高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CloudSat/CALIPSO卫星资料的青藏高原云辐射及降水的研究进展

刘屹岷 燕亚菲 吕建华 刘肖林

刘屹岷, 燕亚菲, 吕建华, 刘肖林. 基于CloudSat/CALIPSO卫星资料的青藏高原云辐射及降水的研究进展[J]. 大气科学, 2018, 42(4): 847-858. doi: 10.3878/j.issn.1006-9895.1805.17281
引用本文: 刘屹岷, 燕亚菲, 吕建华, 刘肖林. 基于CloudSat/CALIPSO卫星资料的青藏高原云辐射及降水的研究进展[J]. 大气科学, 2018, 42(4): 847-858. doi: 10.3878/j.issn.1006-9895.1805.17281
Yimin LIU, Yafei YAN, Jianhua LÜ, Xiaolin LIU. Review of Current Investigations of Cloud, Radiation and Rainfall over the Tibetan Plateau with the CloudSat/CALIPSO Dataset[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4): 847-858. doi: 10.3878/j.issn.1006-9895.1805.17281
Citation: Yimin LIU, Yafei YAN, Jianhua LÜ, Xiaolin LIU. Review of Current Investigations of Cloud, Radiation and Rainfall over the Tibetan Plateau with the CloudSat/CALIPSO Dataset[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4): 847-858. doi: 10.3878/j.issn.1006-9895.1805.17281

基于CloudSat/CALIPSO卫星资料的青藏高原云辐射及降水的研究进展

doi: 10.3878/j.issn.1006-9895.1805.17281
基金项目: 

国家自然科学基金项目 91637312

国家自然科学基金项目 91437219

中国科学院前沿科学重点研究项目 QYZDY-SSW-DQC018

NSFC-广东联合基金(第二期)超级计算科学应用研究专项-国家超级计算广州中心项目 U1501501

详细信息
    作者简介:

    刘屹岷, 女, 1965年出生, 研究员, 主要从事副热带天气气候动力学、青藏高原天气气候动力学的研究。E-mail:lym@lasg.iap.ac.cn

  • 中图分类号: P461

Review of Current Investigations of Cloud, Radiation and Rainfall over the Tibetan Plateau with the CloudSat/CALIPSO Dataset

Funds: 

National Natural Science Foundation of China 91637312

National Natural Science Foundation of China 91437219

the Key Research Program of Frontier Sciences, Chinese Academy of Sciences QYZDY-SSW-DQC018

the Special Program for Applied Research on Super Computation of the NSFC–Guangdong Joint Fund (second phase) U1501501

  • 摘要: 青藏高原上空的云及其相关联的降水和辐射影响了高原上空非绝热加热的空间结构。2006年卫星发射升空的CloudSat/CALIPSO卫星提供了定量的、完整的云垂直结构信息。本文回顾了国内外基于该资料进行的青藏高原上云宏观和微观结构特征,云与降水相关性,云辐射效应以及模式中的云-辐射问题方面的研究。指出抬升的青藏高原上水汽较少,限制了高原上云的垂直高度,对云层厚度和层数有显著压缩作用。在云量及其季节变化上,单层云的相对贡献大于亚洲季风区的其他区域;夏季对流云比较浅薄,积云发生频率最高,云内滴谱较宽;降水云以积云和卷云为主,云对总降水的贡献随着云层数增多而减小,降水增强时高层冰粒子的密集度趋于紧密;夏季青藏高原地区云的净辐射效应在8 km高度存在一个厚度仅1 km左右但较强的辐射冷却层,而在其下(4~7 km高度之间)为强的辐射加热层。最后展望了未来需要进一步开展的研究。
  • 图  1  2006年6月15日至2011年4月17日期间(a)青藏高原(TP)、(b)高原以南陆地(NIST)和(c)热带海洋(TO)地区候平均云量垂直分布的季节变化。修改自Yan et al.(2016)

    Figure  1.  Seasonal variation of Pentad-averaged cloud amounts over the (a) TP (Tibetan Plateau), (b) NIST (land to the south of the TP and north Indian) and (c) TO (Tropical Ocean). Data are from 15 June 2006 to 17 April 2011. Adapted from Yan et al. (2016)

