高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

六盘山地区空中水资源特征及水凝物降水效率研究

张沛 姚展予 贾烁 常倬林 桑建人 高亮书 赵文慧 王伟健 祝晓芸

张沛, 姚展予, 贾烁, 常倬林, 桑建人, 高亮书, 赵文慧, 王伟健, 祝晓芸. 六盘山地区空中水资源特征及水凝物降水效率研究[J]. 大气科学, 2020, 44(2): 421-434. doi: 10.3878/j.issn.1006-9895.1904.19104
引用本文: 张沛, 姚展予, 贾烁, 常倬林, 桑建人, 高亮书, 赵文慧, 王伟健, 祝晓芸. 六盘山地区空中水资源特征及水凝物降水效率研究[J]. 大气科学, 2020, 44(2): 421-434. doi: 10.3878/j.issn.1006-9895.1904.19104
ZHANG Pei, YAO Zhanyu, JIA Shuo, CHANG Zhuolin, SANG Jianren, GAO Liangshu, ZHAO Wenhui, WANG Weijian, ZHU Xiaoyun. Study of the Characteristics of Atmospheric Water Resources and Hydrometeor Precipitation Efficiency over the Liupan Shan Area[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(2): 421-434. doi: 10.3878/j.issn.1006-9895.1904.19104
Citation: ZHANG Pei, YAO Zhanyu, JIA Shuo, CHANG Zhuolin, SANG Jianren, GAO Liangshu, ZHAO Wenhui, WANG Weijian, ZHU Xiaoyun. Study of the Characteristics of Atmospheric Water Resources and Hydrometeor Precipitation Efficiency over the Liupan Shan Area[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(2): 421-434. doi: 10.3878/j.issn.1006-9895.1904.19104

六盘山地区空中水资源特征及水凝物降水效率研究

doi: 10.3878/j.issn.1006-9895.1904.19104
基金项目: 科技部战略性国际科技创新合作重点专项2016YFE0201900,国家自然科学基金项目41775139,科技部公益性行业(气象)科研专项GYHY201406033

Study of the Characteristics of Atmospheric Water Resources and Hydrometeor Precipitation Efficiency over the Liupan Shan Area

  • 摘要: 为了利用人工增雨技术合理开发六盘山地区空中水资源,首先需要了解该地区水汽场、地形对当地降水的影响和空中水资源的特征及典型降水过程中云系的降水效率。本文采用欧洲中期天气预报中心(ECMWF)发布的高时空分辨率ERA5再分析数据集和中分辨率成像光谱仪(MODIS)数据,通过统计分析研究了该地区水汽的输送、地形强迫作用下的辐合抬升状况和地形云参量特征,并分别利用WRF模式数值模拟的输出结果和ERA5再分析数据,估算2016~2017年夏季自西向东移经该山区的多次混合降水云系的水凝物降水效率。研究结果表明:位于西北地区东部的六盘山地区具有较为丰沛的大气可降水量和更强的水汽输送。受亚洲季风影响,夏季偏南风向六盘山地区输送了丰沛的水汽,山区成为相对湿度高值区;春、夏、秋季午后山区云量(CF)达70%及以上,夏季云水路径(CWP)和云光学厚度(COT)均明显大于周边地区。在夏季降水过程中,地形引起的动力场对降水有明显的影响,在日降水量5 mm以上强度的过程中,气流遇迎风坡地形产生明显辐合抬升,且辐合抬升越强时降水强度越大。夏季典型降水系统中,山区水凝物降水效率平均约为48.1%,空中还有较大部分的水凝物未能成为降水。因此作为水源涵养地的六盘山地区夏季空中水资源相对丰富而降水量不足,空中水资源具有一定开发空间。
  • 图  1  1987~2017年西北地区东部平均年降水量(单位:mm)分布。红色矩形框表示六盘山地区,绿色椭圆框表示祁连山地区

