高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热带气旋“苏迪罗”(2015)海上活动时段降水物理过程模拟诊断研究——海表温度敏感性试验

王晓慧 崔晓鹏 郝世峰 姜嘉俊

王晓慧, 崔晓鹏, 郝世峰, 姜嘉俊. 热带气旋“苏迪罗”(2015)海上活动时段降水物理过程模拟诊断研究——海表温度敏感性试验[J]. 大气科学, 2019, 43(5): 1125-1142. doi: 10.3878/j.issn.1006-9895.1812.18204
引用本文: 王晓慧, 崔晓鹏, 郝世峰, 姜嘉俊. 热带气旋“苏迪罗”(2015)海上活动时段降水物理过程模拟诊断研究——海表温度敏感性试验[J]. 大气科学, 2019, 43(5): 1125-1142. doi: 10.3878/j.issn.1006-9895.1812.18204
A Diagnostic and Numerical Study on Surface Rainfall Process of Tropical Cyclone Soudelor (2015) over the Ocean: Sensitivity Experiments on Precipitation Response to Sea Surface Temperature Change[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(5): 1125-1142. doi: 10.3878/j.issn.1006-9895.1812.18204
Citation: A Diagnostic and Numerical Study on Surface Rainfall Process of Tropical Cyclone Soudelor (2015) over the Ocean: Sensitivity Experiments on Precipitation Response to Sea Surface Temperature Change[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(5): 1125-1142. doi: 10.3878/j.issn.1006-9895.1812.18204

热带气旋“苏迪罗”(2015)海上活动时段降水物理过程模拟诊断研究——海表温度敏感性试验

doi: 10.3878/j.issn.1006-9895.1812.18204
基金项目: 国家重点基础研究发展计划 973 41175056国家重点基础研究发展计划(973)项目2015CB452804,国家自然科学基金项目41175056

A Diagnostic and Numerical Study on Surface Rainfall Process of Tropical Cyclone Soudelor (2015) over the Ocean: Sensitivity Experiments on Precipitation Response to Sea Surface Temperature Change