    图  2  (a-c)2007~2011年1月平均和(d–f)2006~2010年7月平均ERA-Interim数据资料中环流和水汽通量散度以及95°E垂直剖面云量分布:(a、d)10米风(箭头,单位:m s-1)和地面到100 hPa垂直积分水汽通量散度场(填色,单位:10-4 kg s-1 m-2),其中粉色线代表三个区域的范围;(b、e)95°E垂直剖面水汽通量散度场(填色,单位:10-5 kg s-1 m-2)、经向风速(单位:m s-1)与垂直速度(单位:-Pa s-1)的合成矢量(箭头);(c、f)95°E垂直剖面云量(填色);(b、c、e、f)中的粉色线均代表NIST地区所在纬度范围,灰色阴影均代表地形。修改自Yan et al.(2016)

    Figure  2.  Distributions of atmospheric circulation, moisture flux divergence and vertical profile of cloud amount along 95°E in (a-c) January from 2007 to 2011 and (d-f) July from 2006 to 2010 by ERA-Interim data: (a, d) 10 m wind (arrows, units: m s-1) and divergence of vertically integrated moisture flux (shadings, units: 10-4 kg s-1 m-2) integrated from surface to 100 hPa, and pink boxes represent domains of three regions; (b, e) vertical profiles of the divergence of moisture transport (shadings, units: 10-5 kg s-1 m-2) and meridional-vertical velocity vectors (arrows, units: -Pa s-1) along 95°E; (c, f) vertical profiles of cloud amount along 95°E. The vertical pink lines and gray shadings in (b, e) and (c, f) represent zonal boundaries of the NIST and topography, respectively. Adopted from Yan et al. (2016)

    图  3  2006年6月15日至2010年12月31日数据时段内(a)青藏高原、(b)NIST和(c)TO地区单层云和多层云(1到5层)对平均降水强度贡献量的逐月分布。引自Yan et al.(2016)

    Figure  3.  Monthly-mean contributions of precipitation intensity corresponding to clouds of 1–5 layers to mean precipitation intensity over the (a) TP, (b) NIST, and (c) TO from the data period: 15 June 2006 to 31 December 2010. Quoted from Yan et al. (2016)

    图  4  2007年1月1日至2010年12月31日数据时段内夏季无雨时TP(左列)、NIST(中间列)和TO(右列)地区标准化的不同高度处(a-c)云固态水含量、(d-f)云固态粒子数浓度和(g-i)云固态粒子等效半径和概率密度函数分布(PDF)。引自Yan et al.(2018)

    Figure  4.  The normalized frequency by altitude diagrams (color-shaded) and probability distribution functions (PDF) of (a-c) cloud ice water content, , (d-f) number concentration, and (g-i) effective radius over the TP (left column), NIST (middle column) and TO (right column) under no rain condition in the summer from data period: 1 January 2007 to 31 December 2010. Quoted from Yan et al. (2018)

    图  5  图 4,但为夏季大雨时(25–50 mm d-1)。引自Yan et al.(2018)

    Figure  5.  Same as Fig. 4, but for heavy rain (25–50 mm d-1) condition. Quoted from Yan et al. (2018)

    图  6  2006年7月6日至2011年4月17日数据时段内TP、NIST和TO大气层顶部、大气层底部和整层大气的云辐射效应(短波、长波、短波+长波)的逐月变化;正值代表加热,负值代表冷却,灰色虚线代表 0。引自Yan et al.(2016)

    Figure  6.  Seasonal cycles (units: W m-2) of shortwave (SW), longwave (LW) and total (SW+LW) CRE (Cloud radiation effect) at the top of the atmosphere (TOACRE), in the atmosphere (TOACRE-BOACRE), and at the bottom of the atmosphere (BOACRE) over three regions. Positive (negative) values represent heating (cooling) rates from data period: 6 July 2006 to 17 April 2011. Quoted from Yan et al. (2016).