    Figure  1.  Annual average precipitation (units: mm) distribution in the eastern part of Northwest China during the period 1987–2017. The red rectangular and green elliptical frame represent the Liupan Shan and Qilian Mountain areas, respectively

    图  2  2010~2017年西北地区东部(a)年平均和(b)夏季平均的大气可降水量(单位:mm)分布

    Figure  2.  (a) Annual and (b) summer average distribution of atmospheric precipitable water (units: mm) in the eastern part of Northwest China during the period 2010–2017

    图  3  2010~2017年西北地区东部(a)年平均和(b)夏季平均的整层水汽通量(单位:g cm−1 s−1)分布

    Figure  3.  (a) Annual and (b) summer average distribution of water vapor fluxes (units: g cm−1 s−1) of whole layer in the eastern part of Northwest China during the period 2010–2017

    图  4  2010~2017年西北地区东部(a)年平均和(b)夏季平均的700 hPa水汽通量(阴影,单位:g s−1 hPa−1 cm−1)和风场(箭头,单位:m s−1)分布

    Figure  4.  (a) Annual and (b) summer average distribution of vapor fluxes (shadings, units: g s−1 hPa−1 cm−1) and wind (arrows, units: m s−1) at 700 hPa in the eastern part of Northwest China during the period 2010–2017

    图  5  2010~2017年六盘山山区夏季较强降水过程中750 hPa高度处风场(箭头,单位:m s−1)及水汽通量散度(彩色阴影,单位:g s−1 cm−2 hPa−1)的平均水平分布。黑色实线为海拔2000 m以上地形,白色实线为省界线

    Figure  5.  Average horizontal distribution of wind (arrows, units: m s−1) and water vapor flux divergence (shadings, units: g s−1 cm−2 hPa−1) at 750 hPa during heavy summer precipitation in the Liupan Shan area during the period 2010–2017. The black solid lines indicate the altitude over 2000 m, the white lines represent the provincial boundary

    图  6  2010~2017年六盘山地区水汽通量散度(彩色阴影,单位:g s−1 cm−2 hPa−1)在(a、e)第2类(5~10 mm)、(b、f)第3类(10~15 mm)、(c、g)第4类(15~25 mm)、(d、h)第5类(>25 mm)降水强度下沿(a–d)35.5°N、(e–h)106.2°E的垂直剖面的平均分布。黑色阴影为地形,红色圆圈指示六盘山山顶所在位置

    Figure  6.  Average vertical distribution of water vapor flux divergence (shadings, units: g s−1 cm−2 hPa−1) along (a–d) 35.5°N, (e–h) 106.2°E under the (a, e) second (5–10 mm), (b, f) third (10–15 mm), (c, g) fourth (15–25 mm), (d, h) fifth (>25 mm) rainfall intensity in the Liupan Shan area during the period 2010–2017. The black shadow shows the terrain, the red circles indicate the location of the top of the Liupan Mountain

    图  7  六盘山地区(a、d、g)春季、(b、e、h)夏季、(c、f、i)秋季的云参量平均分布:(a–c)云量CF;(d–f)云水路径CWP(单位:g m−2);(g–i)云光学厚度COT。墨绿色实线为2000 m以上海拔,黑色实线表示省界

    Figure  7.  Average distribution of cloud parameters in the Liupan Shan area during (a, d, g) spring, (b, e, h) summer, and (c, f, i) autumn: (a–c) CF (Cloud Fraction); (d–f) CWP (Cloud Water Path, unit: g m−2); (g–i) COT (Cloud Optical Thickness). The dark green solid lines indicate the altitude over 2000 m, and the black lines denote the provincial boundary

    图  8  六盘山地区春、夏、秋季降水云系的(a)CWP(单位:g m−2)和(b)COT沿35.5°N的纬向分布

    Figure  8.  Average zonal distribution (along 35.5°N) of (a) CWP (units: g m−2) and (b) COT of precipitation clouds in spring, summer, and autumn in the Liupan Mountain area

