高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

夏季青藏高原及周边上对流层水汽质量及其向平流层传输年际异常. I:水汽质量异常主导型

唐南军 任荣彩 吴国雄 虞越越

唐南军, 任荣彩, 吴国雄, 虞越越. 夏季青藏高原及周边上对流层水汽质量及其向平流层传输年际异常. I:水汽质量异常主导型[J]. 大气科学, 2020, 44(2): 239-256. doi: 10.3878/j.issn.1006-9895.1905.18267
引用本文: 唐南军, 任荣彩, 吴国雄, 虞越越. 夏季青藏高原及周边上对流层水汽质量及其向平流层传输年际异常. I:水汽质量异常主导型[J]. 大气科学, 2020, 44(2): 239-256. doi: 10.3878/j.issn.1006-9895.1905.18267
TANG Nanjun, REN Rongcai, WU Guoxiong, YU Yueyue. Interannual Anomalies of Upper Tropospheric Water Vapor Mass and Its Transport into the Stratosphere over the Tibetan Plateau Area in Summer. Part I: Leading Patterns of Water-Vapor-Mass Anomalies[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(2): 239-256. doi: 10.3878/j.issn.1006-9895.1905.18267
Citation: TANG Nanjun, REN Rongcai, WU Guoxiong, YU Yueyue. Interannual Anomalies of Upper Tropospheric Water Vapor Mass and Its Transport into the Stratosphere over the Tibetan Plateau Area in Summer. Part I: Leading Patterns of Water-Vapor-Mass Anomalies[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(2): 239-256. doi: 10.3878/j.issn.1006-9895.1905.18267

夏季青藏高原及周边上对流层水汽质量及其向平流层传输年际异常. I:水汽质量异常主导型

doi: 10.3878/j.issn.1006-9895.1905.18267
基金项目: 中国科学院战略性先导科技专项(A类)项目XDA17010105,国家自然科学基金项目91437105、91837311,中国科学院前沿科学重点研究项目QYZDY-SSW-DQC018

Interannual Anomalies of Upper Tropospheric Water Vapor Mass and Its Transport into the Stratosphere over the Tibetan Plateau Area in Summer. Part I: Leading Patterns of Water-Vapor-Mass Anomalies

  • 摘要: 本文利用逐年7~8月平均的ERA-Interim再分析资料并结合SWOOSH(Stratospheric water and ozone satellite homogenized)水汽数据,分析了青藏高原及周边地区330~360 K层次水汽质量分布的年际异常特征及其成因。结果表明,水汽质量分布异常表现为整体异常型、东西偶极异常型和南北偶极异常型三个主导分布型。整体异常型在水汽质量整体偏多时,青藏高原地区对流和垂直向上的水汽质量非绝热传输偏强,上对流层为异常偏强的水汽质量非绝热辐合;此时对应南亚高压偏强,青藏高原地区上对流层的水汽质量绝热辐散和高原以西地区的水汽质量绝热辐合都异常偏强,水汽质量整体偏少时则相反。东西偶极异常型水汽质量呈西多/东少分布时,青藏高原西部(中东部)对流和垂直向上的水汽质量非绝热传输异常偏强(弱),上对流层的水汽质量非绝热辐合和水汽质量绝热辐散也异常偏强(偏弱);同时对应南亚高压偏西,青藏高原以西到伊朗高原的上对流层有异常的自东向西的水汽质量绝热输送和水汽质量绝热辐合。水汽质量呈西少/东多分布时则有相反的结果。南北偶极异常型水汽质量呈北多/南少分布时,对应南亚高压偏北,青藏高原北部的上对流层有异常自南向北的水汽质量绝热输送所造成的水汽质量辐合,同时该地区低层异常偏强的自下向上的水汽质量非绝热输送也加强水汽质量辐合,而青藏高原南侧上对流层则为异常偏弱的水汽质量绝热辐散和水汽质量非绝热辐合,水汽质量呈北少/南多分布时相反。
  • 图  1  1979~2013年ERA-Interim资料平均的7~8月大气水汽含量的纬向偏差百分比(填色)、位温(黑色实线,单位:K)和对流层顶(粉色虚线)沿青藏高原纬度带(20°~40°N)的气压—经度剖面