    图  7  2006年7月6日至2011年4月17日数据时段内整层大气的云辐射效应(短波、长波、短波+长波)的季节分布;正值代表加热,负值代表冷却。引自Yan et al.(2016)

    Figure  7.  Spatial patterns (units: W m-2) of atmospheric cloud shortwave (SW), longwave (LW), total (SW+LW) CRE in different seasons from data period: 6 July 2006 to 17 April 2011. Quoted from Yan et al. (2016)

    图  8  2006年7月6日至2011年4月17日数据时段内TP、NIST和TO云辐射中的(a、b、c)短波、(d、e、f)长波、(g、h、i)短波+长波效应的逐候分布;正值代表加热,负值代表冷却。引自Yan et al.(2016)

    Figure  8.  Seasonal cycles (units: K d-1) of vertical profiles of shortwave (SW, upper panel), longwave (LW, middle panel) and total (SW+LW, lower panel) CRE per unit mass over the TP (left), NIST (middle) and TO (right). Positive (negative) values represent heating (cooling) rates from data period: 6 July 2006 to 17 April 2011. Quoted from Yan et al. (2016)

  • [1] Adler R F, Huffman G J, Chang A, et al. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present)[J]. Journal of Hydrometeorology, 4 (6):1147-1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO; 2.
    [2] 陈玲, 周筠珺. 2015.青藏高原和四川盆地夏季降水云物理特性差异[J].高原气象, 34 (3):621-632. doi: 10.7522/j.issn.1000-0534.2014.00036

    Chen L, Zhou Y J. 2015. Different physical properties of summer precipitation clouds over Qinghai-Xizang Plateau and Sichuan Basin[J]. Plateau Meteorology (in Chinese), 34 (3):621-632, doi: 10.7522/j.issn.1000-0534.2014.00036.
    [3] Duan A M, Wu G X. 2005. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J]. Climate Dyn., 24 (7-8):793-807, doi: 10.1007/s00382-004-0488-8.
    [4] Fu R, Wright J S, Jiang J H, et al. 2006. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau[J]. Proc. Natl. Acad. Sci. USA, 103 (15):5664-5669, doi: 10.1073/pnas.0601584103.
    [5] Fu Y F, Liu G S, Wu G X, et al. 2006. Tower mast of precipitation over the central Tibetan Plateau summer[J]. Geophys. Res. Lett., 33 (5):L05802, doi: 10.1029/2005GL024713.
    [6] 高洋. 2014. 我国沿青藏高原同纬度带降水云系的垂直结构及其微物理特征的分析模拟研究[D]. 中国气象科学研究院博士学位论文.

    Gao Yang. 2014. Analyses and numerical simulations on the vertical structure and microphysics feature of precipitating cloud along the latitude zone of Tibetan Plateau over China[D]. Ph. D. dissertation (in Chinese), Chinese Academy of Meteorology Sciences.
    [7] Hillman B R, Marchand R T, Ackerman T P, et al. 2017. Assessing the accuracy of MISR and MISR-simulated cloud top heights using CloudSat-and CALIPSO-retrieved hydrometeor profiles[J]. J. Geophys. Res., 122 (5):2878-2897, doi: 10.1002/2016JD025510.
    [8] Houze R A Jr, Wilton D C, Smull B F. 2007. Monsoon convection in the Himalayan region as seen by the TRMM precipitation radar[J]. Quart. J. Roy. Meteor. Soc., 133 (627):1389-1411, doi: 10.1002/gq.106.
    [9] Hughes N A. 1984. Global cloud climatologies:A historical review[J]. J. Climate Appl. Meteor., 23 (5):724-751, doi:10.1175/1520-0450(1984) 023<0724:GCCAHR>2.0.CO; 2.
    [10] Jakob C, Klein S A. 1999. The role of vertically varying cloud fraction in the parametrization of microphysical processes in the ECMWF model[J]. Quart. J. Roy. Meteor. Soc., 125 (555):941-965, doi:10.1002/qj. 49712555510.
    [11] Jiang X N, Waliser D E, Li J L, et al. 2011. Vertical cloud structures of the boreal summer intraseasonal variability based on CloudSat observations and ERA-interim reanalysis[J]. Climate Dyn., 36 (11-12):2219-2232, doi: 10.1007/s00382-010-0853-8.
    [12] Johnson B T, Boukabara S A. 2016. Development of the community active sensor module (CASM):Forward simulation[J]. Atmospheric Measurement Techniques Discussions, doi: 10.5194/amt-2016-154.
    [13] 李浩然, 孙学金, 王旻燕, 等. 2015.中国及周边地区白天各类云及其水凝物变化特征研究[J].高原气象, 34 (6):1625-1635. doi: 10.7522/j.issn.1000-0534.2014.00129