    图  9  WRF模式两层嵌套的模拟域示意图

    Figure  9.  The double nested simulation domains used in the WRF (Weather Research and Forecasting) model

    图  10  五次降水过程的降水量平均值(单位:mm):(a)自动气象站雨量资料;(b)WRF模式模拟

    Figure  10.  Mean precipitation (units: mm) obtained from (a) automatic meteorological stations and (b) the WRF model in five precipitation processes

    图  11  利用WRF模式模拟结果估算五次降水过程中评估时段内水凝物降水效率的平均分布。墨绿色实线表示海拔高于2000 m,黑色实线表示省界

    Figure  11.  Average distribution of the hydrometeor precipitation efficiency during five assessment periods estimated from the results of the WRF model. The dark green solid lines indicate the altitude over 2000 m, and the black lines denote the provincial boundary

    表  1  五次降水过程的天气系统、系统移向、模拟与实况降水场的空间相关系数R和均方根误差RMSE(单位:mm)

    Table  1.   Weather system, moving direction, spatial correlation coefficient R and root mean square error (RMSE) (units: mm) between the simulated and real precipitation of five precipitation processes

    个例日期天气系统系统移向RRMSE/mm
    2016年6月22~23日500 hPa高空槽+700 hPa风切变东—西0.8206.228
    2017年6月3~4日500 hPa高空槽+700 hPa风切变东—西0.7593.939
    2017年7月26~27日冷涡+副高西北侧西南暖湿气流东—西0.6645.320
    2017年8月6~7日高原槽+副高北侧暖湿气流西北—东南0.7097.801
    2017年8月21~22日500 hPa高空槽+700 hPa风切变东—西0.7184.358
    注:R值均通过0.001显著性水平的显著性检验。
    下载: 导出CSV

    表  2  利用WRF模式模拟结果估算五次降水过程中评估时段内六盘山地区水凝物总量和降水效率

    Table  2.   Total hydrometeor content and precipitation efficiency in the Liupan Mountain area during five assessment periods estimated from the results of the WRF model