    Figure  1.  Height–longitude cross sections of the percentage differences in the water vapor content relative to zonal mean (shading), potential temperature (black solid lines, units: K), and tropopause (pink dashed lines) averaged over the Tibetan Plateau latitude belt (20°–40° N) in July–August from 1979 to 2013, based on ERA-Interim data

    图  2  1979~2013年ERA-Interim资料平均的7~8月大气水汽含量(填色,单位:ppm;1 ppm=10−6)在(a)350~360 K、(b)330~340 K层次的水平分布。粉色实线代表对流层顶的位置

    Figure  2.  Horizontal distributions of water vapor content (shading, units: ppmv) averaged for (a) 350–360 K and (b) 330–340 K layers in July–August from 1979 to 2013, based on ERA-Interim data. Pink solid lines denote the tropopause location

    图  3  1979~2013年ERA-Interim资料7~8月330~360 K层次水汽质量距平的前3个EOF特征向量(左列)及其标准化的时间系数(右列):(a,b)第1特征向量;(c,d)第2特征向量;(e,f)第3特征向量。(b、d、f)中,红(蓝)色柱表示标准化的时间系数大于1(小于−1)

    Figure  3.  First three empirical orthogonal function (EOF) modes (left column) and their normalized time coefficients (right column) of water-vapor-mass anomalies in the 330–360 K layers over the Tibetan Plateau in July–August from 1979 to 2013, based on ERA-Interim data: (a, b) First, (c, d) second, and (e, f) third EOF modes. The red and blue bars denote normalized time coefficients greater than 1 and less than −1, respectively

    图  4  2004~2017年SWOOSH资料7~8月147 hPa(左列)和316 hPa(右列)水汽含量距平的EOF特征向量:(a,b)第1、(c,d)第2和(e,f)第4特征向量

    Figure  4.  EOF modes of the water-vapor-content anomalies at (a, c, e) 147 hPa and (b, d, f) 316 hPa in July–August from 2004 to 2017, based on SWOOSH data: (a, b) First, (c, d) second, and (e, f) fourth EOF modes

    图  5  基于ERA-Interim资料合成的7~8月大气水汽含量相对气候平均的偏差百分比(填色)沿(a–d)青藏高原纬度带(20°~40°N)的等熵—经度剖面以及沿(e–f)青藏高原经度带(70°~105°E)的等熵—纬度剖面:水汽质量(a)整体偏多年、(b)整体偏少年、(c)西多/东少年、(d)西少/东多年、(e)北多/南少年以及(f)北少/南多年。粉色实线代表对流层顶的位置,打点区域表明水汽含量偏差通过了90%置信水平检验的区域

    Figure  5.  (a–d) Height–longitude and (e–f) height–latitude cross sections of percentage differences in the composited water vapor content relative to climate mean (shading) over the Tibetan Plateau latitude belt (20°–40° N) and longitude belt (70°−105° E) in July–August, based on ERA-Interim data: Water vapor mass (a) whole region more years, (b) whole region less years, (c) west more/east less years, (d) west less/east more years, (e) north more/south less years, and (f) north less/south more years. Pink solid lines denote the tropopause location and black dots indicate significant differences in the water vapor content at the 90% confidence level

    图  6  基于ERA-Interim资料水汽质量距平(a,b)第1、(c,d)第2、(e,f)第3特征向量EOF模态时间系数回归的7~8月大气水汽含量(填色,单位:ppm):360 K层(左列);340 K层(右列)。红色(蓝色)实线为正(负)位相显著异常年的对流层顶位置。打点区域表明水汽含量回归值通过了90%置信水平检验的区域

