溶胶对二次有机气溶胶生成的影响[J].化学学报, 66 (4):419-423. doi: 10.3321/j.issn:0567-7351.2008.04.004Lü Z F, Hao J M, Li J H, et al. 2008. Effect of calcium sulfate and ammonium sulfate aerosol on secondary organic aerosol formation[J]. Acta Chim. Sin., 66 (4):419-423, doi: 10.3321/j.issn:0567-7351.2008.04.004. [70] Ma J Z, Zhu C Z, Lu J, et al. 2017. Photochemical reaction between triclosan and nitrous acid in the atmospheric aqueous environment[J]. Atmos. Environ., 157:38-48, doi: 10.1016/j.atmosenv.2017.03.011. [71] Martín-Reviejo M, Wirtz K. 2005. Is benzene a precursor for secondary organic aerosol?[J] Environ. Sci. Technol., 39 (4):1045-1054, doi: 10.1021/es049802a. [72] Meagher J F, Olszyna K J, Simonaitis R. 1990. Smog chamber study of H2O2 formation in ethane-NOx and propene-NOx mixtures[J]. Int. J. Chem. Kinet., 22 (7):719-740, doi: 10.1002/kin.550220708. [73] Nakayama T, Sato K, Tsuge M, et al. 2015. Complex refractive index of secondary organic aerosol generated from isoprene/NOx photooxidation in the presence and absence of SO2[J]. J. Geophys. Res. Atmos., 120 (15):7777-7787, doi: 10.1002/2015JD023522. [74] 聂劲松, 秦敏, 杨勇, 等. 2002a.一种用于研究光化学反应烟雾腔的结构和性能[J].原子与分子物理学报, 19 (2):186-190. doi: 10.3969/j.issn.1000-0364.2002.02.014Nie J S, Qin M, Yang Y, et al. 2002a. The structure and performance of a kind of photo chemical smog chamber[J]. Chinese J. Atomic Mol. Phys., 19 (2):186-190, doi: 10.3969/j.issn.1000-0364.2002.02.014. [75] 聂劲松, 秦敏, 杨勇, 等. 2002b.用烟雾箱研究甲苯与OH自由基光化学反应[J].原子与分子物理学报, 19 (3):304-306. doi: 10.3969/j.issn.1000-0364.2002.03.012Nie J S, Qin M, Yang Y, et al. 2002b. The photo chemical reaction study of toluene by smog chamber[J]. Chinese J. Atomic Mol. Phys., 19 (3):304-306, doi: 10.3969/j.issn.1000-0364.2002.03.012. [76] Pan G, Hu C J, Huang M Q, et al. 2012. A VUV photoionization mass spectrometric study on the OH-initiated photooxidation of isoprene with synchrotron radiation[J]. J. Environ. Sci., 24 (12):2075-2082, doi: 10.1016/S1001-0742(11)61051-6. [77] Peng C, Wang W G, Li K, et al. 2018. The optical properties of limonene secondary organic aerosols:The role of NO3, OH, and O3 in the oxidation processes[J]. J. Geophys. Res. Atmos., 123 (6):3292-3303, doi: 10.1002/2017JD028090. [78] Peng J F, Hu M, Du Z F, et al. 2017. Gasoline aromatics:A critical determinant of urban secondary organic aerosol formation[J]. Atmos. Chem. Phys., 17 (17):10743-10752, doi: 10.5194/acp-17-10743-2017. [79] Pope Ⅲ C A, Dockery D W. 2006. Health effects of fine particulate air pollution:Lines that connect[J]. J. Air Waste Manage. Assoc., 56 (6):709-742, doi: 10.1080/10473289.2006.10464485. [80] 祁骞, 周学华, 王文兴. 2014.二次有机气溶胶的水相形成研究[J].化学进展, 26 (2-3):458-466. doi: 10.7536/PC130827Qi Q, Zhou X H, Wang W X. 2014. Studies on formation of aqueous secondary organic aerosols[J]. Prog. Chem., 26 (2-3):458-466, doi: 10.7536/PC130827. [81] 任凯锋, 李建军, 王文丽, 等. 2005.