高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CMIP5多模式预估的1.5℃升温背景下中国气温和降水变化

王晓欣 姜大膀 郎咸梅

王晓欣, 姜大膀, 郎咸梅. CMIP5多模式预估的1.5℃升温背景下中国气温和降水变化[J]. 大气科学, 2019, 43(5): 1158-1170. doi: 10.3878/j.issn.1006-9895.1810.18225
引用本文: 王晓欣, 姜大膀, 郎咸梅. CMIP5多模式预估的1.5℃升温背景下中国气温和降水变化[J]. 大气科学, 2019, 43(5): 1158-1170. doi: 10.3878/j.issn.1006-9895.1810.18225
Temperature and Precipitation Changes over China under a 1.5℃ Global Warming Scenario Based on CMIP5 Models[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(5): 1158-1170. doi: 10.3878/j.issn.1006-9895.1810.18225
Citation: Temperature and Precipitation Changes over China under a 1.5℃ Global Warming Scenario Based on CMIP5 Models[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(5): 1158-1170. doi: 10.3878/j.issn.1006-9895.1810.18225

CMIP5多模式预估的1.5℃升温背景下中国气温和降水变化

doi: 10.3878/j.issn.1006-9895.1810.18225
基金项目: 国家重点研究发展计划项目2016YFA0602401、2016YFA0600704,国家自然科学基金项目41421004

Temperature and Precipitation Changes over China under a 1.5℃ Global Warming Scenario Based on CMIP5 Models

