高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青藏高原低涡形成、发展和东移影响下游暴雨天气个例的位涡分析

马婷 刘屹岷 吴国雄 毛江玉 张冠舜

马婷, 刘屹岷, 吴国雄, 毛江玉, 张冠舜. 青藏高原低涡形成、发展和东移影响下游暴雨天气个例的位涡分析[J]. 大气科学, 2020, 44(3): 472-486. doi: 10.3878/j.issn.1006-9895.1904.18275
引用本文: 马婷, 刘屹岷, 吴国雄, 毛江玉, 张冠舜. 青藏高原低涡形成、发展和东移影响下游暴雨天气个例的位涡分析[J]. 大气科学, 2020, 44(3): 472-486. doi: 10.3878/j.issn.1006-9895.1904.18275
MA Ting, LIU Yimin, WU Guoxiong, MAO Jiangyu, ZHANG Guanshun. Effect of Potential Vorticity on the Formation, Development, and Eastward Movement of a Tibetan Plateau Vortex and Its Influence on Downstream Precipitation[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(3): 472-486. doi: 10.3878/j.issn.1006-9895.1904.18275
Citation: MA Ting, LIU Yimin, WU Guoxiong, MAO Jiangyu, ZHANG Guanshun. Effect of Potential Vorticity on the Formation, Development, and Eastward Movement of a Tibetan Plateau Vortex and Its Influence on Downstream Precipitation[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(3): 472-486. doi: 10.3878/j.issn.1006-9895.1904.18275

青藏高原低涡形成、发展和东移影响下游暴雨天气个例的位涡分析

doi: 10.3878/j.issn.1006-9895.1904.18275
基金项目: 国家自然科学基金项目 41730963、91637312、91937302,中国科学院前沿科学重点研究项目 QYZDY-SSW-DQC018

Effect of Potential Vorticity on the Formation, Development, and Eastward Movement of a Tibetan Plateau Vortex and Its Influence on Downstream Precipitation

  • 摘要: 2016年6月28日至7月1日在我国副热带地区发生了一次青藏高原低涡形成、发展及东传引发长江中下游地区暴雨天气的过程。本文利用MERRA2(Modern-Era Retrospective analysis for Research and Applications)再分析资料和TRMM(Tropical Rainfall Measurement Mission)降水资料对该过程进行位涡诊断分析。结果表明,夏季青藏高原地表加热具有强烈的日变化。高原地表加热由白天感热加热源到夜间辐射冷却源的转变直接影响高原上空非绝热加热率的垂直梯度,使高原近地层白天有位涡耗散,夜间有位涡制造,呈现明显的昼夜循环。当夜间的位涡制造异常强,以至不为白天的耗散所抵消时,通常位涡制造的昼夜循环被破坏,高原低涡形成,低涡周围随之出现降水。当低涡中心移动至高原东部时,中心附近伴随有强烈的降水,显著的凝结潜热加热使位涡中心增强,高原低涡进一步发展。随着低涡系统继续向东移出高原,长江中下游地区中高层出现位涡平流随高度增加的大尺度动力背景,上升运动发展,最终导致强降水发生。
  • 图  1  2016年6月27日18:00(当地时间,下同)至7月2日18:00沿29°N~33°N平均的500 hPa等压面(a)位涡(单位:PVU,1 PVU=10−6 K m2 s−1 kg−1)和(b)纬向位涡平流(等值线,单位:10−5 PVU s−1)、降水量[阴影,单位:mm (3 h)−1]的时间—经度剖面

    Figure  1.  Time–longitude cross sections of (a) potential vorticity (PV) (units: PVU, 1 PVU = 10−6 K m2 s−1 kg−1), (b) zonal PV advection (contours, units: 10−5 PVU s−1) and precipitation [shaded, units: mm (3 h)−1] at 500 hPa averaged over 29°N–33°N for the period 1800 LT (Local time) 27 June to 1800 LT 2 July, 2016

    图  2  2016年6月500 hPa位涡(阴影,单位:PVU,1PVU=10−6 K m2 s−1 kg−1)、风场(矢量,单位:m s−1)和降水量(绿色等值线,单位:mm h−1)的演变:(a)27日12:00;(b)28日00:00;(c)28日12:00;(d)29日00:00;(e)29日12:00;(f)29日18:00;(g)30日00:00;(h)30日12:00。红色空心“△”代表原始位涡中心形成的位置,红色实心“〇”代表位涡中心的位置,黑色实线和虚线分别为3000 m和4000 m的地形等高度线(下同)