光化学烟雾模拟实验系统[J].环境科学学报, 25 (11):1431-1435. doi: 10.3321/j.issn:0253-2468.2005.11.001Ren K F, Li J J, Wang W L, et al. 2005. Investigation on experiment system for modeling of photochemical smog[J]. Acta Sci. Circumst., 25 (11):1431-1435, doi: 10.3321/j.issn:0253-2468.2005.11.001. [82] Sakamoto Y, Inomata S, Hirokawa J. 2013. Oligomerization reaction of the Criegee intermediate leads to secondary organic aerosol formation in ethylene ozonolysis[J]. J. Phys. Chem. A, 117 (48):12912-12921, doi: 10.1021/jp408672m. [83] Svensson R, Ljungström E, Lindqvist O. 1987. Kinetics of the reaction between nitrogen dioxide and water vapour[J]. Atmos. Environ., 21 (7):1529-1539, doi: 10.1016/0004-6981(87)90315-5. [84] 申晓莉, 陈忠明, 赵岳, 等. 2012.乙二醛在沙尘颗粒物表面吸附与转化的红外光谱研究[J].光谱学与光谱分析, 32 (11):2946-2949. doi: 10.3964/j.issn.1000-0593(2012)11-2946-04Shen X L, Chen Z M, Zhao Y, et al. 2012. In-situ FTIR study on the absorption and transformation of glyoxal on the surface of dust particles[J]. Spectrosc. Sepct. Anal., 32 (11):2946-2949, doi:10.3964/j. issn.1000-0593(2012)11-2946-04. [85] Shen X L, Zhao Y, Chen Z M, et al. 2013. Heterogeneous reactions of volatile organic compounds in the atmosphere[J]. Atmos. Environ., 68:297-314, doi: 10.1016/j.atmosenv.2012.11.027. [86] Shen X L, Wu H H, Zhao Y, et al. 2016. Heterogeneous reactions of glyoxal on mineral particles:A new avenue for oligomers and organosulfate formation[J]. Atmos. Environ., 131:133-140, doi:10.1016/j.atmosenv. 2016.01.048. [87] Shi Y Z, Xu Y F, Jia L. 2011. Arrhenius parameters for the gas-phase reactions of O3 with two butenes and two methyl-substituted butenes over the temperature range of 295-351 K[J]. Int. J. Chem. Kinet., 43 (5):238-246, doi: 10.1002/kin.20553. [88] Spracklen D V, Jimenez J L, Carslaw K S, et al. 2011. Aerosol mass spectrometer constraint on the global secondary organic aerosol budget[J]. Atmos. Chem. Phys., 11 (23):12109-12136, doi: 10.5194/acp-11-12109-2011. [89] Suda S R, Petters M D, Yeh G K, et al. 2014. Influence of functional groups on organic aerosol cloud condensation nucleus activity[J]. Environ. Sci. Technol., 48 (17):10182-10190, doi: 10.1021/es502147y. [90] Surratt J D, Chan A W H, Eddingsaas N C, et al. 2010. Reactive intermediates revealed in secondary organic aerosol formation from isoprene[J]. Proc. Natl. Acad. Sci., 107 (15):6640-6645, doi: 10.1073/pnas.0911114107. [91] 唐孝炎, 毕木天, 李金龙, 等. 1982.光化学烟雾箱的试制和性能实验[J].