    Figure  6.  Regression analysis of water vapor contents (shading, units: ppm) on the time coefficients of the water vapor mass anomalies (a–b) first, (c–d) second, and (e–f) third EOF modes in July–August, based on ERA-Interim data: (a, c, e) 360 K layer, (b, d, f) 340 K layer. The solid red (blue) lines denote the tropopause location in significantly abnormal positive (negative)-phase years. Black dots indicate the regressed significant water vapor contents at the 90% confidence level

    图  7  基于ERA-Interim资料水汽质量距平(a)第1、(b)第2、(c)第3特征向量EOF模态时间系数回归的7~8月OLR(填色,单位:W m−2)。打点区域表明OLR回归值通过了90%置信水平检验的区域

    Figure  7.  Regression analysis of the outgoing longwave radiation (OLR; shading, units: W m−2) on the time coefficients of the water vapor mass anomalies (a) first, (b) second, and (c) third EOF modes in July–August, based on ERA-Interim data. Black dots indicate the regressed OLR significant at the 90% confidence level

    图  8  基于ERA-Interim资料水汽质量距平(a)第1、(b)第2、(c)第3特征向量EOF模态时间系数回归的7~8月200 hPa位势高度场(填色,单位:gpm)和水平风场(箭头,单位:m s−1)。打点区域表明位势高度回归值通过了90%置信水平检验的区域。实线和实心圆为12520 gpm位势高度等值线和南亚高压中心所在位置,粉色为气候平均,红色(蓝色)为正(负)位相显著异常年

    Figure  8.  Regression analysis of 200-hPa potential height (shading, units: gpm) and horizontal wind (vectors, units: m s−1) on the time coefficients of the water vapor mass anomalies (a) first, (b) second, and (c) third EOF modes in July–August, based on ERA-Interim data. Black dots indicate the regressed potential height significant at the 90% confidence level. Solid lines denote the 12520 gpm potential height isolines and dots denote the location of the center of the South Asian High. Pink denotes climate mean and red (blue) denotes significantly abnormal positive (negative)-phase years

    图  9  基于ERA-Interim资料(a)气候平均以及水汽质量距平(b)第1、(c)第2特征向量EOF模态时间系数回归的7~8月非绝热水汽质量通量(填色,单位:104 kg s−1)沿青藏高原纬度带(20°~35°N)的等熵—经度剖面。打点区域表明非绝热水汽质量通量回归值通过了90%置信水平检验的区域;粉色实线为气候平均的对流层顶位置,红色(蓝色)实线为正(负)位相显著异常年的对流层顶位置

    Figure  9.  Height–longitude cross sections of diabatic water-vapor-mass fluxes (shadings, units: 104 kg s−1) (a) climatically averaged and regressed of the water vapor mass anomalies (b) first and (c) second EOF modes time coefficients over the Tibetan Plateau latitude belt (20°–35°N) in July–August, based on ERA-Interim data. Black dots indicate the regressed diabatic water-vapor-mass fluxes at the 90% confidence level. Solid pink line denote the climatic tropopause location and solid red (blue) lines denote the tropopause location of significantly abnormal positive (negative)-phase years

    图  10  基于ERA-Interim资料(a,b)气候平均以及(c,d)水汽质量距平第3特征向量EOF模态时间系数回归的7~8月非绝热水汽质量通量(填色,单位:104 kg s−1)沿青藏高原西部(70°~90°E;左列)和东部(90°~105°E;右列)经度带的等熵—纬度剖面。其中打点区域表明非绝热水汽质量通量回归值通过了90%置信水平检验的区域。粉色实线为气候平均的对流层顶位置,红色(蓝色)实线为正(负)位相显著异常年的对流层顶位置