    Li Haoran, Sun Xuejin, Wang Minyan, et al. 2015. Research on different types of cloud and variation characteristics of hydrometeors in cloud over China and its neighborhood in daytime[J]. Plateau Meteorology (in Chinese), 34 (6):1625-1635, doi: 10.7522/j.issn.1000-0534.2014.00129.
    [14] Li Y Y, Zhang M H. 2016. Cumulus over the Tibetan Plateau in the summer based on CloudSat-CALIPSO data[J]. J. Climate, 29 (3):1219-1230, doi: 10.1175/JCLI-D-15-0492.1.
    [15] Li Y Y, Zhang M H. 2017. The role of shallow convection over the Tibetan Plateau[J]. J. Climate, 30 (15):5791-5803, doi: 10.1175/JCLI-D-16-0599.1.
    [16] Li Z Q, Barker H W, Moreau L. 1995. The variable effect of clouds on atmospheric absorption of solar radiation[J]. Nature, 376 (6540):486-490, doi: 10.1038/376486a0.
    [17] Liou K N. 2004. 大气辐射导论[M]. 郭彩丽, 周诗健, 译. 2版. 北京: 气象出版社, 614
    [18] pp. Liou K N. 2004. An Introduction to Atmospheric Radiation (in Chinese)[M]. Guo C L, Zhou S J, trans. 2nd ed. Beijing, China Meteorological Press, 614pp.
    [19] 刘建军, 陈葆德. 2017.基于CloudSat卫星资料的青藏高原云系发生频率及其结构[J].高原气象, 36 (3):632-642. doi: 10.7522/j.issn.1000-0534.2017.00028

    Liu Jianjun, Chen Baode. 2017. Cloud occurrence frequency and structure over the Qinghai-Tibetan Plateau from CloudSat observation[J]. Plateau Meteorology (in Chinese), 36 (3):632-642, doi: 10.7522/j.issn.1000-0534.2017.00028.
    [20] Liu Y M, Hoskins B, Blackburn M. 2007. Impact of Tibetan orography and heating on the summer flow over Asia[J]. J. Meteor. Soc. Japan, 85B:1-19. doi: 10.2151/jmsj.85B.1
    [21] Liu Y M, Wang Z Q, Zhuo H F, et al. 2017. Two types of summertime heating over Asian large-scale orography and excitation of potential-vorticity forcing Ⅱ. Sensible heating Over Tibetan-Iranian Plateau[J]. Science China Earth Sciences, 60(4):733-744, doi: 10.1007/s11430-016-9016-3.
    [22] Liu Y M, Wu G X, Hong J L, et al. 2012. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing:Ⅱ. Change[J]. Climate Dyn., 39(5):1183-1195, doi: 10.1007/s00382-012-1335-y.
    [23] Luo Y L, Zhang R H, Qian W M, et al. 2011. Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data[J]. J. Climate, 24 (8):2164-2177, doi: 10.1175/2010JCLI4032.1.
    [24] Naud C M, Chen Y H. 2010. Assessment of ISCCP cloudiness over the Tibetan Plateau using CloudSat-CALIPSO[J]. J. Geophys. Res., 115 (D10):D10203, doi: 10.1029/2009JD013053.
    [25] Park M, Randel W J, Gettelman A, et al. 2007. Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers[J]. J. Geophys. Res., 112 (D16):D16309, doi: 10.1029/2006JD008294.
    [26] 邱金桓, 吕达仁, 陈洪滨, 等. 2003.现代大气物理学研究进展[J].大气科学, 27 (4):628-652. http://www.dqkxqk.ac.cn/dqkx/dqkx/ch/reader/view_abstract.aspx?flag=1&file_no=20030414&journal_id=dqkx

