高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CMIP5耦合模式对太平洋年代际振荡的模拟与预估

陈红

陈红. CMIP5耦合模式对太平洋年代际振荡的模拟与预估[J]. 大气科学, 2019, 43(4): 783-795. doi: 10.3878/j.issn.1006-9895.1809.18142
引用本文: 陈红. CMIP5耦合模式对太平洋年代际振荡的模拟与预估[J]. 大气科学, 2019, 43(4): 783-795. doi: 10.3878/j.issn.1006-9895.1809.18142
CHEN Hong. Simulation and Projection of the Pacific Decadal Oscillation Based on CMIP5 Coupled Models[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(4): 783-795. doi: 10.3878/j.issn.1006-9895.1809.18142
Citation: CHEN Hong. Simulation and Projection of the Pacific Decadal Oscillation Based on CMIP5 Coupled Models[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(4): 783-795. doi: 10.3878/j.issn.1006-9895.1809.18142

CMIP5耦合模式对太平洋年代际振荡的模拟与预估

doi: 10.3878/j.issn.1006-9895.1809.18142
基金项目: 中国科学院战略性先导科技专项XDA20060501,国家自然科学基金面上项目41575080

Simulation and Projection of the Pacific Decadal Oscillation Based on CMIP5 Coupled Models

Funds: Found by Foundation:Strategic Priority Research Program of Chinese Academy of Sciences Grant XDA20060501;General Program of National Natural Science Foundation of China Grant 41575080Found by Foundation:Strategic Priority Research Program of Chinese Academy of Sciences (Grant XDA20060501), General Program of National Natural Science Foundation of China (Grant 41575080)
  • 摘要: 利用第五次耦合模式比较计划(CMIP5)40个模式的模拟资料和分类集合的方法,评估了耦合模式对20世纪太平洋年代际振荡(PDO)特征的模拟能力。结果表明,CMIP5多数模式对PDO周期有着较好的刻画能力,能模拟出PDO的年代际变化周期。模式对PDO模态空间特征的模拟能力存在较大差异,小部分模式模拟效果较差。进一步的分析表明,对PDO模态模拟较好的第1类模式,能较好地再现热带太平洋与北太平洋海表温度异常(SSTA)年代际变化间的关系,而且热带太平洋SSTA通过大气遥相关影响北太平样海表温度的过程也模拟的较成功。对PDO模态模拟差的模式,不能合理模拟出热带太平洋SSTA对北太平洋海表温度影响的遥相关过程。以上研究也证实了热带太平洋地区海表温度的年代际变率对北太平洋海表温度年代际变率的重要影响,热带太平洋SSTA对北太平洋SSTA的影响是通过大气遥相关实现的。利用CMIP5中等排放情景模拟结果,分析了第1类模式预估的北太平洋年代际变率的特征,发现21世纪北太平洋年代际变率的主要模态为一致的正异常分布且呈现明显的上升趋势,第二模态则表现为类似于20世纪典型PDO的马蹄型SSTA分布。
  • [1] Alexander M A, Bladé I, Newman M, et al. 2002. The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans [J]. J. Climate, 15(16): 2205-2231. doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
    [2] Allan R, Ansell T. 2006. A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850-2003 [J]. J. Climate, 19(22): 5816-5842. doi: 10.1175/JCLI3937.1
    [3] 陈红, 薛峰. 2013. 东亚夏季风和中国东部夏季降水年代际变化的模拟 [J]. 大气科学, 37(5): 1143-1153.
    [4] Feng J M, Wei T, Dong W J, et al. 2014. CMIP5/AMIP GCM simulations of East Asian summer monsoon [J]. Adv. Atmos. Sci., 31(4): 836-850. doi: 10.1007/s00376-013-3131-y
    [5] Graham N E. 1994. Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: Observations and model results [J]. Climate Dyn., 10(3): 135-162. doi: 10.1007/BF00210626
    [6] Graham N E, Barnett T P, Wilde R, et al. 1994. On the roles of tropical and midlatitude SSTs in forcing interannual to interdecadal variability in the winter Northern Hemisphere circulation [J]. J. Climate, 7(9): 1416-1441.
    [7] Gu D F, Philander S G H. 1997. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics [J]. Science, 275(5301): 805-807. doi: 10.1126/science.275.5301.805
    [8] 顾薇, 李崇银. 2010. IPCC AR4中海气耦合模式对中国东部夏季降水及PDO、NAO年代际变化的模拟能力分析 [J]. 大气科学学报, 33(4): 401-411.
    [9] Horel J D, Wallace J M. 1981. Planetary-scale atmospheric phenomena associated with the Southern Oscillation [J]. Mon. Wea. Rev., 109(4): 813-829. doi: 10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2
    [10] 金晨曦, 周天军. 2014. 参加CMIP5的四个中国气候模式模拟的东亚冬季风年际变率 [J]. 大气科学, 38(3): 453-468.
    [11] Jin F F, Kimoto M, Wang X C. 2001. A model of decadal ocean-atmosphere interaction in the North Pacific basin [J]. Geophys. Res. Lett., 28(8): 1531-1534. doi: 10.1029/2000GL008478
    [12] Latif M, Barnett T P. 1994. Causes of decadal climate variability over the North Pacific and North America [J]. Science, 266(5185): 634-637. doi: 10.1126/science.266.5185.634
    [13] Latif M, Barnett T P. 1996. Decadal climate variability over the North Pacific and North America: Dynamics and predictability [J]. J. Climate, 9(10): 2407-2423. doi: 10.1175/1520-0442(1996)009<2407:DCVOTN>2.0.CO;2