    Figure  10.  Height–latitude cross sections of diabatic water-vapor-mass fluxes (shadings, units: 104 kg s−1) (a, b) climatically averaged and regressed on (c, d) the water vapor mass anomalies third EOF mode time coefficients over the western (70°–90°E; left column) and eastern (90°–105°E; right column) Tibetan Plateau longitude belts in July–August, based on ERA-Interim data. Black dots indicate the regressed diabatic water-vapor-mass fluxes at the 90% confidence level. Solid pink lines denote the climatic tropopause location and solid red (blue) lines denote the tropopause location of significantly abnormal positive (negative)-phase years

    图  11  基于ERA-Interim资料(a,b)气候平均以及水汽质量(c,d)整体偏多年、(e,f)整体偏少年合成与气候平均差值水平分布:7~8月340~360 K层次累加的非绝热水汽质量通量散度(左列,填色,单位:104 kg s−1)和绝热水汽质量通量矢量(箭头,单位:104 kg s−1)及其散度(右列填色,单位:104 kg s−1)。粉色实线为气候平均的对流层顶位置,红色(蓝色)实线为正(负)位相显著异常年的对流层顶位置。打点区域表明水汽质量通量散度差值通过了90%置信水平检验的区域

    Figure  11.  Horizontal distributions of the divergence of diabatic water-vapor-mass fluxes (left column, shadings, units: 104 kg s−1) and the vectors of adiabatic water-vapor-mass fluxes (vectors, units: 104 kg s−1) and their divergences (right column, shadings, units: 104 kg s−1) accumulated from the 340–360 K layers averaged in July–August, based on ERA-Interim data: (a–b) Climatic mean, water vapor mass (c–d) whole region more years minus the climate mean, and (e–f) whole region less years minus the climate mean. Solid pink lines denote the climatic tropopause locations and solid red (blue) lines denote the tropopause locations of significantly abnormal positive (negative)-phase years. Black dots indicate significant differences in the divergence of water-vapor-mass fluxes at the 90% confidence level

    图  12  图11cf,但(a–b)为水汽质量西多/东少年,(c–d)为水汽质量西少/东多年

    Figure  12.  Same as Fig.11cf, but for water vapor mass (a–b) west more/east less years and (c–d) west less/east more years

    图  13  图11c~f,但(a–b)为水汽质量北多/南少年,(c–d)为水气质量北少/南多年

    Figure  13.  Same as Figs. 11cf, but for water vapor mass (a–b) north more/south less years and (c–d) north less/south more years

    表  1  特征向量时间系数与200 hPa南亚高压强度、中心所在经度和纬度的相关系数及其显著性

    Table  1.   Correlations between eigenvector time coefficients and intensity, center longitudes, and center latitudes of the South Asian high at 200 hPa and their confidence levels