环境化学, 1 (5):344-351. https://core.ac.uk/display/155585939Tang X Y, Bi M T, Li J L, et al. 1982. Trial manufacture and capability experiment of a photochemical smog chamber[J]. Environ. Chem., 1 (5):344-351. https://core.ac.uk/display/155585939 [92] Underwood G M, Li P, Usher C R, et al. 2000. Determining accurate kinetic parameters of potentially important heterogeneous atmospheric reactions on solid particle surfaces with a Knudsen cell reactor[J]. J. Phys. Chem. A, 104 (4):819-829, doi: 10.1021/jp9930292. [93] Volkamer R, Ziemann P J, Molina M J. 2009. Secondary organic aerosol formation from acetylene (C2H2):Seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase[J]. Atmos. Chem. Phys., 9 (6):1907-1928, doi: 10.5194/acp-9-1907-2009. [94] Wang H L, Huang D, Zhang X, et al. 2012. Understanding the aqueous phase ozonolysis of isoprene:Distinct product distribution and mechanism from the gas phase reaction[J]. Atmos. Chem. Phys., 12 (15):7187-7198, doi: 10.5194/acp-12-7187-2012. [95] Wang M Y, Yao L, Zheng J, et al. 2016a. Reactions of atmospheric particulate stabilized Criegee intermediates lead to high-molecular-weight aerosol components[J]. Environ. Sci. Technol., 50 (11):5702-5710, doi: 10.1021/acs.est.6b02114. [96] Wang W G, Li K, Zhou L, et al. 2015. Evaluation and application of dual-reactor chamber for studying atmospheric oxidation processes and mechanisms[J]. Acta Phys. -Chim. Sin., 31 (7):1251-1259, doi: 10.3866/PKU.WHXB201504161. [97] 王文兴, 束勇辉, 李金花. 1997.煤烟粒子中PAHs光化学降解的动力学[J].中国环境科学, 17 (2):97-102. https://www.wenkuxiazai.com/word/0694b2f5daef5ef7ba0d3ccb-1.docWang W X, Shu Y H, Li J H. 1997. Photochemical degradation of PAHs on smoke particles in atmosphere[J]. China Environ. Sci., 17 (2):97-102. https://www.wenkuxiazai.com/word/0694b2f5daef5ef7ba0d3ccb-1.doc [98] 王文兴, 谢英, 林子瑜, 等. 1995.甲烷光氧化反应速率常数及其在大气中的寿命[J].中国环境科学, 15 (4):258-261. http://www.cqvip.com/qk/91370X/199504Wang W X, Xie Y, Lin Z Y, et al. 1995. Study on reaction rate constants of CH4 and its life-time[J]. China Environ. Sci., 15 (4):258-261. http://www.cqvip.com/qk/91370X/199504 [99] Wang X M, Liu T Y, Bernard F, et al. 2014. Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation[J]. Atmos. Meas. Techn., 7 (1):301-313, doi: 10.5194/amt-7-301-2014. [100] Wang Y J, Luo H, Jia L, et al. 2016b. Effect of particle water on ozone and secondary organic aerosol formation from benzene-NO2-NaCl irradiations[J]. Atmos. Environ., 140:386-394, doi:10.1016/j.atmosenv. 2016.06.022. [101] 王宗爽, 徐舒, 王晟, 等. 2016.国外环境烟雾箱及其应用研究[J].环境工程技术学报, 6 (4):363-370. doi: 10.3969/j.issn.1674-991X.2016.04.054Wang Z S, Xu S, Wang S, et al. 2016. Foreign Environmental smog chambers and current application researches[J]. J. Environ. Eng. Technol., 6 (4):363-370, doi: 10.3969/j.issn.1674-991X.2016.04.054. [102] Went F W. 1960. Blue hazes in the atmosphere[J]. Nature, 187 (4738):641-643, doi: 10.1038/187641a0. [103] 吴海, 牟玉静, 张晓山, 等. 2001a.相对速率法测OH自由基与几种低碳醇的反应速率常数[J].