    个例日期评估时段(UTC)水凝物总量/1011 kg水凝物降水效率
    2016年6月22~23日6月22日12时至次日02时549.5%
    2017年6月3~4日6月4日00~12时2.950.2%
    2017年7月26~27日7月26日15时至次日03时1.547%
    2017年8月6~7日8月6日20至次日08时2.153.9%
    2017年8月21~22日8月21日16至次日02时4.640.1%
    下载: 导出CSV
  • [1] Barth E L. 2010. Cloud formation along mountain ridges on Titan[J]. Planetary and Space Science, 58(13):1740-1747. doi: 10.1016/j.pss.2010.07.013
    [2] Bendix J, Rollenbeck R, Palacios W E. 2004. Cloud detection in the Tropics-A suitable tool for climate-ecological studies in the high mountains of Ecuador[J]. Int. J. Remote Sens., 25(21):4521-4540. doi: 10.1080/01431160410001709967
    [3] Carrasco E, Avila R, Erasmus A, et al. 2017. A satellite survey of cloud cover and water vapor in the southwestern USA and northern Mexico[J]. Publications of the Astronomical Society of the Pacific, 129(973):035005. doi: 10.1088/1538-3873/129/973/035005
    [4] 程菲, 杨军. 2016. 东天山迎风坡与高海拔区域降水效率对比研究[J]. 科学技术与工程, 16(22):12-19. Cheng Fei, Yang Jun. 2016. The comparative study on the precipitation efficiency between windward slope and high altitude region in the eastern Tianshan mountains[J]. Science Technology and Engineering (in Chinese), 16(22):12-19. doi: 10.3969/j.issn.1671-1815.2016.22.003
    [5] Durán L, Rodríguez-Fonseca B, Yagüe C, et al. 2015. Water vapour flux patterns and precipitation at Sierra de Guadarrama mountain range (Spain)[J]. International Journal of Climatology, 35(7):1593-1610. doi: 10.1002/joc.4079
    [6] ECMWF. 2017. ERA5 data documentation[EB/OL]. https://software.ecmwf.int/wiki/display/CKB/ERA5+data+documentation[2019-03-04].
    [7] Giovannettone J P, Barros A P. 2009. Probing regional orographic controls of precipitation and cloudiness in the central Andes using satellite data[J]. Journal of Hydrometeorology, 10(1):167-182. doi: 10.1175/2008JHM973.1
    [8] 洪延超, 周非非. 2006. 层状云系人工增雨潜力评估研究[J]. 大气科学, 30(5):913-926. Hong Yanchao, Zhou Feifei. 2006. The study of evaluation of potential of artificial precipitation enhancement in stratiform cloud system[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(5):913-926. doi: 10.3878/j.issn.1006-9895.2006.05.20
    [9] Kawase H, Takeuchi Y, Sato T, et al. 2006. Precipitable water vapor around orographically induced convergence line[J]. SOLA, 2:25-28. doi: 10.2151/sola.2006-007
    [10] 李宏宇, 王华, 洪延超. 2006. 锋面云系降水中的增雨潜力数值研究[J]. 大气科学, 30(2):341-350. Li Hongyu, Wang Hua, Hong Yanchao. 2006. A numerical study of precipitation enhancement potential in frontal cloud system[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(2):341-350. doi: 10.3878/j.issn.1006-9895.2006.02.16
    [11] 林志强, 唐叔乙, 何晓红, 等. 2011. 西藏高原汛期水汽输送特征与降水异常[J]. 气象, 37(8):984-990. Lin Zhiqiang, Tang Shuyi, He Xiaohong, et al. 2011. Features of water vapor transfer in rainy season and their relations to rainfall anomalies over Tibetan Plateau[J]. Meteorological Monthly (in Chinese), 37(8):984-990. doi: 10.7519/j.issn.1000-0526.2011.8.010
    [12] 刘洪利, 朱文琴, 宜树华, 等. 2003. 中国地区云的气候特征分析[J]. 气象学报, 61(4):466-473. Liu Hongli, Zhu Wenqin, Yi Shuhua, et al. 2003. Climatic analysis of the cloud over China[J]. Acta Meteor. Sinica (in Chinese), 61(4):466-473. doi: 10.11676/qxxb2003.045
    [13] 刘玉芝, 常姝婷, 华珊, 等. 2018. 东亚干旱半干旱区空中水资源研究进展[J]. 气象学报, 76(3):485-492. Liu Yuzhi, Chang Shuting, Hua Shan, et al. 2018. A review of the research on atmospheric water resources over arid and semi-arid regions of East Asia[J]. Acta Meteor. Sinica (in Chinese), 76(3):485-492. doi: 10.11676/qxxb2018.004