    Figure  2.  Evolution of PV process (shading, units: PVU, 1 PVU = 10−6 K m2 s−1 kg−1), wind (vectors, units: m s−1) at 500 hPa, and precipitation (green lines, units: mm h−1): (a) 1200 LT 27 June, (b) 0000 LT 28 June, (c) 1200 LT 28 June, (d) 0000 LT 29 June, (e) 1200 LT 29 June, (f) 1800 LT 29 June, (g) 0000 LT 30 June, and (h) 1200 LT 30 June, 2016. “△” is the location of the original PV center and “〇” is the location of the PV center. The black solid and dashed lines indicate elevations of 3000 m and 4000 m, respectively

    图  3  2016年6月27日12:00至30日09:00 500 hPa低涡中心的(a)移动路径以及(b)500 hPa低涡中心位涡强度(折线,单位:PVU)、中心附近1°×1°面积平均降水量(直方图,单位:mm h−1)随时间的演变。(b)中两个蓝色阴影区分别表示高原低涡形成阶段和低涡中心的快速发展阶段

    Figure  3.  (a) Track of the vortex center at 500 hPa, (b) PV time series of the vortex center at 500 hPa (solid line, units: PVU) and the 1°×1° area average precipitation surrounding the vortex center (column, units: mm h−1) from 1200 LT 27 June to 0900 LT 30 June, 2016. The two blue shaded columns indicate the generation period of the TP vortex and its rapid development period, respectively

    图  4  2016年6月27日12:00(左列)、28日00:00(中间列)和29日18:00(右列)500 hPa等压面上的(a–c)位涡(单位:PVU)、(d–f)直接计算的局地位涡变化、(g–i)方程计算得到的局地位涡变化、(j–l)平流项和(m–o)非绝热加热项(单位:10−5 PVU s−1)的分布。红色空心“△”指示原始位涡中心形成的位置(左列);红色实心“〇”指示高原低涡形成(中间列)和发展(右列)时所处的位置

    Figure  4.  Distribution of (a–c) PV (units: PVU), (d–f) the local change of the PV calculated based directly on data, (g–i) the local change of the PV calculated based on the equation, (j–l) advection term in PV equation and (m–o) diabatic term in PV equation (units: 10−5 PVU s−1) at 500 hPa at 1200 LT 27 June (left column), 0000 LT 28 June (middle column), and 1800 LT 29 June (right column), 2016. “△” is the location of the original PV center (left column), “〇” is the location of the PV center during its generation (middle column) and development (right column) stages

    图  5  2016年6月27日00:00和12:00、28日00:00以及29日18:00位涡中心位置附近非绝热加热率的垂直廓线(单位:K d−1

    Figure  5.  Vertical profiles of diabatic heating for 0000 LT June 27, 1200 LT 27 June, 0000 LT 28 June, and 1800 LT 29 June, 2016 over the position of the associated vorticity center (units: K d−1)

    图  6  2016年6月29日18:00至7月1日18:00(a)48 h累计降水量(单位:mm)分布以及(b)长江中下游地区(29.5°N~33°N,112°E~119°E;图6a黑色方框所示区域)区域平均的3 h累积降水量(单位:mm)随时间的演变,(a)中黑色粗实线为3000 m地形等高度线

    Figure  6.  (a) Distribution of 48-h accumulated precipitation (units: mm), (b) the evolution of the area-averaged (29.5°N–33°N, 112°E–119°E; box area shown in Fig. 6a) 3-h accumulated precipitation (units: mm) from 1800 LT 29 June to 1800 LT 1 July, 2016. The thick black solid line indicate elevations of 3000 m

    图  7  2016年6月30日00:00至7月1日18:00 3 h累计降水量(阴影,单位:mm)、500 hPa位涡(等值线,间隔为0.4 PVU)和风场(矢量,单位:m s−1)。红色实心“〇”代表位涡中心的位置,黑色方框所示区域为长江中下游地区(29.5°N~33°N,112°E~119°E)。

    Figure  7.  Evolution of the 3-hour accumulated precipitation (shading, units: mm), PV (contours, interval 0.4 PVU) and wind (vectors, units: m s−1) at 500 hPa from 0000 LT 30 June to 1800 LT 1 July, 2016. “〇” is the location of the PV center, and the black box indicates the location of the area shown in Fig. 6a.