    Qiu Jinhuan, Lü Daren, Chen Hongbin, et al. 2003. Modern research progresses in atmospheric physics[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27 (4):628-652. http://www.dqkxqk.ac.cn/dqkx/dqkx/ch/reader/view_abstract.aspx?flag=1&file_no=20030414&journal_id=dqkx
    [27] Ramaswamy V, Ramanathan V. 1989. Solar absorption by cirrus clouds and the maintenance of the tropical upper troposphere thermal structure[J]. J. Atmos. Sci., 46 (14):2293-2310, doi:10.1175/1520-0469(1989)046<2293:SABCCA>2.0.CO; 2.
    [28] Ramanathan V, Cess R D, Harrison E F, et al. 1989. Cloud-radiative forcing and climate:Results from the earth radiation budget experiment[J]. Science, 243 (4887):57-63, doi: 10.1126/science.243.4887.57.
    [29] Randall D, Khairoutdinov M, Arakawa A, et al. 2003. Breaking the cloud parameterization deadlock[J]. Bull. Amer. Meteor. Soc., 84 (11):1547-1564, doi: 10.1175/BAMS-84-11-1547.
    [30] Romatschke U, Medina S, and Houze R A Jr. 2010. Regional, seasonal, and diurnal variations of extreme convection in the South Asian region[J]. J. Climate, 23 (2):419-439, doi: 10.1175/2009JCLI3140.1.
    [31] Rossow W B, Schiffer R A. 1991. ISCCP cloud data products[J]. Bull. Amer. Meteor. Soc., 72 (1):2-20, doi:10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO; 2.
    [32] Rossow W B, Garder L C, Lacis A A. 1989. Global, seasonal cloud variations from satellite radiance measurements. Part Ⅰ:Sensitivity of Analysis[J]. J. Climate, 2 (5):419-458, doi:10.1175/1520-0442(1989) 002<0419:GSCVFS>2.0.CO; 2.
    [33] Rüthrich F, Thies B, Reudenbach C, et al. 2013. Cloud detection and analysis on the Tibetan Plateau using Meteosat and CloudSat[J]. J. Geophys. Res., 118 (17):10082-10099, doi: 10.1002/jgrd.50790.
    [34] Stephens G L. 2005. Cloud feedbacks in the climate system:A critical review[J]. J. Climate, 18 (2):237-273, doi: 10.1175/JCLI-3243.1.
    [35] Stephens G L, Vane D G, Boain R J, et al. 2002. The Cloudsat mission and the A-Train[J]. Bull. Amer. Meteor. Soc., 83 (12):1771-1790, doi: 10.1175/BAMS-83-12-1771.
    [36] 汪会, 罗亚丽, 张人禾. 2011.用CloudSat/CALIPSO资料分析亚洲季风区和青藏高原地区云的季节变化特征[J].大气科学, 35 (6):1117-1131. doi: 10.3878/j.issn.1006-9895.2011.06.11

    Wang Hui, Luo Yali, Zhang Renhe. 2011. Analyzing seasonal variation of clouds over the Asian monsoon regions and the Tibetan Plateau Region using CloudSat/CALIPSO data[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35 (6):1117-1131, doi:10.3878/j.issn. 1006-9895.2011.06.11.
    [37] 汪宏七, 赵高祥. 1994.云和辐射(Ⅰ)云气侯学和云的辐射作用[J].大气科学, 18 (S1):910-932. http://www.dqkxqk.ac.cn/dqkx/dqkx/ch/reader/view_abstract.aspx?flag=1&file_no=1994z115&journal_id=dqkx