    相关系数及其显著性
    整体异常型东西偶极型南北偶极型
    强度0.695 (99%)−0.353 (95%)−0.199
    经度−0.242−0.693 (99%)0.216
    纬度0.242 0.456 (99%)0.289 (90%)
    下载: 导出CSV
  • [1] 毕云, 陈月娟, 周任君, 等. 2008. 青藏高原上空H2O和CH4的分布和变化趋势分析[J]. 高原气象, 27(2):249-258. Bi Yun, Chen Yuejuan, Zhou Renjun, et al. 2008. Study on H2O and CH4 distributions and variations over Qinghai-Xizang Plateau using HALOE data[J]. Plateau Meteor. (in Chinese), 27(2):249-258.
    [2] 卞建春, 严仁嫦, 陈洪滨. 2011. 亚洲夏季风是低层污染物进入平流层的重要途径[J]. 大气科学, 35(5):897-902. Bian Jianchun, Yan Renchang, Chen Hongbin. 2011. Tropospheric pollutant transport to the stratosphere by Asian summer monsoon[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(5):897-902. doi: 10.3878/j.issn.1006-9895.2011.05.09
    [3] Bian J C, Pan L L, Paulik L, et al. 2012. In situ water vapor and ozone measurements in Lhasa and Kunming during the Asian summer monsoon[J]. Geophys. Res. Lett., 39(19):L19808. doi: 10.1029/2012gl052996
    [4] Birner T, Charlesworth E J. 2017. On the relative importance of radiative and dynamical heating for tropical tropopause temperatures[J]. J. Geophys. Res. Atmos., 122(13):6782-6797. doi: 10.1002/2016jd026445
    [5] 陈斌, 徐祥德, 施晓晖. 2009. 2005年夏季亚洲季风区下平流层水汽的对流源区[J]. 自然科学进展, 19(10):1094-1099. Chen Bin, Xu Xiangde, Shi Xiaohui. 2009. The dominant sources of water vapor in the low stratosphere over Asian monsoon region during the boreal summer in 2005[J]. Progress in Natural Science (in Chinese), 19(10):1094-1099. doi: 10.3321/j.issn:1002-008X.2009.10.011
    [6] 陈斌, 徐祥德, 施晓晖. 2011. 南亚高压对亚洲季风区夏季对流层上层水汽异常分布的动力效应[J]. 气象学报, 69(3):464-471. Chen Bin, Xu Xiangde, Shi Xiaohui. 2011. A study of the dynamic effect of the South Asian high on the upper troposphere water vapor abnormal distribution over the Asian monsoon region in boreal summer[J]. Acta Meteor. Sin. (in Chinese), 69(3):464-471.
    [7] 陈斌, 徐祥德, 杨帅, 等. 2012. 夏季青藏高原地区近地层水汽进入平流层的特征分析[J]. 地球物理学报, 55(2):406-414. Chen Bin, Xu Xiangde, Yang Shuai, et al. 2012. On the characteristics of water vapor transport from atmosphere boundary layer to stratosphere over Tibetan Plateau regions in summer[J]. Chin. J. Geophys. (in Chinese), 55(2):406-414.
    [8] Davis S M, Rosenlof K H, Hassler B, et al. 2016. The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database:A long-term database for climate studies[J]. Earth Syst. Sci. Data, 8(2):461-490. doi: 10.5194/essd-8-461-2016
    [9] Davis S M, Hegglin M I, Fujiwara M, et al. 2017. Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP[J]. Atmos. Chem. Phys., 17(20):12743-12778. doi: 10.5194/acp-17-12743-2017
    [10] Dethof A, O'Neill A, Slingo J M, et al. 1999. A mechanism for moistening the lower stratosphere involving the Asian summer monsoon[J]. Quart. J. Roy. Meteor. Soc., 125(556):1079-1106. doi: 10.1002/qj.1999.49712555602
    [11] Fu R, Hu Y, Wright J S, et al. 2006. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau[J]. Proc. Natl. Acad. Sci. USA, 103(15):5664-5669. doi: 10.1073/pnas.0601584103
    [12] Garny H, Randel W J. 2013. Dynamic variability of the Asian monsoon anticyclone observed in potential vorticity and correlations with tracer distributions[J]. J. Geophys. Res. Atmos., 118(24):13421-13433. doi: 10.1002/2013jd020908