    图  8  2016年6月30日12:00至7月1日18:00沿112°E~119°E平均的纬向位涡平流(阴影,单位:10−5 PVU s−1)、经向位涡平流(等值线,单位:10−5 PVU s−1)和风场(矢量,单位:m s−1)的高度—纬度剖面

    Figure  8.  Vertical cross sections of zonal PV advection (shading, units: 10−5 PVU s−1), meridional PV advection (contours, unit: 10−5 PVU s−1), and wind (vectors, units: m s−1) averaged over 112°E~119°E from 1200 LT 30 June to 1800 LT 1 July, 2016

    图  9  2016年6月30日12:00至7月1日18:00沿112°E~119°E平均的位涡平流随高度的变化项(阴影,单位:10−17 s−3 Pa−1)和垂直速度(等值线,单位:Pa s−1)的高度—纬度剖面

    Figure  9.  Vertical cross sections of vertical differential PV advection (shading, units: 10−17 s−3 Pa−1) and vertical velocity (contour, units: Pa s−1) averaged over 112°E~119°E from 1200 LT 30 June to 1800 LT 1 July, 2016

  • [1] Bracegirdle T J, Gray S L. 2009. The dynamics of a polar low assessed using potential vorticity inversion [J]. Quart. J. Roy. Meteor. Soc., 135(641): 880-893. doi: 10.1002/qj.411
    [2] Chen S J, Dell’Osso L. 1984. Numerical prediction of the heavy rainfall vortex over Eastern Asia monsoon region [J]. J. Meteor. Soc. Japan, 62(5): 730-747. doi: 10.2151/jmsj1965.62.5_730
    [3] 陈忠明, 徐茂良, 闵文彬, 等. 2003. 1998年夏季西南低涡活动与长江上游暴雨 [J]. 高原气象, 22(2): 162-167
    [4] Chen Zhongming, Xu Maoliang, Min Wenbing, et al. 2003. Relationship between abnormal activities of Southwest Vortex and heavy rain the upper reach of Yangtze River during summer of 1998 [J]. Plateau Meteorology (in Chinese), 22(2): 162-167. doi: 10.3321/j.issn:1000-0534.2003.02.010
    [5] Duan A M, Wang M R, Lei Y H, et al. 2013. Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980-2008 [J]. J. Climate, 26(1): 261-275. doi: 10.1175/JCLI-D-11-00669.1
    [6] Ertel H. 1942. Ein neuer hydrodynamischer Wirbelsatz [J]. Meteorologische Zeitschrif, 59: 277-281.
    [7] 高辉, 袁媛, 洪洁莉, 等. 2017. 2016年汛期气候预测效果评述及主要先兆信号与应用 [J]. 气象, 43(4): 486-494
    [8] Gao Hui, Yuan Yuan, Hong Jieli, et al. 2017. Overview of climate prediction of the Summer 2016 and the precursory signals [J]. Meteorological Monthly (in Chinese), 43(4): 486-494. doi: 10.7519/j.issn.1000-0526.2017.04.011
    [9] Griffiths M, Thorpe A J, Browning K A. 2000. Convective destabilization by a tropopause fold diagnosed using potential-vorticity inversion [J]. Quart. J. Roy. Meteor. Soc., 126(562): 125-144. doi: 10.1002/qj.49712656207
    [10] Haynes P H, McIntyre M E. 1987. On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces [J]. J. Atmos. Sci., 44(5): 828-841. doi: 10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2.\
    [11] Haynes P H, McIntyre M E. 1990. On the conservation and impermeability theorems for potential vorticity [J]. J. Atmos. Sci., 47(16): 2021-2031. doi: 10.1175/1520-0469(1990)047<2021:OTCAIT>2.0.CO;2
    [12] Hoskins B. 1997. A potential vorticity view of synoptic development [J]. Meteorological Applications, 4(4): 325-334. doi: 10.1017/S1350482797000716
    [13] Hoskins B, Pedder M, Jones D W. 2003. The omega equation and potential vorticity [J]. Quart. J. Roy. Meteor. Soc., 129(595): 3277-3303. doi: 10.1256/qj.02.135