    [14] Ma X G, Jia W X, Zhu G F, et al. 2018. Stable isotope composition of precipitation at different elevations in the monsoon marginal zone[J]. Quaternary International, 493:86-95. doi: 10.1016/j.quaint.2018.06.038
    [15] 石晓兰, 杨青, 姚俊强, 等. 2016. 基于ERA-Interim资料的中国天山山区云水含量空间分布特征[J]. 沙漠与绿洲气象, 10(2):50-56. Shi Xiaolan, Yang Qing, Yao Junqiang, et al. 2016. The spatial distribution of water vapor and cloud water content over Tianshan mountains, China based on ERA-interim dataset[J]. Desert and Oasis Meteorology (in Chinese), 10(2):50-56. doi: 10.3969/j.issn.1002-0799.2016.02.008
    [16] Smith B L, Yuter S E. 2010. Water vapor fluxes and orographic precipitation over northern California associated with a landfalling atmospheric river[J]. Mon. Wea. Rev., 138(1):74-100. doi: 10.1175/2009MWR2939.1
    [17] Sui C H, Li X F, Yang M J, et al. 2007. On the definition of precipitation efficiency[J]. J. Atmos. Sci., 64(12):4506-4513. doi: 10.1175/2007JAS2332.1
    [18] Sumargo E, Cayan D R. 2017. Variability of cloudiness over mountain terrain in the western United States[J]. Journal of Hydrometeorology, 18(5):1227-1245. doi: 10.1175/JHM-D-16-0194.1
    [19] Sun B L, Zhang X, Sun K, et al. 2016. Study on potential and countermeasures of artificial precipitation enhancement in Fuxin region[J]. Meteorological and Environmental Research, 7(6):13-21, 28. doi: 10.1108/IJDRBE-10-2019-0073
    [20] 陶玥, 李军霞, 党娟, 等. 2015. 北京一次积层混合云系结构和水分收支的数值模拟分析[J]. 大气科学, 39(3):445-460. Tao Yue, Li Junxia, Dang Juan, et al. 2015. A numerical study on precipitation process and moisture budget of stratiform and embedded convective cloud over Beijing area[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(3):445-460. doi: 10.3878/j.issn.1006-9895.1412.13209
    [21] Urraca R, Huld T, Gracia-Amillo A, et al. 2018. Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data[J]. Solar Energy, 164:339-354. doi: 10.1016/j.solener.2018.02.059
    [22] Vondou D A. 2012. Spatio-temporal variability of western central African convection from infrared observations[J]. Atmosphere, 3(3):377-399. doi: 10.3390/atmos3030377
    [23] 王宝鉴, 黄玉霞, 何金海, 等. 2004. 东亚夏季风期间水汽输送与西北干旱的关系[J]. 高原气象, 23(6):912-918. Wang Baojian, Huang Yuxia, He Jinhai, et al. 2004. Relation between vapour transportation in the period of East Asian summer monsoon and drought in Northwest China[J]. Plateau Meteorology (in Chinese), 23(6):912-918. doi: 10.3321/j.issn:1000-0534.2004.06.026
    [24] 王可丽, 江灏, 赵红岩. 2005. 西风带与季风对中国西北地区的水汽输送[J]. 水科学进展, 16(3):432-438. Wang Keli, Jiang Hao, Zhao Hongyan. 2005. Atmospheric water vapor transport from westerly and monsoon over the Northwest China[J]. Advances in Water Science (in Chinese), 16(3):432-438. doi: 10.3321/j.issn:1001-6791.2005.03.021
    [25] Wang X J, Pang G J, Yang M X, et al. 2018. Precipitation changes in the Qilian mountains associated with the shifts of regional atmospheric water vapour during 1960-2014[J]. International Journal of Climatology, 38(12):4355-4368. doi: 10.1002/joc.5673
    [26] 杨瑜峰. 2014. 中国西北东部近50 a降水异常分布及变化特征[J]. 干旱气象, 32(5):701-705, 711. Yang Yufeng. 2014. Characteristics of precipitation anomalies in the last 50 years in eastern part of Northwest China[J]. Journal of Arid Meteorology (in Chinese), 32(5):701-705, 711. doi: 10.11755/j.issn.1006-7639(2014)-05-0701
