高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

夏季青藏高原及周边上对流层水汽质量及其向平流层传输年际异常. II:向平流层的绝热和非绝热传输

唐南军 任荣彩 吴国雄 虞越越

唐南军, 任荣彩, 吴国雄, 虞越越. 夏季青藏高原及周边上对流层水汽质量及其向平流层传输年际异常. II:向平流层的绝热和非绝热传输[J]. 大气科学, 2020, 44(3): 503-518. doi: 10.3878/j.issn.1006-9895.1905.18268
引用本文: 唐南军, 任荣彩, 吴国雄, 虞越越. 夏季青藏高原及周边上对流层水汽质量及其向平流层传输年际异常. II:向平流层的绝热和非绝热传输[J]. 大气科学, 2020, 44(3): 503-518. doi: 10.3878/j.issn.1006-9895.1905.18268
TANG Nanjun, REN Rongcai, WU Guoxiong, YU Yueyue. Interannual Anomalies of Upper Tropospheric Water Vapor Mass and Its Transport into the Stratosphere over the Tibetan Plateau Area in Summer. Part II: Adiabatic and Diabatic Transport into the Stratosphere[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(3): 503-518. doi: 10.3878/j.issn.1006-9895.1905.18268
Citation: TANG Nanjun, REN Rongcai, WU Guoxiong, YU Yueyue. Interannual Anomalies of Upper Tropospheric Water Vapor Mass and Its Transport into the Stratosphere over the Tibetan Plateau Area in Summer. Part II: Adiabatic and Diabatic Transport into the Stratosphere[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(3): 503-518. doi: 10.3878/j.issn.1006-9895.1905.18268

夏季青藏高原及周边上对流层水汽质量及其向平流层传输年际异常. II:向平流层的绝热和非绝热传输

doi: 10.3878/j.issn.1006-9895.1905.18268
基金项目: 中国科学院战略性先导科技专项(A类)项目XDA17010105,国家自然科学基金项目91437105、91837311,中国科学院前沿科学重点研究项目QYZDY-SSW-DQC018

Interannual Anomalies of Upper Tropospheric Water Vapor Mass and Its Transport into the Stratosphere over the Tibetan Plateau Area in Summer. Part II: Adiabatic and Diabatic Transport into the Stratosphere

  • 摘要: 夏季7~8月青藏高原及周边地区上对流层水汽质量的年际异常分布为整体异常型和东西偶极异常型所主导。本文基于ERA-Interim再分析资料并利用HYSPLIT(Hybrid Single Particle Lagrangian Integrated Trajectory)轨迹模式,分析了两个主导分布型对应的水汽质量向平流层绝热和非绝热传输的异常特征,结果表明:青藏高原上空水汽质量整体偏多(少)时,对应南亚高压和青藏高原地区垂直向上的水汽质量非绝热输送偏强(弱),青藏高原及周边水汽质量向平流层的绝热和非绝热传输均偏强(弱)。水汽质量整体偏多与偏少年,水汽质量向平流层绝热和非绝热传输的主要区域和层次相近,只是水汽质量整体偏多年,水汽质量向平流层非绝热传输的层次略高。当青藏高原上空水汽质量呈西多/东少分布时,对应南亚高压偏西,青藏高原西北、东北侧水汽质量向中纬度平流层的绝热传输偏强,青藏高原南侧高层水汽质量向热带平流层的经向绝热传输也偏强,而青藏高原北侧水汽质量向中纬度平流层的经向绝热传输明显减弱。同时青藏高原主体上空水汽质量向平流层的非绝热传输偏强,而青藏高原南侧高层和北侧低层水汽质量向平流层的非绝热传输偏弱。水汽质量呈西少/东多分布时有相反的结果。轨迹模式模拟的结果证实了水汽质量整体偏多年,青藏高原及周边地区绝热进入平流层的轨迹频次偏多;也证实了水汽质量呈西多/东少分布时,青藏高原西北、东北和南侧绝热进入平流层的轨迹频次偏多,而青藏高原北侧绝热进入平流层的轨迹频次偏少。
  • 图  1  基于青藏高原上空水汽质量(a)整体偏多年、(b)整体偏少年、(c)西多/东少年、(d)西少/东多年合成的7~8月340~360 K层次平均的大气水汽含量相对气候平均的偏差百分比(填色)。图中实线和圆点分别为200 hPa上12520 gpm位势高度等值线和南亚高压中心所在位置,红色(蓝色)为正(负)位相显著异常年,粉色为气候平均

    Figure  1.  Percentage differences in the composited water vapor contents averaged from the 340 K to 360 K layers relative to climate mean (shading) based on years with (a) whole region more water vapor mass, (b) whole region less water vapor mass, (c) west more/east less water vapor mass, and (d) west less/east more water vapor mass over the Tibetan Plateau in July–August. Solid lines denote the 12520-gpm potential height isolines at 200 hPa and dots denote the South Asian High center. Red (blue) denotes the significantly abnormal positive (negative) years and pink denotes the climate mean

    图  2  基于青藏高原水汽质量整体异常型显著异常年合成的7~8月(a–c)370 K和(d–f)350 K层次上的经向绝热水汽质量通量(填色,单位:104 kg s−1)和绝热质量水汽通量矢量(箭头,单位:104 kg s−1)分布:(a、d)水汽质量整体偏多年;(b、e)水汽质量整体偏少年;(c、f)水汽质量整体偏多与整体偏少年的差值。图中打点区域表明合成或差值的绝热水汽质量通量通过了90%置信水平检验,红色(蓝色)实线为水汽质量整体偏多(偏少)年对流层顶的位置