    [14] Hoskins B. 2015. Potential vorticity and the PV perspective [J]. Advances in Atmospheric Sciences, 32(1): 2-9. doi: 10.1007/s00376-014-0007-8
    [15] Hoskins B J, McIntyre M E, Robertson A W. 1985. On the use and significance of isentropic potential vorticity maps [J]. Quart. J. Roy. Meteor. Soc., 111(470): 877-946. doi: 10.1002/qj.49711147002
    [16] Hoskins B J. 1991. Towards a PV-θ view of the general circulation [J]. Tellus A: Dyn. Meteor. Oceanogr, 43(4): 27-35. doi: 10.3402/tellusa.v43i4.11936
    [17] Huffman G J, Bolvin D T, Nelkin E J, et al. 2007. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales [J]. Hydrometeor, 8(1): 38-55. doi: 10.1175/JHM560.1
    [18] Huo Z H, Zhang D L, Gyakum J R. 1999. Interaction of potential vorticity anomalies in extratropical cyclogenesis. Part I: Static piecewise inversion [J]. Mon. Wea. Rev., 127(11): 2546-2562. doi: 10.1175/1520-0493(1999)127<2546:IOPVAI>2.0.CO;2
    [19] 李国平. 2002. 青藏高原动力气象学 [M]. 北京: 气象出版社, 78–79.
    [20] Li Guoping. 2002. Dynamic Meteorology of the Tibetan Plateau (in Chinese) [M]. Beijing: China Meteorological Press, 78–79.
    [21] 李国平, 赵邦杰, 杨锦青. 2002. 地面感热对青藏高原低涡流场结构及发展的作用 [J]. 大气科学, 26(4): 519-525
    [22] Li Guoping, Zhao Bangjie, Yang Jinqing. 2002. A dynamical study of the role of surface sensible heating in the structure and intensification of the Tibetan Plateau vortices [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26(4): 519-525. doi: 10.3878/j.issn.1006-9895.2002.04.09
    [23] Li L, Zhang R H, Wen M. 2014. Diurnal variation in the occurrence frequency of the Tibetan Plateau vortices [J]. Meteor. Atmos. Phys., 125(3-4): 135-144. doi: 10.1007/s00703-014-0325-5
    [24] Li L, Zhang R H, Wen M. 2018. Diurnal variation in the intensity of nascent Tibetan Plateau vortices [J]. Quart. J. Roy. Meteor. Soc., 144(717): 2524-2536. doi: 10.1002/qj.3343
    [25] 刘新, 吴国雄, 李伟平. 2006. 夏季青藏高原加热和环流场的日变化 [J]. 地球科学进展, 21(12): 1273-1282
    [26] Liu Xin, Wu Guoxiong, Li Weiping. 2006. The diurnal variation of the atmospheric circulation and diabatic heating over the Tibetan Plateau [J]. Advances in Earth Science (in Chinese), 21(12): 1273-1282. doi: 10.11867/j.issn.1001-8166.2006.12.1273
    [27] Liu Y M, Bao Q, Duan A M, et al. 2007. Recent Progress in the impact of the Tibetan Plateau on climate in China [J]. Advances in Atmospheric Sciences, 24(6): 1060-1076. doi: 10.1007/s00376-007-1060-3
    [28] 卢志贤, 李昀英, 方乐锌. 2016. 中国及周边海域对流云团的水平和垂直尺度 [J]. 气象学报, 74(6): 935-946
    [29] Lu Zhixian, Li Yunying, Fang Lexin. 2016. Horizontal and vertical scales of convective clouds over China and the surrounding oceans [J]. Acta Meteorologica Sinica (in Chinese), 74(6): 935-946. doi: 10.11676/qxxb2016.074
    [30] Lucchesi R. 2012. File specification for MERRA products [EB/OL]. GMAO Office Note, http://www.oalib.com/references/18902048.
    [31] 马婷婷, 吴国雄, 刘屹岷, 等. 2018. 青藏高原地表位涡密度强迫对2008年1月中国南方降水过程的影响I: 资料分析 [J]. 气象学报, 76(6): 870-886