    [14] Lau N C, Nath M J. 1996. The role of the "atmospheric bridge" in linking tropical Pacific ENSO events to extratropical SST anomalies [J]. J. Climate, 9(9): 2036-2057. doi: 10.1175/1520-0442(1996)009<2036:TROTBI>2.0.CO;2
    [15] 李恺霖, 智海, 白文蓉. 2016. CMIP5多模式对阿留申低压气候特征的模拟检验与预估 [J]. 气候与环境研究, 21(5): 533-546.
    [16] Liebmann B, Smith C A. 1996. Description of a complete (interpolated) outgoing longwave radiation dataset [J]. Bull. Amer. Meteor. Soc., 77(6): 1275-1277.
    [17] Lysne J, Chang P, Giese B. 1997. Impact of the extratropical Pacific on equatorial variability [J]. Geophys. Res. Lett., 24(21): 2589-2592. doi: 10.1029/97GL02751
    [18] Mantua N J, Hare S R, Zhang Y, et al. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production [J]. Bull. Amer. Meteor. Soc., 78(6): 1069-1080. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
    [19] Miller A J, Cayan D R, Barnett T P, et al. 1994. Interdecadal variability of the Pacific Ocean: Model response to observed heat flux and wind stress anomalies [J]. Climate Dyn., 9(6): 287-302. doi: 10.1007/BF00204744
    [20] Nakamura H, Lin G, Yamagata T. 1997. Decadal climate variability in the North Pacific during the recent decades [J]. Bull. Amer. Meteor. Soc., 78(10): 2215-2226. doi: 10.1175/1520-0477(1997)078<2215:DCVITN>2.0.CO;2
    [21] Nitta T, Yamada S. 1989. Recent warming of tropical sea surface temperatures and its relationship to the Northern Hemisphere circulation [J]. J. Meteor. Soc. Japan, 67(3): 375-383. doi: 10.2151/jmsj1965.67.3_375
    [22] Oshima K, Tanimoto Y. 2009. An evaluation of reproducibility of the Pacific Decadal Oscillation in the CMIP3 simulations [J]. J. Meteor. Soc. Japan, 87(4): 755-770. doi: 10.2151/jmsj.87.755
    [23] Overland J E, Wang M Y. 2007. Future climate of the North Pacific Ocean [J]. Eos, Trans. Amer. Geophys. Union, 88(16): 178-182. doi: 10.1029/2007EO160003
    [24] Park J H, An S I, Yeh S W, et al. 2013. Quantitative assessment of the climate components driving the Pacific Decadal Oscillation in climate models [J]. Theor. Appl. Climatol., 112(3-4): 431-445. doi: 10.1007/s00704-012-0730-y
    [25] Uppala S M, K?llberg P W, Simmons A J, et al. 2005. The ERA-40 reanalysis [J]. Quart. J. Roy. Meteor. Soc., 131(612): 2961-3012. doi: 10.1256/qj.04.176
    [26] Wang Huijun. 2001. The weakening of the Asian monsoon circulation after the end of 1970’s [J]. Adv. Atmos. Sci., 18(3): 376-386. doi: 10.1007/BF02919316
    [27] 吴其重, 冯锦明, 董文杰, 等. 2013. BNU-ESM模式及其开展的CMIP5试验介绍 [J]. 气候变化研究进展, 9(4): 291-294.
    [28] 杨修群, 朱益民, 谢倩, 等. 2004. 太平洋年代际振荡的研究进展 [J]. 大气科学, 28(6): 979-992.
    [29] Zhang L P, Delworth T L. 2015. Analysis of the characteristics and mechanisms of the Pacific Decadal Oscillation in a suite of coupled models from the geophysical fluid dynamics laboratory [J]. J. Climate, 28(19): 7678-7701. doi: 10.1175/JCLI-D-14-00647.1
    [30] 张庆云, 吕俊梅, 杨莲梅, 等. 2007. 夏季中国降水型的年代际变化与大气内部动力过程及外强迫因子关系 [J]. 大气科学, 31(6): 1290-1300.
    [31] Zhang Y, Wallace J M, Battisti D S. 1997. ENSO-like interdecadal variability: 1900-93 [J]. J. Climate, 10(5): 1004-1020. doi: 10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2
    [32] Zhong Y F, Liu Z Y, Jacob R. 2008. Origin of Pacific multidecadal variability in Community Climate System Model version 3 (CCSM3): A combined statistical and dynamical assessment [J]. J. Climate, 21(1): 114-133. doi: 10.1175/2007JCLI1730.1
    [33] Zhong Y F, Liu Z Y. 2009. On the mechanism of Pacific multidecadal climate variability in CCSM3: The role of the subpolar North Pacific Ocean [J]. J. Climate, 39(9): 2052-2076. doi: 10.1175/2009JPO4097.1
    [34] 朱益民, 杨修群. 2003. 太平洋年代际振荡与中国气候变率的联系 [J]. 气象学报, 61(6): 641-654.
  • 加载中
计量
  • 文章访问数:  648
  • HTML全文浏览量:  1
  • PDF下载量:  529
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-22

目录

    /

    返回文章
    返回