环境科学学报, 21 (5):525-529. doi: 10.3321/j.issn:0253-2468.2001.05.003Wu H, Mu Y J, Zhang X S, et al. 2001a. Rate constants for reactions of hydroxyl radicals with a series of alcohols by relative rate method[J]. Acta Sci. Circumst., 21 (5):525-529, doi: 10.3321/j.issn:0253-2468.2001.05.003. [104] 吴海, 牟玉静, 张晓山, 等. 2001b.相对速率法测氯原子与一系列低碳醇的反应速率常数[J].环境科学学报, 21 (6):649-653. doi: 10.3321/j.issn:0253-2468.2001.06.001Wu H, Mu Y J, Zhang X S, et al. 2001b. Rate constants for reactions of chlorine atoms with a series of alcohols by relative rate method[J]. Acta Sci. Circumst., 21 (6):649-653, doi: 10.3321/j.issn:0253-2468.2001.06.001. [105] 武山, 郝吉明, 吕子峰, 等. 2007.硫酸铵气溶胶对甲苯-NOx-空气体系光化学反应的影响[J].环境科学, 28 (6):1183-1187. doi: 10.3321/j.issn:0250-3301.2007.06.003Wu S, Hao J M, Lü Z F, et al. 2007. Effect of ammonium sulfate aerosol on the photochemical reaction of toluene/NOx/air mixture[J]. Environ. Sci., 28 (6):1183-1187, doi: 10.3321/j.issn:0250-3301.2007.06.003. [106] Wu S, Lü Z F, Hao J M, et al. 2007. Construction and characterization of an atmospheric simulation smog chamber[J]. Adv. Atmos. Sci., 24 (2):250-258, doi: 10.1007/s00376-007-0250-3. [107] 谢绍东, 田晓雪. 2010.挥发性和半挥发性有机物向二次有机气溶胶转化的机制[J].化学进展, 22 (4):727-733. http://manu56.magtech.com.cn/progchem/CN/abstract/abstract11807.shtmlXie S D, Tian X X. 2010. Formation mechanism of secondary organic aerosols from the reaction of volatile and semi-volatile compounds[J]. Prog. Chem., 22 (4):727-733. http://manu56.magtech.com.cn/progchem/CN/abstract/abstract11807.shtml [108] 徐冰烨, 朱彤, 唐孝炎, 等. 2006.甲醛在α-Al2O3颗粒物表面的非均相反应研究[J].高等学校化学学报, 27 (10):1912-1917. doi: 10.3321/j.issn:0251-0790.2006.10.022Xu B Y, Zhu T, Tang X Y, et al. 2006. Heterogeneous reaction of formaldehyde on surface of α-Al2O3 particles[J]. Chem. J. Chinese Univ., 27 (10):1912-1917, doi: 10.3321/j.issn:0251-0790.2006.10.022. [109] 徐冰烨, 朱彤, 唐孝炎, 等. 2010.甲醛在TiO2颗粒物表面的非均相反应[J].中国科学:化学, 40 (12):1757-1764.Xu B Y, Zhu T, Tang X Y, et al. 2010. Heterogeneous reaction of formaldehyde on the surface of titanium dioxide particles[J]. Sci. Sin. Chim., 40 (12):1757-1764. [110] Xu B Y, Shang J, Zhu T, et al. 2011. Heterogeneous reaction of formaldehyde on the surface of γ-Al2O3 particles[J]. Atmos. Environ., 45 (21):3569-3575, doi: 10.1016/j.atmosenv.2011.03.067. [111] Xu Y F, Jia L, Ge M F, et al. 2006. A kinetic study of the reaction of ozone with ethylene in a smog chamber under atmospheric conditions[J]. Chin. Sci. Bull., 51 (23):2839-2843, doi: 10.1007/s11434-006-2180-3. [112] 杨宗苓, 石鑫, 乔星, 等. 2016.用于汽车尾气光氧化的烟雾箱研究及其表征实验[J].环境科学与技术, 39 (12):7-11. doi: 10.3969/j.issn.1003-6504.2016.12.002Yang Z L, Shi X, Qiao X, et al. 2016. Characterization experiments and studies on smog chamber of automobile exhaust photo-oxidation[J]. Environ. Sci. Technol., 39 (12):7-11, doi: 10.3969/j.issn.1003-6504.2016.12.002. [113] Yao L, Ma Y, Wang L, et al. 2014. Role of stabilized Criegee intermediate in secondary organic aerosol formation from the ozonolysis of α-cedrene[J]. Atmos. Environ., 94:448-457, doi: 10.1016/j.atmosenv.2014.05.063. [114] 叶兴南, 陈健民. 2009.