    Wang Hongqi, Zhao Gaoxiang. 1994. Cloud and radiation Ⅰ:Cloud climatology and radiative effects of clouds[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 18 (S1):910-932. http://www.dqkxqk.ac.cn/dqkx/dqkx/ch/reader/view_abstract.aspx?flag=1&file_no=1994z115&journal_id=dqkx
    [38] Wang J H, Rossow W B. 1998. Effects of cloud vertical structure on atmospheric circulation in the GISS GCM[J]. J. Climate, 11 (11):3010-3029, doi:10.1175/1520-0442(1998)011<3010:EOCVSO>2.0.CO; 2.
    [39] 王胜杰, 何文英, 陈洪滨, 等. 2010.利用CloudSat资料分析青藏高原、高原南坡及南亚季风区云高度的统计特征量[J].高原气象, 29 (1):1-9. http://mall.cnki.net/magazine/article/GYQX201001001.htm
    [40] Wang Shengjie, He Wenying, Chen Hongbin, et al. Statistics of cloud height over the Tibetan Plateau and its surrounding region derived from the CloudSat data[J]. Plateau Meteorology (in Chinese), 29 (1):1-9.
    [41] 王帅辉, 韩志刚, 姚志刚, 等. 2011.基于CloudSat资料的中国及周边地区云垂直结构统计分析[J].高原气象, 30 (1):38-52. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201101006.htm

    Wang Shuaihui, Han Zhigang, Yao Zhigang, et al. 2011. Analysis on cloud vertical structure over China and its neighborhood based on CloudSat data[J]. Plateau Meteorology (in Chinese), 30 (1):38-52. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201101006.htm
    [42] Wang T, Fetzer E J, Wong S, et al. 2016. Validation of MODIS cloud mask and multilayer flag using CloudSat-CALIPSO cloud profiles and a cross-reference of their cloud classifications[J]. J. Geophys. Res., 121 (19):11620-11635, doi: 10.1002/2016JD025239.
    [43] Webster P J, Stephens G L. 1984. Cloud-radiation interaction and the climate problem[M]//Houghton J L. The Global Climate. Cambridge, England: Cambridge University Press, 63-78.
    [44] Winker D M, Hunt W H, McGill M J. 2007. Initial performance assessment of CALIOP[J]. Geophys. Res. Lett., 34 (19):L19803, doi: 10.1029/2007GL030135.
    [45] Wu G X, Zhang Y S. 1998. Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea[J]. Monthly weather review, 126 (4):913-927, doi:10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO; 2.
    [46] Wu G X, Liu Y M. 2003. Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation[J]. Geophys. Res. Lett., 30 (5):1201, doi: 10.1029/2002GL016209.
    [47] 吴国雄, 李伟平, 郭华, 等. 1997. 青藏高原感热气泵和亚洲夏季风[M]//叶笃正. 赵九章纪念文集. 北京: 科学出版社, 116-120.
    [48] Wu Guoxiong, Li Weiping, Guo Hua, et al. 1998. Sensible heating-driving air pump of the Tibetan Plateau and the Asian summer monsoon[M]//Ye Duzheng. Memorial Volume of Prof. Zhao Jiuzhang (in Chinese). Beijing: Science Press, 116-126.
    [49] 吴国雄, 刘屹岷, 刘新, 等. 2005.青藏高原加热如何影响亚洲夏季的气候格局[J].大气科学, 29 (1):47-56. doi: 10.3878/j.issn.1006-9895.2005.01.06

    Wu Guoxiong, Liu Yimin, Liu Xin, et al. How the heating over the Tibetan Plateau affects the Asian climate in summer[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29 (1):47-56, doi: 10.3878/j.issn.1006-9895.2005.01.06.
    [50] Wu G X, Duan A M, Liu Y M, et al. 2015. Tibetan Plateau climate dynamics:Recent research progress and outlook[J]. National Science Review, 2 (1):100-116, doi: 10.1093/nsr/nwu045.
    [51] Wu G X, Liu Y M, He B, et al. 2012. Thermal controls on the Asian summer monsoon[J]. Scientific Reports, 2:404. doi: 10.1038/srep00404
    [52] Wu G X, Liu Y M, Wang T M, et al. 2007. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate[J]. Journal of Hydrometeorology, 8 (4):770-789, doi: 10.1175/JHM609.1.
    [53] Wu G X, Zhuo H F, Wang Z Q, et al. 2016. Two types of summertime heating over the Asian large-scale orography and excitation of potential-vorticity forcing Ⅰ. Over Tibetan Plateau[J]. Science China Earth Sciences, 59 (10):1996-2008, doi: 10.1007/s11430-016-5328-2.
    [54] Xu X D, Lu C G, Ding Y H, et al. 2013. What is the relationship between China summer precipitation and the change of apparent heat source over the Tibetan Plateau?[J]. Atmospheric Science Letters, 14 (4):227-234, doi: 10.1002/asl2.444.
    [55] Xu X D, Lu C G, Shi X H, et al. 2008. World water tower:An atmospheric perspective[J]. Geophys. Res. Lett., 35 (20):L20815, doi: 10.1029/2008GL035867.
    [56] Xu X D, Lu C G, Shi X H, et al. 2010. Large-scale topography of China:A factor for the seasonal progression of the Meiyu rainband?[J]. J. Geophys. Res., 115 (D2):D02110, doi: 10.1029/2009JD012444.
    [57] 燕亚菲. 2016. 基于CloudSat/CALIPSO卫星资料的青藏高原云垂直结构和辐射效应的研究[D]. 中国科学院大气物理研究所博士学位论文. 142