    [13] Gettelman A, Kinnison D E, Dunkerton T J, et al. 2004. Impact of monsoon circulations on the upper troposphere and lower stratosphere[J]. J. Geophys. Res., 109:D22101. doi: 10.1029/2004jd004878
    [14] 黄莹, 郭栋, 周顺武, 等. 2017. 夏季南亚高压与邻近上对流层下平流层区水汽变化的联系[J]. 气象学报, 75(6):934-942. Huang Ying, Guo Dong, Zhou Shunwu, et al. 2017. The relationship between South Asia high and water vapor variation in the upper troposphere and lower stratosphere in summer[J]. Acta Meteor. Sin. (in Chinese), 75(6):934-942. doi: 10.11676/qxxb2017.065
    [15] James R, Bonazzola M, Legras B, et al. 2008. Water vapor transport and dehydration above convective outflow during Asian monsoon[J]. Geophys. Res. Lett., 35(20):L20810. doi: 10.1029/2008gl035441
    [16] Jiang J H, Su H, Zhai C X, et al. 2015. An assessment of upper troposphere and lower stratosphere water vapor in MERRA, MERRA2, and ECMWF reanalyses using Aura MLS observations[J]. J. Geophys. Res. Atmos., 120(22):11468-11485. doi: 10.1002/2015jd023752
    [17] Kunze M, Braesicke P, Langematz U, et al. 2010. Influences of the Indian summer monsoon on water vapor and ozone concentrations in the UTLS as simulated by chemistry-climate models[J]. J. Climate, 23(13):3525-3544. doi: 10.1175/2010jcli3280.1
    [18] Kunze M, Braesicke P, Langematz U, et al. 2016. Interannual variability of the boreal summer tropical UTLS in observations and CCMVal-2 simulations[J]. Atmos. Chem. Phys., 16(13):8695-8714. doi: 10.5194/acp-16-8695-2016
    [19] 吕达仁, 陈泽宇, 卞建春, 等. 2008. 平流层-对流层相互作用的多尺度过程特征及其与天气气候关系:研究进展[J]. 大气科学, 32(4):782-793. Lü Daren, Chen Zeyu, Bian Jianchun, et al. 2008. Advances in researches on the characteristics of multi-scale processes of interactions between the stratosphere and the troposphere and its relations with weather and climate[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(4):782-793. doi: 10.3878/j.issn.1006-9895.2008.04.07
    [20] Lelieveld J, Bourtsoukidis E, Brühl C, et al. 2018. The South Asian monsoon:Pollution pump and purifier[J]. Science, 361(6399):270-273. doi: 10.1126/science.aar2501
    [21] Park M, Randel W J, Gettelman A, et al. 2007. Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers[J]. J. Geophys. Res., 112(D16):D16309. doi: 10.1029/2006jd008294
    [22] Park M, Randel W J, Emmons L K, et al. 2008. Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data[J]. Atmos. Chem. Phys., 8(3):757-764. doi: 10.5194/acp-8-757-2008
    [23] Ploeger F, Günther G, Konopka P, et al. 2013. Horizontal water vapor transport in the lower stratosphere from subtropics to high latitudes during boreal summer[J]. J. Geophys. Res. Atmos., 118(14):8111-8127. doi: 10.1002/jgrd.50636
    [24] Randel W J, Park M. 2006. Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS)[J]. J. Geophys. Res., 111(D12):D12314. doi: 10.1029/2005jd006490
    [25] Randel W J, Park M, Emmons L, et al. 2010. Asian monsoon transport of pollution to the stratosphere[J]. Science, 328(5978):611-613. doi: 10.1126/science.1182274
    [26] Randel W J, Zhang K, Fu R. 2015. What controls stratospheric water vapor in the NH summer monsoon regions?[J]. J. Geophys. Res. Atmos., 120(15):7988-8001. doi: 10.1002/2015jd023622