大气二次细颗粒物形成机理的前沿研究[J].化学进展, 21 (2-3):288-296. https://www.researchgate.net/profile/Xingnan_Ye/publication/231222474_Advances_in_the_Mechanism_of_Secondary_Fine_Particulate_Matters_Formation/links/0fcfd50664e149c69b000000.pdfYe X N, Chen J M. 2009. Advances in the mechanism of secondary fine particulate matters formation[J]. Prog. Chem., 21 (2-3):288-296. https://www.researchgate.net/profile/Xingnan_Ye/publication/231222474_Advances_in_the_Mechanism_of_Secondary_Fine_Particulate_Matters_Formation/links/0fcfd50664e149c69b000000.pdf [115] Yuan C, Ma Y, Diao Y W, et al. 2017. CCN activity of secondary aerosols from terpene ozonolysis under atmospheric relevant conditions[J]. J. Geophys. Res. Atmos., 122 (8):4654-4669, doi: 10.1002/2016JD026039. [116] Zhang H, Surratt J D, Lin Y H, et al. 2011a. Effect of relative humidity on SOA formation from isoprene/NO photooxidation:Enhancement of 2-methylglyceric acid and its corresponding oligoesters under dry conditions[J]. Atmos. Chem. Phys., 11 (13):6411-6424, doi: 10.5194/acp-11-6411-2011. [117] Zhang H F, Hu D W, Chen J M, et al. 2011b. Particle size distribution and polycyclic aromatic hydrocarbons emissions from agricultural crop residue burning[J]. Environ. Sci. Technol., 45 (13):5477-5482, doi: 10.1021/es1037904. [118] 张泽锋, 朱彤, 尚静, 等. 2011. NO2在高岭石表面的非均相反应研究[J].环境科学学报, 31 (10):2073-2079.Zhang Z F, Zhu T, Shang J, et al. 2011. Heterogeneous reaction of NO2 on the surface of kaolinite particles[J]. Acta Sci. Circumst., 31 (10):2073-2079. [119] Zhao Y, Huang D, Huang L B, et al. 2014. Hydrogen peroxide enhances the oxidation of oxygenated volatile organic compounds on mineral dust particles:A case study of methacrolein[J]. Environ. Sci. Technol., 48 (18):10614-10623, doi: 10.1021/es5023416. [120] 赵喆, 郝吉明, 李俊华, 等. 2008.大气模拟烟雾箱中HONO的表征[J].环境科学学报, 28 (12):2465-2469. doi: 10.3321/j.issn:0253-2468.2008.12.010Zhao Z, Hao J M, Li J H, et al. 2008. Characterization of the HONO source in an atmosphere simulation chamber[J]. Acta Sci. Circumst., 28 (12):2465-2469, doi: 10.3321/j.issn:0253-2468.2008.12.010. [121] Zhao Z, Hao J M, Li J H, et al. 2008a. Second organic aerosol formation by irradiation of α-pinene-NOx-H2O in an indoor smog chamber for atmospheric chemistry and physics[J]. Chinese Sci. Bull., 53 (21):3294-3300, doi: 10.1007/s11434-008-0478-z. [122] Zhao Z, Hao J M, Li J H, et al. 2008b. Second organic aerosol formation from the ozonolysis of α-pinene in the presence of dry submicron ammonium sulfate aerosol[J]. J. Environ. Sci., 20 (10):1183-1188, doi: 10.1016/S1001-0742(08)62207-X. -