    pp. Yan Yafei. 2016. Cloud vertical structure and cloud radiative effects over Tibetan Plateau based on CloudSat/CALIPSO data[D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences. 142 pp.
    [58] Yan Y F, Liu Y M, Lu J H. 2016. Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau and its neighboring regions[J]. J. Geophys. Res., 121 (10):5864-5877, doi: 10.1002/2015JD024591.
    [59] Yan Y F, Wang X C, Liu Y M. 2018. Cloud vertical structures associated with precipitation magnitudes over the Tibetan Plateau and its neighboring regions[J]. Atmospheric and Oceanic Science Letters, 11 (1):44-53, doi: 10.1080/16742834.2018.1395680.
    [60] 张华, 彭杰, 荆现文, 等. 2013.东亚地区云的垂直重叠特性及其对云辐射强迫的影响[J].中国科学:地球科学, 43 (4):523-535. doi: 10.1007/s11430-012-4489-x

    Zhang Hua, Peng Jie, Jing Xianwen, et al. 2013. The features of cloud overlapping in Eastern Asia and their effect on cloud radiative forcing[J]. Science China:Earth Sciences, 56 (5):737-747, doi: 10.1007/s11430-012-4489-x.
    [61] 张华, 杨冰韵, 彭杰, 等. 2015.东亚地区云微物理量分布特征的CloudSat卫星观测研究[J].大气科学, 39 (2):235-248. doi: 10.3878/j.issn.1006-9895.1408.13313

    Zhang Hua, Yang Bingyun, Peng Jie, et al. 2015. The characteristics of cloud microphysical properties in East Asia with the CloudSat dataset[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39 (2):235-248, doi: 10.3878/j.issn.1006-9895.1408.13313.
    [62] Zhang H, Jing X, Li J. 2014. Application and evaluation of a new radiation code under McICA scheme in BCC_AGCM2.0.1.[J]. Geoscientific Model Development, 7 (3):737-754, doi: 10.5194/gmd-7-737-2014.
    [63] 张晓, 段克勤, 石培宏. 2015.基于CloudSat卫星资料分析青藏高原东部夏季云的垂直结构[J].大气科学, 39 (6):1073-1080. doi: 10.3878/j.issn.1006-9895.1502.14196

    Zhang Xiao, Duan Kinqin, Shi Peihong. 2015. Cloud vertical profiles from CloudSat data over the eastern Tibetan Plateau during summer[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39 (6):1073-1080, doi: 10.3878/j.issn.1006-9895.1502.14196.
    [64] 赵艳风, 王东海, 尹金方. 2014.基于CloudSat资料的青藏高原地区云微物理特征分析[J].热带气象学报, 30 (2):239-248. doi: 10.3969/j.issn.1004-4965.2014.02.005

    Zhao Yanfeng, Wang Donghai, Yin Jinfang. 2014. A study on cloud microphysical characteristics over the Tibetan Plateau using CloudSat data[J]. Journal of Tropical Meteorology (in Chinese), 30 (2):239-248, doi:10.3969/j.issn. 1004-4965.2014.02.005.
  • 加载中
图(8)
计量
  • 文章访问数:  1103
  • HTML全文浏览量:  3
  • PDF下载量:  1281
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-15
  • 网络出版日期:  2018-05-14
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回