    [32] Ma Tingting, Wu Guoxiong, Liu Yimin, et al. 2018. Impacts of surface potential vorticity density forcing over the Tibetan Plateau on the evolution of precipitation over Southern China in January 2008. Part I: Data analysis [J]. Acta Meteorologica Sinica (in Chinese), 76(6): 870-886. doi: 10.11676/qxxb2018.052
    [33] Wu Guoxiong, Ma Tingting, Liu Yimin, et al. 2020. PV-Q Perspective of cyclogenesis and vertical Velocity Development Downstream of the Tibetan Plateau [J]. J. Geophys. Res.
    [34] Nielsen-Gammon J W, Gold D A. 2008. Dynamical diagnosis: A comparison of quasigeostrophy and Ertel potential vorticity [J]. Meteor. Monogr., 33(55): 183-202. doi: 10.1175/0065-9401-33.55.183
    [35] Rienecker M M, Suarez M J, Gelaro R, et al. 2011. MERRA: NASA’s modern-era retrospective analysis for research and applications [J]. J. Climate, 24(12): 3624-3648. doi: 10.1175/JCLI-D-11-00015.1
    [36] 孙劭, 李多, 刘绿柳, 等. 2017. 2016年全球重大天气气候事件及其成因 [J]. 气象, 43(4): 477-485
    [37] Sun Shao, Li Duo, Liu Lüliu, et al. 2017. Global major weather and climate events in 2016 and the possible causes [J]. Meteorological Monthly (in Chinese), 43(4): 477-485. doi: 10.7519/j.issn.1000-0526.2017.04.010
    [38] Tao S Y, Ding Y H. 1981. Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China [J]. Bull. Amer. Meteor. Soc., 62(1): 23-30. doi: 10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2
    [39] 陶诗言, 张庆云, 张顺利. 1998. 1998年长江流域洪涝灾害的气候背景和大尺度环流条件 [J]. 气候与环境研究, 3(4): 290-299
    [40] Tao Shiyan, Zhang Qingyun, Zhang Shunli. 1998. The great floods in the Changjiang River valley in 1998 [J]. Climatic and Environmental Research (in Chinese), 3(4): 290-299. doi: 10.3878/j.issn.1006-9585.1998.04.01
    [41] Wan B C, Gao Z Q, Chen F, et al. 2017. Impact of Tibetan Plateau surface heating on persistent extreme precipitation events in southeastern China [J]. Mon. Wea. Rev., 145(9): 3485-3505. doi: 10.1175/MWR-D-17-0061.1
    [42] Wu C H, Chou M D, Fong Y H. 2018. Impact of the Himalayas on the Meiyu-Baiu Migration [J]. Climate Dyn., 50(3–4): 1307-1319. doi: 10.1007/s00382-017-3686-x
    [43] 吴国雄, 蔡雅萍, 唐晓箐. 1995. 湿位涡和倾斜涡度发展 [J]. 气象学报, 53(4): 387-405
    [44] Wu Guoxiong, Cai Yaping, Tang Xiaojing. 1995. Moist potential vorticity and slantwise vorticity development [J]. Acta Meteorologica Sinica (in Chinese), 53(4): 387-405. doi: 10.11676/qxxb1995.045
    [45] 吴国雄, 蔡雅萍. 1997. 风垂直切变和下滑倾斜涡度发展 [J]. 大气科学, 21(3): 273-282
    [46] Wu Guoxiong, Cai Yaping. 1997. Vertical wind shear and down-sliding slantwise vorticity development [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 21(3): 273-282. doi: 10.3878/j.issn.1006-9895.1997.03.03
    [47] 杨克明, 毕宝贵, 李月安, 等. 2001. 1998年长江上游致洪暴雨的分析研究 [J]. 气象, 27(8): 9-14
    [48] Yang Keming, Bi Baogui, Li Yuean, et al. 2001. On flood-causing torrential rainfall in the upstream district of Changjiang River in 1998 [J]. Meteorological Monthly (in Chinese), 27(8): 9-14. doi: 10.3969/j.issn.1000-0526.2001.08.002
    [49] Yasunari T, Miwa T. 2006. Convective cloud systems over the Tibetan Plateau and their impact on meso-scale disturbances in the Meiyu/Baiu frontal zone [J]. J. Meteor. Soc. Japan, 84(4): 783-803. doi: 10.2151/jmsj.84.783