  • 摘要: 利用WRF模式,在前期工作(王晓慧等,2018)模拟试验基础上,设计敏感性试验,借助三维降水诊断方程,分析揭示了海表温度(SST)变化对热带气旋(TC)“苏迪罗”(2015)海上活动时段降水物理过程的可能影响。对照试验(CTL试验:SST随时间变化)和敏感性试验(SNC试验:SST固定为初始值)的SST存在明显差异(CTL试验平均SST低于SNC试验)。对比分析表明:两试验模拟的海上时段TC路径差异不大,但SNC试验模拟的TC强度较CTL试验偏强;TC环流区域内,两试验垂直速度差值在对流层基本为正(SNC试验上升运动更强),随着SST差值不断增大,垂直运动差值也不断加大;SNC试验的降水强度(PS)大于CTL试验,但PS差值随SST差值增大并非线性变化,体现了PS变化的复杂性;SNC试验的QWVA(垂直积分的三维水汽通量辐合/辐散率)均基本大于CTL试验(后期差别更大),SST的不同可通过影响垂直运动,造成QWVA的差异,进而影响PS;分析时段内,两试验TC环流区域大气均持续变干(正值QWVL),且存在较明显海面蒸发(正值QWVE),其中,两试验之间的QWVL差异不明显,但SNC试验的QWVE总体上强于CTL试验(尤其是分析时段中后期);两试验间云相关过程变率差异的时间变化复杂,最大差异量级与QWVE相当;SST对水凝物发展和深对流活动有一定影响,伴随SST差异的逐渐增大,水凝物含量差异也逐渐增大,液相水凝物中,雨滴差异较大,而与液相水凝物相比,冰相水凝物差异更为突出,尤其是较大的冰相粒子(雪和霰);SNC试验中,零度层下更多的霰粒子和雨滴,在更强上升运动配合下,有助于云滴和雨滴碰并(Pracw)及霰粒子融化(Pgmlt)微物理过程的加强,进而造成更强降水。TC环流区域时间和空间平均的物理量对比分析揭示,两试验降水物理过程定性上基本相似,但定量上存在明显不同,SNC试验的PS与CTL试验相比,增幅达8.8%,这种差异主要源于降水宏、微观物理过程的差异,其中,不同SST环境下QWVE的差异最为显著。
  • [1] Bender M A, Ginis I, Kurihara Y. 1993. Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model [J]. J. Geophys. Res., 98(D12): 23245-23263. doi: 10.1029/93JD02370
    [2] Chang S W, Madala R V. 1980. Numerical simulation of the influence of sea surface temperature on translating tropical cyclones [J]. J. Atmos. Sci., 37(12): 2617-2630. doi: 10.1175/1520-0469(1980)037<2617:NSOTIO>2.0.CO;2
    [3] 陈联寿, 罗哲贤, 李英. 2004. 登陆热带气旋研究的进展 [J]. 气象学报, 62(5): 541-549.
    [4] 陈国民, 曾智华, 曹庆. 2013. 海温对0907号热带气旋“天鹅”入海后强度变化影响的数值模拟研究 [J]. 热带气象学报, 29(6): 984-992.
    [5] Chen L S, Li Y, Cheng Z Q. 2010. An overview of research and forecasting on rainfall associated with landfalling tropical cyclones [J]. Advances in Atmospheric Science, 27(5): 967-976. doi: 10.1007/s00376-010-8171-y
    [6] 程正泉, 陈联寿, 徐祥德, 等. 2005. 近10年中国台风暴雨研究进展 [J]. 气象, 31(12): 3-9.
    [7] 程锐, 宇如聪, 傅云飞, 等. 2009. 台风“云娜”在近海强度变化及结构特征的数值研究I: 云微物理参数化对云结构及降水特征的影响 [J]. 气象学报, 67(5): 764-776.
    [8] Cione J J, Uhlhorn E W. 2003. Sea surface temperature variability in hurricanes: Implications with respect to intensity change [J]. Mon. Wea. Rev., 131(8): 1783-1796. doi: 10.1175//2562.1
    [9] 丛春华, 陈联寿, 雷小途, 等. 2011. 台风远距离暴雨的研究进展 [J]. 热带气象学报, 27(1): 264-270.
    [10] 崔晓鹏. 2009. 地面降水诊断方程对降水过程的定量诊断 [J]. 大气科学, 33(2): 375-387.
    [11] Cui X P, Li X F. 2006. Role of surface evaporation in surface rainfall processes [J]. J. Geophys. Res., 111(D17): D17112. doi: 10.1029/2005JD006876
    [12] Cui X P, Li X F. 2009. Diurnal responses of tropical convective and stratiform rainfall to diurnally varying sea surface temperature [J]. Meteor. Atmos. Phys., 104(1-2): 53-61. doi: 10.1007/s00703-008-0016-1
    [13] Cui X P, Xu F W. 2009. A cloud-resolving modeling study of surface rainfall processes associated with landfalling typhoon Kaemi (2006) [J]. Journal of Tropical Meteorology, 15(2): 181-191. doi: 10.3969/j.issn.1006-8775.2009.02.007
    [14] Cui X P, Wang Y P, Yu H. 2015. Microphysical differences with rainfall intensity in severe tropical storm Bilis [J]. Atmospheric Science Letters, 16(1): 27-31. doi: 10.1002/asl2.515
    [15] D,Asaro E A. 2003. The ocean boundary layer below hurricane Dennis [J]. J. Phys. Oceanogr., 33(3): 561-579. doi: 10.1175/1520-0485(2003)033<0561:TOBLBH>2.0.CO;2
    [16] Dickey T, Frye D, McNeil J, et al. 1998. Upper-ocean temperature response to hurricane Felix as measured by the Bermuda testbed mooring [J]. Mon. Wea. Rev., 126(5): 1195-1201. doi: 10.1175/1520-0493(1998)126<1195:UOTRTH>2.0.CO;2