  • 摘要: 本文使用国际耦合模式比较计划第五阶段(CMIP5)中39个全球气候模式的试验数据,预估了相对于工业革命前期全球1.5℃升温背景下中国气温和降水变化。根据多模式中位数预估结果,在不同典型浓度路径(RCPs)情景下,相对于工业革命前期全球1.5℃升温分别发生在2034年(RCP2.6)、2033年(RCP4.5)和2029年(RCP8.5)。全球升温1.5℃时,中国年和季节气温平均上升1.8℃和1.6~2.1℃,其中冬季最强。增温总体上由南向北加强,青藏高原为高值中心。年和各季节增温均超过其自然内部变率,区域平均的信噪比分别为3.4和1.6~2.7。年和季节降水整体上在中国北方增加、华南减少;区域平均的年降水增加1.4%,季节降水增加0.1%~5.1%,冬季增幅最大。年和季节降水变化要远小于其自然内部变率,区域平均的信噪比仅为0.1和0.01~0.2。总体上,模式对气温预估的不确定性较小,对降水的偏大,其中对季节尺度预估的不确定性要高于年平均结果。
  • [1] Deser C, Phillips A, Bourdette V, et al. 2012. Uncertainty in climate change projections: The role of internal variability [J]. Climate Dyn., 38(3-4): 527-546. doi: 10.1007/s00382-010-0977-x
    [2] Ding Y H, Ren G Y, Zhao Z C, et al. 2007. Detection, causes and projection of climate change over China: An overview of recent progress [J]. Adv. Atmos. Sci., 24(6): 954-971. doi: 10.1007/s00376-007-0954-4
    [3] Doblas-Reyes F J, Weisheimer A, Déqué M, et al. 2009. Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts [J]. Quart. J. Roy. Meteor. Soc., 135(643): 1538-1559. doi: 10.1002/qj.464
    [4] Fu Y H, Lu R Y, Guo D. 2018. Changes in surface air temperature over China under the 1.5 and 2.0℃ global warming targets [J]. Adv. Climate Change Res., 9(2): 112-119. doi: 10.1016/j.accre.2017.12.001
    [5] 高学杰, 石英, 张冬峰, 等. 2012. RegCM3对21世纪中国区域气候变化的高分辨率模拟 [J]. 科学通报, 57(5): 374-381.
    [6] Giorgi F, Hurrell J W, Marinucci M R, et al. 1997. Elevation dependency of the surface climate change signal: A model study [J]. J. Climate, 10(2): 288-296. doi: 10.1175/1520-0442(1997)010<0288:EDOTSC>2.0.CO;2
    [7] Hawkins E, Sutton R. 2011. The potential to narrow uncertainty in projections of regional precipitation change [J]. Climate Dyn., 37(1-2): 407-418. doi: 10.1007/s00382-010-0810-6
    [8] Hawkins E, Sutton R. 2012. Time of emergence of climate signals [J]. Geophys. Res. Lett., 39(1): L01702. doi: 10.1029/2011GL050087
    [9] 胡婷, 孙颖, 张学斌. 2017. 全球1.5和2℃温升时的气温和降水变化预估 [J]. 科学通报, 62(26): 3098-3111.
    [10] IPCC. 2013. Climate Change 2013: The Physical Science Basis [M]. Cambridge, UK and New York, USA: Cambridge University Press, 4-29.
    [11] 姜大膀, 富元海. 2012. 2℃全球变暖背景下中国未来气候变化预估 [J]. 大气科学, 36(2): 234-246.
    [12] Jiang D B, Sui Y, Lang X M. 2016a. Timing and associated climate change of a 2℃ global warming [J]. Int. J. Climatol., 36(14): 4512-4522. doi: 10.1002/joc.4647
    [13] Jiang D B, Tian Z P, Lang X M. 2016b. Reliability of climate models for China through the IPCC third to fifth assessment reports [J]. Int. J. Climatol., 36(3): 1114-1133. doi: 10.1002/joc.4406
    [14] Joshi M, Hawkins E, Sutton R, et al. 2011. Projections of when temperature change will exceed 2℃ above pre-industrial levels [J]. Nat. Climate Change, 1(8): 407-412. doi: 10.1038/nclimate1261
    [15] King A D, Karoly D J. 2017. Climate extremes in Europe at1.5 and 2 degrees of global warming [J]. Environ. Res. Lett., 12(11): 114031. doi: 10.1088/1748-9326/aa8e2c
    [16] Lang X M, Sui Y. 2013. Changes in mean and extreme climates over China with a 2℃ global warming [J]. Chinese Science Bulletin, 58(12): 1453-1461. doi: 10.1007/s11434-012-5520-5
    [17] Lewis S L. 2016. The Paris Agreement has solved a troubling problem [J]. Nature, 532(7599): 283. doi: 10.1038/532283a
    [18] Li W, Jiang Z H, Zhang X B, et al. 2018. Additional risk in extreme precipitation in China from1.5℃ to 2℃ global warming levels [J]. Sci. Bull., 63(4): 228-234. doi: 10.1016/j.scib.2017.12.021
    [19] Mahlstein I, Knutti R, Solomon S, et al. 2011. Early onset of significant local warming in low latitude countries [J]. Environ. Res. Lett., 6(3): 034009. doi: 10.1088/1748-9326/6/3/034009
    [20] Nangombe S, Zhou T J, Zhang W X, et al. 2018. Record-breaking climate extremes in Africa under stabilized1.5℃ and 2℃ global warming scenarios [J]. Nat. Climate Change, 8(5): 375-380. doi: 10.1038/s41558-018-0145-6
    [21] Pepin N C, Lundquist J D. 2008. Temperature trends at high elevations: Patterns across the globe [J]. Geophys. Res. Lett., 35(14): L14701. doi: 10.1029/2008GL034026
    [22] Randalls S. 2010. History of the 2℃ climate target [J]. WIREs Climate Change, 1(4): 598-605. doi: 10.1002/wcc.62
    [23] Ren G Y, Ding Y H, Zhao Z C, et al. 2012. Recent progress in studies of climate change in China [J]. Adv. Atmos. Sci., 29(5): 958-977. doi: 10.1007/s00376-012-1200-2
    [24] Rogelj J, Luderer G, Pietzcker R C, et al. 2015. Energy system transformations for limiting end-of-century warming to below1.5℃ [J]. Nat. Climate Change, 5(6): 519-527. doi: 10.1038/nclimate2572
    [25] Schleussner C F, Rogelj J, Schaeffer M, et al. 2016a. Science and policy characteristics of the Paris Agreement temperature goal [J]. Nat. Climate Change, 6(9): 827-835. doi: 10.1038/nclimate3096
    [26] Schleussner C F, Lissner T K, Fischer E M, et al. 2016b. Differential climate impacts for policy-relevant limits to global warming: The case of 1.5℃ and 2℃ [J]. Earth Syst. Dyn., 7(2): 327-351. doi: 10.5194/esd-7-327-2016
    [27] Sui Y, Lang X M, Jiang D B. 2014. Time of emergence of climate signals over China under the RCP4.5 scenario [J]. Climatic Change, 125(2): 265-276. doi: 10.1007/s10584-014-1151-y
    [28] Sui Y, Lang X M, Jiang D B. 2015. Temperature and precipitation signals over China with a 2℃ global warming [J]. Climate Res., 64(3): 227-242. doi: 10.3354/cr01328
    [29] Sui, Y, Lang X M, Jiang D B. 2018. Projected signals in climate extremes over China associated with a 2℃ global warming under two RCP scenarios [J]. Int. J. Climatol., 38(S1): e678-e697. doi: 10.1002/joc.5399
    [30] 孙颖, 丁一汇. 2009. 未来百年东亚夏季降水和季风预测的研究 [J]. 中国科学 D辑: 地球科学, 39(11): 1487-1504.
    [31] Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design [J]. Bull. Amer. Meteor. Soc., 93(4): 485-498. doi: 10.1175/BAMS-D-11-00094.1
    [32] The World Bank. 2016. Shock waves: Managing the impacts of climate change on poverty [R]. Washington DC:
    [33] Tian D, Dong W J, Zhang H, et al. 2017. Future changes in coverage of1.5℃ and 2℃ warming thresholds [J]. Sci. Bull., 62(21): 1455-1463. doi: 10.1016/j.scib.2017.09.023
    [34] Vautard R, Gobiet A, Sobolowski S, et al. 2014. The European climate under a 2℃ global warming [J]. Environ. Res. Lett., 9(3): 034006. doi: 10.1088/1748-9326/9/3/034006
    [35] Wang X X, Jiang D B, Lang X M. 2018. Climate change of 4℃ global warming above pre-industrial levels [J]. Adv. Atmos. Sci., 35(7): 757-770. doi: 10.1007/s00376-018-7160-4
    [36] 徐影, 周波涛, 吴婕, 等. 2017. 1.5~4℃升温阈值下亚洲地区气候变化预估 [J]. 气候变化研究进展, 13(4): 306-315.
    [37] 张莉, 丁一汇, 孙颖. 2008. 全球海气耦合模式对东亚季风降水模拟的检验 [J]. 大气科学, 32(2): 261-276.
    [38] 张莉, 丁一汇, 吴统文, 等. 2013. CMIP5模式对21世纪全球和中国年平均地表气温变化和2℃升温阈值的预估 [J]. 气象学报, 71(6): 1047-1060.
    [39] 翟盘茂, 余荣, 周佰铨, 等. 2017. 1.5℃增暖对全球和区域影响的研究进展 [J]. 气候变化研究进展, 13(5): 465-472.
  • 加载中
计量
  • 文章访问数:  594
  • HTML全文浏览量:  6
  • PDF下载量:  345
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-06

目录

    /

    返回文章
    返回