    [27] Rolf C, Vogel B, Hoor P, et al. 2018. Water vapor increase in the lower stratosphere of the Northern Hemisphere due to the Asian monsoon anticyclone observed during the TACTS/ESMVal campaigns[J]. Atmos. Chem. Phys., 18(4):2973-2983. doi: 10.5194/acp-18-2973-2018
    [28] Santee M L, Manney G L, Livesey N J, et al. 2017. A comprehensive overview of the climatological composition of the Asian summer monsoon anticyclone based on 10 years of Aura Microwave Limb Sounder measurements[J]. J. Geophys. Res. Atmos., 122(10):5491-5514. doi: 10.1002/2016jd026408
    [29] 唐南军, 任荣彩, 吴国雄. 2020. 青藏高原及周边UTLS水汽时空特征的多源资料对比[J]. 大气科学学报, 待刊.
    [30] Tang N J, Ren R C, Wu G X. 2020. Comparison of upper troposphere and lower stratosphere water vapor spatial and temporal distribution over Tibetan Plateau in reanalysis data and MLS observations[J]. Transactions of Atmospheric Sciences (in Chinese), in press, doi: 10.13878/j.cnki.dakxxb.20170706001.
    [31] 唐南军, 任荣彩, 邹晓蕾, 等. 2019. 夏季青藏高原地区水汽向平流层的等熵绝热和非绝热传输的气候学特征及其与落基山地区的对比[J]. 大气科学, 43(1):183-201. Tang Nanjun, Ren Rongcai, Zou Xiaolei, et al. 2019. Characteristic of adiabatic and diabatic water vapor transport from the troposphere to the stratosphere over the Tibetan Plateau and its comparison with the Rocky Mountains in the summer[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(1):183-201. doi: 10.3878/j.issn.1006-9895.1804.17255
    [32] 田红瑛, 田文寿, 雒佳丽, 等. 2014. 青藏高原地区上对流层-下平流层区域水汽分布和变化特征[J]. 高原气象, 33(1):1-13. Tian Hongying, Tian Wenshou, Luo Jiali, et al. 2014. Characteristics of water vapor distribution and variation in upper troposphere and lower stratosphere over Qinghai-Xizang Plateau[J]. Plateau Meteor. (in Chinese), 33(1):1-13. doi: 10.7522/j.issn.1000-0534.2013.00074
    [33] 屠厚旺, 田红瑛, 梅成红, 等. 2018. 南亚高压的东西偏向对亚洲季风区对流层顶附近水汽分布的影响[J]. 气候与环境研究, 23(3):341-354. Tu Houwang, Tian Hongying, Mei Chenghong, et al. 2018. Impact of the east-west phase of South Asia high on water vapor distribution near tropopause over the Asian monsoon region[J]. Climatic and Environmental Research (in Chinese), 23(3):341-354. doi: 10.3878/j.issn.1006-9585.2017.17048
    [34] Uma K N, Das S K, Das S S. 2014. A climatological perspective of water vapor at the UTLS region over different global monsoon regions:Observations inferred from the Aura-MLS and reanalysis data[J]. Clim. Dyn., 43(1-2):407-420. doi: 10.1007/s00382-014-2085-9
    [35] Wang T, Dessler A E, Schoeberl M R, et al. 2015. The impact of temperature vertical structure on trajectory modeling of stratospheric water vapor[J]. Atmos. Chem. Phys., 15(6):3517-3526. doi: 10.5194/acp-15-3517-2015
    [36] 魏凤英. 2007. 现代气候统计诊断与预测技术 (第2版)[M], 北京:气象出版社, 105-111.
    [37] Wei Fengying. 2007. Modern Climatic Statistical Diagnosis and Forecasting Technology (second edition), Beijing:China Meteorological Press:105-111
    [38] Wei Wei, Zhang Renhe, Wen Min, et al. 2015. Interannual variation of the South Asian high and its relation with Indian and East Asian summer monsoon rainfall[J]. J. Climate, 28(7):2623-2634. doi: 10.1175/jcli-d-14-00454.1
    [39] Wright J S, Fu R, Fueglistaler S, et al. 2011. The influence of summertime convection over Southeast Asia on water vapor in the tropical stratosphere[J]. J. Geophys. Res., 116(D12):D12302. doi: 10.1029/2010jd015416