    [17] 丁治英, 陈久康. 1995. 不同雨强台风的诊断对比与数值试验研究 [J]. 南京气象学院学报, 18(2): 234-241.
    [18] Emanuel K A. 1988. The maximum intensity of hurricanes [J]. J. Atmos. Sci., 45(7): 1143 - 1155. doi: 10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2
    [19] Evans J L, Ryan B F, McGregor J L. 1994. A numerical exploration of the sensitivity of tropical cyclone rainfall intensity to sea surface temperature [J]. J. Climate, 7(4): 616-623. doi: 10.1175/1520-0442(1994)007<0616:ANEOTS>2.0.CO;2
    [20] Fisher E L. 1958. Hurricanes and the sea-surface temperature field [J]. J. Atmos. Sci., 15(3): 328-333. doi: 10.1175/1520-0469(1958)015<0328:HATSST>2.0.CO;2
    [21] Franklin C N, Holland G J, May P T. 2005. Sensitivity of tropical cyclone rainbands to ice-phase microphysics [J]. Mon. Wea. Rev., 133(8): 2473-2493. doi: 10.1175/MWR2989.1
    [22] Gao S T, Li X F. 2010. Precipitation equations and their applications to the analysis of diurnal variation of tropical oceanic rainfall [J]. J. Geophys. Res., 115(D8): D08204. doi: 10.1029/2009JD012452.
    [23] Gao S T, Cui X P, Zhou Y S, et al. 2005. Surface rainfall processes as simulated in a cloud-resolving model [J]. J. Geophys. Res., 110(D10): D10202. doi: 10.1029/2004JD005467
    [24] Ginis I, Sutyrin G. 1995. Hurricane-generated depth-averaged currents and sea surface elevation [J]. J. Phys. Oceanogr., 25(6): 1218-1242. doi: 10.1175/1520-0485(1995)025<1218:HGDACA>2.0.CO;2
    [25] Gray W M. 1968. Global view of the origin of tropical disturbances and storms [J]. Mon. Wea. Rev., 96(10): 669-700. doi: 10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
    [26] Hu C M, Muller-Karger F E. 2007. Response of sea surface properties to hurricane Dennis in the eastern Gulf of Mexico [J]. Geophys. Res. Lett., 34(7): L07606. doi: 10.1029/2006GL028935
    [27] 花丛, 刘奇俊. 2013. 云微物理过程影响登陆台风结构及降水的数值试验 [J]. 热带气象学报, 29(6): 924-934.
    [28] Huang Y J, Cui X P, Li X F. 2016. A three-dimensional WRF-based precipitation equation and its application in the analysis of roles of surface evaporation in a torrential rainfall event [J]. Atmospheric Research, 169: 54-64. doi: 10.1016/j.atmosres.2015.09.026
    [29] Krishna K M. 2016. Observational study of upper ocean cooling due to Phet super cyclone in the Arabian Sea [J]. Advances in Space Research, 57(10): 2115-2120. doi: 10.1016/j.asr.2016.02.024
    [30] 雷小途, 陈联寿. 2001. 热带气旋与中纬度环流系统相互作用的研究进展 [J]. 热带气象学报, 14(7): 452-461.
    [31] Leipper D F. 1967. Observed ocean conditions and hurricane Hilda, 1964 [J]. J. Atmos. Sci., 24(2): 182-186. doi: 10.1175/1520-0469(1967)024<0182:OOCAHH>2.0.CO;2
    [32] Lin I I, Chou M D, Wu C C. 2011. The impact of a warm ocean eddy on typhoon Morakot (2009): A preliminary study from satellite observations and numerical modelling [J]. Terrestrial Atmospheric and Oceanic Sciences, 22(6): 661-671. doi: 10.3319/TAO.2011.08.19.01(TM)
    [33] Lin Y L, Zhao M, Zhang M H. 2015. Tropical cyclone rainfall area controlled by relative sea surface temperature [J]. Nature Communications, 6: 6591. doi: 10.1038/ncomms7591
    [34] 刘圣楠, 崔晓鹏. 2018. “碧利斯”(2006)暴雨过程降水强度和降水效率分析 [J]. 大气科学, 42(1): 192-208.
    [35] 卢珊, 王黎娟, 管兆勇, 等. 2012. 低纬季风涌影响登陆台风“榴莲”(0103)和“碧利斯”(0604)暴雨增幅的比较 [J]. 大气科学学报, 35(2): 175-185.
    [36] Maneesha K, Murty V S N, Ravichandran M, et al. 2012. Upper ocean variability in the Bay of Bengal during the tropical cyclones Nargis and Laila [J]. Progress in Oceanography, 106: 49-61. doi: 10.1016/j.pocean.2012.06.006