    [50] Ye D Z. 1981. Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood [J]. Bull. Amer. Meteor. Soc., 62(1): 14-19. doi: 10.1175/1520-0477(1981)062<0014:SCOTSC>2.0.CO;2
    [51] 叶笃正, 高由禧. 1979. 青藏高原气象学 [M]. 北京: 科学出版社, 115–126.
    [52] Ye Duzheng, Gao Youxi. 1979. Meteorology of the Tibetan Plateau (in Chinese) [M]. Beijing: Science Press, 115–126.
    [53] 于佳卉, 刘屹岷, 马婷婷, 等. 2018. 青藏高原地表位涡密度强迫对2008年1月中国南方降水过程的影响Ⅱ: 数值模拟 [J]. 气象学报, 76(6): 887-903
    [54] Yu Jiahui, Liu Yimin, Ma Tingting, et al. 2018. The influence of surface potential vorticity density forcing over the Tibetan Plateau in the 2008 winter storm. Part Ⅱ: Numerical Simulation [J]. Acta Meteorologica Sinica (in Chinese), 76(6): 887-903. doi: 10.11676/qxxb2018.043
    [55] 郁淑华, 高文良, 彭骏. 2012. 青藏高原低涡活动对降水影响的统计分析 [J]. 高原气象, 31(3): 592-604
    [56] Yu Shuhua, Gao Wenliang, Peng Jun. 2012. Statistical analysis on influence of Qinghai-Xizang Plateau vortex activity on precipitation in China [J]. Plateau Meteorology (in Chinese), 31(3): 592-604.
    [57] 袁媛, 高辉, 李维京, 等. 2017. 2016年和1998年汛期降水特征及物理机制对比分析 [J]. 气象学报, 75(1): 19-38
    [58] Yuan Yuan, Gao Hui, Li Weijing, et al. 2017. Analysis and comparison of summer precipitation features and physical mechanisms between 2016 and 1998 [J]. Acta Meteorologica Sinica (in Chinese), 75(1): 19-38. doi: 10.11676/qxxb2017.019
    [59] 张顺利, 陶诗言, 张庆云, 等. 2002. 长江中下游致洪暴雨的多尺度条件 [J]. 科学通报, 47(9): 779-786
    [60] Zhang Shunli, Tao Shiyan, Zhang Qingyun, et al. 2002. Large and meso-α scale characteristics of intense rainfall in the mid- and lower reaches of the Yangtze River [J]. Chinese Science Bulletin, 47(9): 779-786. doi: 10.3321/j.issn:0023-074X.2002.06.017
    [61] 张恬月, 李国平. 2016. 夏季青藏高原地面热源和高原低涡生成频数的日变化 [J]. 沙漠与绿洲气象, 10(2): 70-76
    [62] Zhang Tianyue, Li Guoping. 2016. The diurnal variation of the surface heat source on the Tibetan Plateau and the generating frequency of Tibetan Plateau vortex in summer [J]. Desert and Oasis Meteorology (in Chinese), 10(2): 70-76. doi: 10.3969/j.issn.1002-0799.2016.02.011
    [63] 赵兵科, 吴国雄, 姚秀萍. 2008. 2003年夏季梅雨期一次强气旋发展的位涡诊断分析 [J]. 大气科学, 32(6): 1241-1255
    [64] Zhao Bingke, Wu Guoxiong, Yao Xiuping. 2008. A diagnostic analysis of potential vorticity associated with development of a strong cyclone during the Meiyu period of 2003 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(6): 1241-1255. doi: 10.3878/j.issn.1006-9895.2008.06.02
    [65] 卓嘎, 徐祥德, 陈联寿. 2002. 青藏高原对流云团东移发展的不稳定特征 [J]. 应用气象学报, 13(4): 447-456
    [66] Zhuo Ga, Xu Xiangde, Chen Lianshou. 2002. Instability of eastward movement and development of convective cloud clusters over Tibetan Plateau [J]. Journal of Applied Meteorological Science (in Chinese), 13(4): 447-456. doi: 10.3969/j.issn.1001-7313.2002.04.008
  • 加载中
图(9)
计量
  • 文章访问数:  337
  • HTML全文浏览量:  8
  • PDF下载量:  375
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-26

目录

    /

    返回文章
    返回