    [27] 杨辉, 宋正山, 朱抱真. 1998. 1979年5月东南亚夏季风的建立和青藏高原的作用[J]. 大气科学, 22(6):858-866. Yang Hui, Song Zhengshan, Zhu Baozhen. 1998. Onset of the Southeast Asia summer monsoon in 1979 and the effect of the Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 22(6):858-866. doi: 10.3878/j.issn.1006-9895.1998.06.06
    [28] 宜树华, 刘洪利, 李维亮, 等. 2003. 中国西北地区云时空分布特征的初步分析[J]. 气象, 29(1):7-11. Yi Shuhua, Liu Hongli, Li Weiliang, et al. 2003. Spatial and temporal distributions of cloud over northwest of China[J]. Meteorological Monthly (in Chinese), 29(1):7-11. doi: 10.7519/j.issn.1000-0526.2003.1.002
    [29] 袁野, 王成章, 蒋年冲, 等. 2005. 不同云天条件下水汽含量特征及其变化分析[J]. 气象科学, 25(4):394-398. Yuan Ye, Wang Chengzhang, Jiang Nianchong, et al. 2005. Analyzing the character and the change of water vapor under the different cloud weather[J]. Scientia Meteorologica Sinica (in Chinese), 25(4):394-398. doi: 10.3969/j.issn.1009-0827.2005.04.009
    [30] 张良, 王式功, 尚可政, 等. 2007. 祁连山区空中水资源研究[J]. 干旱气象, 25(1):14-20, 47. Zhang Liang, Wang Shigong, Shang Kezheng, et al. 2007. Research on vapor and precipitation resources over the Qilian Mountain area[J]. Arid Meteorology (in Chinese), 25(1):14-20, 47. doi: 10.3969/j.issn.1006-7639.2007.01.003
    [31] Zhang Q, Zhang J, Sun G W, et al. 2008. Research on water-vapor distribution in the air over Qilian mountains[J]. Acta Meteor. Sinica, 22(1):107-118.
    [32] 张扬, 李宝富, 陈亚宁. 2018. 1970~2013年西北干旱区空中水汽含量时空变化与降水量的关系[J]. 自然资源学报, 33(6):1043-1055. Zhang Yang, Li Baofu, Chen Yaning. 2018. The temporal and spatial variation of water vapor content and its relationship with precipitation in the arid region of Northwest China from 1970 to 2013[J]. Journal of Natural Resources (in Chinese), 33(6):1043-1055. doi: 10.31497/zrzyxb.20170518
    [33] 赵光平, 姜兵, 王勇, 等. 2017. 西北地区东部夏季水汽输送特征及其与降水的关系[J]. 干旱区地理, 40(2):239-247. Zhao Guangping, Jiang Bing, Wang Yong, et al. 2017. Characteristics of summer water vapor transport in the eastern Northwest China and their relationships with precipitation[J]. Arid Land Geography (in Chinese), 40(2):239-247. doi: 10.13826/j.cnki.cn65-1103/x.2017.02.001
    [34] 周非非, 洪延超, 赵震. 2010. 一次层状云系水分收支和降水机制的数值研究[J]. 气象学报, 68(2):182-194. Zhou Feifei, Hong Yanchao, Zhao Zhen. 2010. A numerical study of the moisture budget and the mechanism for precipitation for a stratiform cloud system[J]. Acta Meteor. Sinica (in Chinese), 68(2):182-194. doi: 10.11676/qxxb2010.019
    [35] 周晋红, 李丽平, 武捷. 2011. 山西春季典型干湿年份水汽输送特征差异[J]. 气象, 37(10):1270-1276. Zhou Jinhong, Li Liping, Wu Jie. 2011. Different characteristics of water vapor transport between the typical drought and wet years of spring in Shanxi Province[J]. Meteorological Monthly (in Chinese), 37(10):1270-1276. doi: 10.7519/j.issn.1000-0526.2011.10.010
    [36] Zhou Y S, Li X F, Gao S T. 2014. Precipitation efficiency and its relationship to physical factors[J]. Chinese Physics B, 23(6):064210. doi: 10.1088/1674-1056/23/6/064210
    [37] 朱晓炜, 杨建玲, 崔洋, 等. 2013. 1961~2009年西北地区东部降水时空分布及成因[J]. 干旱区研究, 30(6):1096-1099. Zhu Xiaowei, Yang Jianling, Cui Yang, et al. 2013. Spatiotemporal distribution and formation causes of precipitation in the east of Northwest China during the period of 1961-2009[J]. Arid Zone Research (in Chinese), 30(6):1096-1099. doi: 10.13866/j.azr.2013.06.025
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  0
  • PDF下载量:  227
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-08

目录

    /

    返回文章
    返回