[1]
|
Avissar R, Pielke R A. 1989. A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology [J]. Mon. Wea. Rev., 117(10): 2113-2136. doi: 10.1175/1520-0493(1989)117<2113:APOHLS>2.0.CO;2
|
[2]
|
Beljaars A C M, Brown A R, Wood N. 2004. A new parametrization of turbulent orographic form drag [J]. Quart. J. Roy. Meteor. Soc., 130(599): 1327-1347. doi: 10.1256/qj.03.73
|
[3]
|
Chen F, Mitchell K, Schaake J, et al. 1996. Modeling of land surface evaporation by four schemes and comparison with FIFE observations [J]. J. Geophys. Res., 101(D3): 7251-7268. doi: 10.1029/95JD02165
|
[4]
|
Chen Y Y, Yang K, Zhou D G, et al. 2010. Improving the Noah land surface model in arid regions with an appropriate parameterization of the thermal roughnsee Length [J]. Journal of Hydrometeorology, 11(4): 995-1006. doi: 10.1175/2010JHM1185.1
|
[5]
|
Entekhabi D, Eagleson P S. 1989. Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability [J]. J. Climate, 2(8): 816-831. doi: 10.1175/1520-0442(1989)002<0816:LSHPFA>2.0.CO;2
|
[6]
|
Fiedler F, Panofsky H A. 1972. The geostrophic drag coefficient and the ‘effective’ roughness length [J]. Quart. J. Roy. Meteor. Soc., 98(415): 213-220. doi: 10.1002/qj.49709841519
|
[7]
|
Jiménez P A, Dudhia J. 2012. Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model [J]. Journal of Applied Meteorology and Climatology, 51(2): 300-316. doi: 10.1175/JAMC-D-11-084.1
|
[8]
|
Koster R D, Suarez M J. 1992. A comparative analysis of two land surface heterogeneity representations [J]. J. Climate, 5(12): 1379-1390. doi: 10.1175/1520-0442(1992)005<1379:ACAOTL>2.0.CO;2
|
[9]
|
LeMone M A, Tewari M, Chen F, et al. 2008. Evaluation of the Noah land surface model using data from a fair-weather IHOP_2002 day with heterogeneous surface fluxes [J]. Mon. Wea. Rev., 136(12): 4915-4941. doi: 10.1175/2008MWR2354.1
|
[10]
|
Li D, Bou-Zeid E, Barlage M, et al. 2013. Development and evaluation of a mosaic approach in the WRF-Noah framework [J]. J. Geophys. Res., 118(11): 11918-11935. doi: 10.1002/2013JD020657
|
[11]
|
马晨晨, 余晔, 何建军, 等. 2016. 次网格地形参数化对WRF模式在复杂地形区风场模拟的影响 [J]. 干旱气象, 34(1): 96-105
|
[12]
|
Palmer T N, Shutts G J, Swinbank R. 1986. Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization [J]. Quart. J. Roy. Meteor. Soc., 112(474): 1001-1039. doi: 10.1002/qj.49711247406
|
[13]
|
Rontu L. 2006. A study on parametrization of orography-related momentum fluxes in a synoptic-scale NWP model [J]. Tellus A, 58(1): 69-81. doi: 10.1111/j.1600-0870.2006.00162.x
|
[14]
|
Rotach M W, Gohm A, Lang M N, et al. 2015. On the vertical exchange of heat, mass, and momentum over complex, mountainous terrain [J]. Frontiers in Earth Science, 3: 76. doi: 10.3389/feart.2015.00076
|
[15]
|
沈玉伟, 张耀存, 钱永甫. 2007. 次网格地形动力效应参数化及其对降水模拟效果的影响 [J]. 高原气象, 26(4): 655-665.
|
[16]
|
Wallace J M, Tibaldi S, Simmons A J. 1983. Reduction of systematic forecast errors in the ECMWF model through the introduction of an envelope orography [J]. Quart. J. Roy. Meteor. Soc., 109(462): 683-717. doi: 10.1002/qj.49710946202
|
[17]
|
王姝, 刘树华, 郑辉, 等. 2015. 关中平原麦田干热风过程陆气交换特征的数值模拟 [J]. 地球物理学进展, 30(4): 1481-1491.
|
[18]
|
Wood N, Brown A R, Hewer F E. 2001. Parametrizing the effects of orography on the boundary layer: An alternative to effective roughness lengths [J]. Quart. J. Roy. Meteor. Soc., 127(573): 759-777. doi: 10.1002/qj.49712757303
|
[19]
|
吴佳, 高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比 [J]. 地球物理学报, 56(4): 1102-1111.
|
[20]
|
叶丹, 张述文, 王飞洋, 等. 2017. 基于陆面模式Noah-MP的不同参数化方案在半干旱区的适用性 [J]. 大气科学, 41(1): 189-201.
|
[21]
|
朱新胜, 张耀存. 2005. 次网格地形坡度坡向参数化及其对区域气候模拟的影响 [J]. 高原气象, 24(2): 136-142.
|