    [40] 吴国雄, 刘屹岷, 何编, 等. 2018. 青藏高原感热气泵影响亚洲夏季风的机制[J]. 大气科学, 42(3):488-504. Wu Guoxiong, Liu Yimin, He Bian, et al. 2018. Review of the impact of the Tibetan Plateau sensible heat driven air-pump on the Asian summer monsoon[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(3):488-504. doi: 10.3878/j.issn.1006-9895.1801.17279
    [41] Wu G X, He B, Liu Y M, et al. 2015. Location and variation of the summertime upper-troposphere temperature maximum over South Asia[J]. Clim. Dyn., 45(9-10):2757-2774. doi: 10.1007/s00382-015-2506-4
    [42] Xu X D, Lu C G, Shi X H, et al. 2008. World water tower:An atmospheric perspective[J]. Geophys. Res. Lett., 35(20):L20815. doi: 10.1029/2008gl035867
    [43] Yan R C, Bian J C, Fan Q J. 2011. The impact of the South Asia high bimodality on the chemical composition of the upper troposphere and lower stratosphere[J]. Atmos. Ocean. Sci. Lett., 4(4):229-234. doi: 10.1080/16742834.2011.11446934
    [44] Yu P F, Rosenlof K H, Liu S, et al. 2017. Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone[J]. Proc. Natl. Acad. Sci. USA, 114(27):6972-6977. doi: 10.1073/pnas.1701170114
    [45] Yu Y Y, Ren R C, Hu J G, et al. 2014. A mass budget analysis on the interannual variability of the polar surface pressure in the winter season[J]. J. Atmos. Sci., 71(9):3539-3553. doi: 10.1175/jas-d-13-0365.1
    [46] Yu Y Y, Cai M, Ren R C. 2018. A stochastic model with a low-frequency amplification feedback for the stratospheric northern annular mode[J]. Clim. Dyn., 50(9-10):3757-3773. doi: 10.1007/s00382-017-3843-2
    [47] 占瑞芬, 李建平. 2008a. 青藏高原地区大气红外探测器(AIRS)资料质量检验及揭示的上对流层水汽特征[J]. 大气科学, 32(2):242-260. Zhan Ruifen, Li Jianping. 2008a. Validation and characteristics of upper tropospheric water vapor over the Tibetan Plateau from AIRS satellite retrieval[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(2):242-260. doi: 10.3878/j.issn.1006-9895.2008.02.05
    [48] 占瑞芬, 李建平. 2008b. 青藏高原和热带西北太平洋大气热源在亚洲地区夏季平流层-对流层水汽交换的年代际变化中的作用[J]. 中国科学D辑:地球科学, 51(8):1179-1193. Zhan Ruifen, Li Jianping. 2008b. Influence of atmospheric heat sources over the Tibetan Plateau and the tropical western North Pacific on the inter-decadal variations of the stratosphere-troposphere exchange of water vapor[J]. Science in China Series D:Earth Sciences, 51(8):1179-1193. doi: 10.1007/s11430-008-0082-8
    [49] 占瑞芬, 李建平. 2012. 亚洲夏季平流层-对流层水汽交换年际变化与亚洲夏季风的联系[J]. 地球物理学报, 55(10):3181-3193. Zhan Ruifen, Li Jianping. 2012. Relationship of interannual variations of the stratosphere-troposphere exchange of water vapor with the Asian summer monsoon[J]. Chin. J. Geophys. (in Chinese), 55(10):3181-3193. doi: 10.6038/j.issn.0001-5733.2012.10.001
    [50] 张琼, 钱永甫, 张学洪. 2000. 南亚高压的年际和年代际变化[J]. 大气科学, 24(1):67-78. Zhang Qiong, Qian Yongfu, Zhang Xuehong. 2000. Interannual and interdecadal variations of the South Asia high[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 24(1):67-78. doi: 10.3878/j.issn.1006-9895.2000.01.07
    [51] Zhang K, Fu R, Wang T, et al. 2016. Impact of geographic variations of the convective and dehydration center on stratospheric water vapor over the Asian monsoon region[J]. Atmos. Chem. Phys., 16(12):7825-7835. doi: 10.5194/acp-16-7825-2016
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  358
  • HTML全文浏览量:  1
  • PDF下载量:  573
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-12

目录

    /

    返回文章
    返回