    [37] Price J F. 1981. Upper ocean response to a hurricane [J]. J. Phys. Oceanogr., 11(2): 153-175. doi: 10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
    [38] Price J F, Sanford T B, Forristall G Z. 1994. Forced stage response to a moving hurricane [J]. J. Phys. Oceanogr., 24(2): 233-260. doi: 10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2
    [39] Ren C P, Cui X P. 2014. The cloud-microphysical cause of torrential rainfall amplification associated with Bilis (0604) [J]. Science China Earth Sciences, 57(9): 2100-2111. doi: 10.1007/s11430-014-4884-6
    [40] Stramma L, Cornillon P, Price J F. 1986. Satellite observations of sea surface cooling by hurricanes [J]. J. Geophys. Res., 91(C4): 5031-5035. doi: 10.1029/JC091iC04p05031
    [41] 苏洁, 李磊, 鲍献文, 等. 2001. 黄、渤海表层海温对台风过程响应数值试验 [J]. 青岛海洋大学学报, 31(2): 165-172.
    [42] Tao W K, Shi J J, Lin P L, et al. 2011. High-resolution numerical simulation of the extreme rainfall associated with typhoon Morakot. Part I: Comparing the impact of microphysics and PBL parameterizations with observations [J]. Terrestrial Atmospheric and Oceanic Sciences, 22(6): 673-696. doi: 10.3319/TAO.2011.08.26.01(TM)
    [43] Thiébaux J, Rogers E, Wang W, et al.2003. A new high-resolution blended real-time global sea surface temperature analysis [J]. Bulletin of the American Meteorological Society, 84(5):645-656. doi: 10.1175/BAMS-84-5-645
    [44] Tuleya R E, Kurihara Y. 1982. A note on the sea surface temperature sensitivity of a numerical model of tropical storm genesis [J]. Mon. Wea. Rev., 110(12): 2063-2069. doi: 10.1175/1520-0493(1982)110<2063:ANOTSS>2.0.CO;2
    [45] Wang J J, Li X F, Carey L D. 2007. Evolution, structure, cloud microphysical, and surface rainfall processes of monsoon convection during the South China Sea monsoon experiment [J]. J. Atmos. Sci., 64(2): 360-380. doi: 10.1175/JAS3852.1
    [46] 王晓慧, 崔晓鹏, 郝世峰. 2018. 热带气旋“苏迪罗”(2015)海上活动时段降水物理过程模拟诊断研究 [J]. 大气科学, 43(2): 417-436.
    [47] Wang Y Q. 2001. An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment [J]. Monthly Weather Review, 129(6): 1370-1394. doi: 10.1175/1520-0493(2001)129<1370:AESOTC>2.0.CO;2
    [48] Wang Y Q. 2002. An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization [J]. Mon. Wea. Rev., 130(12): 3022-3036. doi: 10.1175/1520-0493(2002)130<3022:AESOTC>2.0.CO;2
    [49] Yamamoto M. 2014. Meteorological impacts of sea-surface temperature associated with the humid airflow from tropical cyclone Talas (2011) [J]. Annales Geophysicae, 32(7): 841-857. doi: 10.5194/angeo-32-841-2014
    [50] 杨仁勇, 闵锦忠, 冯文. 2013. 海南岛地形对南海西行台风降水影响的数值试验 [J]. 热带气象学报, 29(3): 474-480.
    [51] Yun K S, Chan J C L, Ha K J. 2012. Effects of SST magnitude and gradient on typhoon tracks around East Asia: A case study for typhoon Maemi (2003) [J]. Atmospheric Research, 109-110: 36-51. doi: 10.1016/j.atmosres.2012.02.012
    [52] Zedler S E. 2009. Simulations of the ocean response to a hurricane: Nonlinear processes [J]. J. Phys. Oceanogr., 39(10): 2618-2634. doi: 10.1175/2009JPO4062.1
    [53] 郑庆林, 吴军, 蒋平. 1996. 我国东南海岸线分布对9216号台风暴雨增幅影响的数值研究 [J]. 热带气象学报, 12(4): 304-313.
    [54] 朱建荣, 沈焕庭, 秦曾灏. 1995. 海洋对热带气旋响应的一种改进模式 [J]. 热带海洋, 14(3): 44-50.
  • 加载中
计量
  • 文章访问数:  502
  • HTML全文浏览量:  2
  • PDF下载量:  291
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-26

目录

    /

    返回文章
    返回