高级检索
廉纯皓, 郭凤霞, 曾凡辉, 甘明骏, 黎奇, 刘泽, 张晓黄, 蔡彬彬, 张坤. 雷暴云中起电活动对动力和微物理过程的影响[J]. 大气科学, 2020, 44(1): 138-149. DOI: 10.3878/j.issn.1006-9895.1903.18240
引用本文: 廉纯皓, 郭凤霞, 曾凡辉, 甘明骏, 黎奇, 刘泽, 张晓黄, 蔡彬彬, 张坤. 雷暴云中起电活动对动力和微物理过程的影响[J]. 大气科学, 2020, 44(1): 138-149. DOI: 10.3878/j.issn.1006-9895.1903.18240
LIAN Chunhao, GUO Fengxia, ZENG Fanhui, GAN Mingjun, LI Qi, LIU Ze, ZHANG Xiaohuang, CAI Binbin, ZHANG Kun. Influence of Electrical Activity on Dynamical and Microphysical Processes in Thunderstorms[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(1): 138-149. DOI: 10.3878/j.issn.1006-9895.1903.18240
Citation: LIAN Chunhao, GUO Fengxia, ZENG Fanhui, GAN Mingjun, LI Qi, LIU Ze, ZHANG Xiaohuang, CAI Binbin, ZHANG Kun. Influence of Electrical Activity on Dynamical and Microphysical Processes in Thunderstorms[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(1): 138-149. DOI: 10.3878/j.issn.1006-9895.1903.18240

雷暴云中起电活动对动力和微物理过程的影响

Influence of Electrical Activity on Dynamical and Microphysical Processes in Thunderstorms

  • 摘要: 本文通过改变三维强风暴动力—电耦合数值模式中电场参量的引入条件,将电场带入积云运动方程及水凝物下落末速中,模拟比较了有无电场影响下模拟云的主要差异。在考虑电场的作用下,由于初期电活动并不剧烈,降水强度与云内风速变化较小;随着云中起电活动的增强,考虑电场影响的模拟云内上升、下沉风速均有所增加,对应时段的降水强度有明显起伏,但累计液态与固态降水量增加微弱;同时,闪电数目增多,闪电发生得更早,持续的时间更长,电场的影响是不可忽视的。模拟发现:雷暴成熟时期,由于电场力的作用,雹粒子瞬时落速变化的极值均超过10 m s-1,霰粒子瞬时落速变化极值也超过了7 m s-1。但强电场的区域较小,粒子下落时经过强电场区域的时间较短,所以落速极值变化不大,相比之下电场力对半径较小粒子的下落末速的瞬时改变更显著。电场通过对粒子下落速度的影响,改变了水凝物粒子主要源项的生成率,增加雨滴、冰晶粒子的生成率,减小霰、雹粒子的生成率,调整了三相水凝物粒子的时空分布,使云中水汽总量增加9%,释放潜热增加7%,为云体的进一步发展提供了内能。

     

    Abstract: Herein, we compare the primary simulation differences when considering the electric field effect (EFE) in the 3D dynamic-electric coupling numerical cloud model, wherein EFE was introduced into the thermodynamic equations and falling velocities of different hydrometeors. In the EFE calculations, owing to weak initial electrical activity, the dynamical field and precipitation intensity changed only slightly. With enhanced electrical activity, the updraft and downdraft speeds increased and the precipitation intensity exhibited both increase and decrease periods, whereas the total precipitation increased only slightly. Additionally, the amount of lightning nearly doubled, and it was generated earlier and lasted longer; hence, its feedback effect cannot be ignored. The results show that the peaks of the hail and graupel particles’ grid-scale mass-weighted instantaneous falling velocities were 10 m s-1 and 7 m s-1, respectively. Because of the narrow range of the strong electrical field and the direct transient effect on particles of the electric field force, the maximum falling velocities of hydrometeors only fluctuate slightly, but differences in the falling velocities are more obvious among small-size particles. By controlling the hydrometeor falling velocities, the electric field changes the particles’ primary production, increases the production rates of raindrops and ice crystals, decreases the production rates of graupel and hail, adjusts the spatiotemporal distributions of the vapor liquid and solid state hydrometeors, increases water vapor by 9% and latent heating by 7%, and provides internal energy for the further development of thunder clouds.

     

/

返回文章
返回