    Figure  2.  Composited meridional flux of adiabatic water vapor mass (shadings, units: 104 kg s−1) and flux vectors of adiabatic water vapor mass (vectors, units: 104 kg s−1) at (a–c) 370 K and (d–f) 350 K layers, based on years with significant uniform abnormal modes in the Tibetan Plateau water vapor mass in July–August: (a–d) The years with whole region more water vapor mass, (b–e) years with whole region less water vapor mass, and (c, f) years with whole region more water vapor mass minus the those with whole region less. Black dots indicate the composite differences in the adiabatic water-vapor-mass fluxes significant at the 90% confidence level. The red (blue) solid lines denote the tropopause locations in years with whole region more (less) water vapor mass

    图  3  基于青藏高原水汽质量整体异常型显著异常年合成的7~8月非绝热水汽质量通量(填色,单位:104 kg s−1)沿(a–c)35°~45°N、(d–f)25°~35°N和(g–i)15°~25°N纬度带的等熵—经度剖面:水汽质量整体偏多年(第一行);水汽质量整体偏少年(第二行);水汽质量整体偏多与整体偏少年的差值(第三行)。图中打点区域表明合成的非绝热水汽质量通量或差值通过了90%置信水平检验,红色(蓝色)实线为水汽质量整体偏多(偏少)年对流层顶的位置

    Figure  3.  Composited diabatic water-vapor-mass flux (shadings, units: 104 kg s−1) averaged over the (a–c) 35°–45°N, (d–f) 25°–35°N, and (g–i) 15°–25°N latitude belts, based on years with significant uniform abnormal mode in the Tibetan Plateau water vapor mass in July–August: The years with the whole region more water vapor mass (first line), years with whole region less water vapor mass (second line), and years with whole region more water vapor mass minus those with whole region less (third line). Black dots indicate the composite fluxes or differences significant at the 90% confidence level. Red (blue) solid lines denote the tropopause locations in years with whole region more (less) water vapor mass

    图  4  基于整体异常型EOF时间系数回归的7~8月(a、c)370~390 K层次和(b、d)340~360 K层次水汽质量向平流层的传输强度(填色,单位:kg s−1):(a–b)绝热传输;(c–d)非绝热传输。打点区域表示为水汽质量向平流层的传输强度回归值通过了90%置信水平检验的区域;红色(蓝色)实线为水汽质量整体偏多年(偏少)年等熵面与对流层顶的交线,(a、c)中由内向外依次为与380 K和370 K等熵面与对流层顶的交线,(b、d)中由南向北依次为与340 K、350 K和360 K等熵面与对流层顶的交线

    Figure  4.  Regression analysis of the intensity of water-vapor-mass transport (shadings, units: kg s−1) from the troposphere to the stratosphere in the (a, c) 370–390 K layers and (b, d) 340–360 K layers on the time coefficients of the uniform abnormal empirical orthogonal function (EOF) modes in July–August: (a–b) Adiabatic transport and (c–d) diabatic transport. Black dots indicate the regressed intensity of water-vapor-mass transport from the troposphere to the stratosphere significant at the 90% confidence level. The red (blue) solid lines denote the interfaces between the isentropic surfaces and the tropopause in years with whole region more (less) water vapor mass. In (a, c), the solid lines from the inside to outside indicate the interfaces between the 380-K and 370-K isentropes and the tropopause, respectively. In (b, d), the solid lines from south to north indicate the interfaces between the 340-K, 350-K, 360-K isentropes and the tropopause, respectively

    图  5  图2,但为(a、d)水汽质量西多/东少年、(b、e)为水汽质量西少/东多年以及(c、f)为两者差值

    Figure  5.  Same as Fig. 2, but for (a, d) the years with west more/east less water vapor mass, (b, e) the years with west less/east more water vapor mass, and (c, f) their differences

    图  6  图3,但为水汽质量西多/东少年(第一行)、水汽质量西少/东多年(第二行)以及两者差值(第三行)

    Figure  6.  Same as Fig. 3, but for the years with west more/east less water vapor mass (first line), the years with west less/east more water vapor mass (second line), and their differences (third line)

    图  7  图4,但为东西偶极异常型EOF时间系数回归的水汽质量向平流层的传输强度

    Figure  7.  As in Fig. 4, but for the intensity of the water-vapor-mass transport from the troposphere to the stratosphere regressed on the time coefficients of the east–west dipole abnormal EOF mode

    图  8  HYSPLIT模式轨迹试验中340~390 K层次绝热进入平流层的轨迹频次相对释放轨迹频次的百分比(阴影):(a)水汽质量整体偏多试验;(b)水汽质量整体偏少试验;(c)水汽质量整体偏多与整体偏少试验的轨迹频次偏差百分比;(d)水汽质量西多/东少试验;(e)水汽质量西少/东多试验;(f)水汽质量西多/东少与西少/东多试验的轨迹频次偏差百分比。不同颜色的实心圆代表不同的层次,表示该层在各层中进入平流层的轨迹次数最多

    Figure  8.  Percentages of the frequency of trajectories entering the stratosphere adiabatically in the 340–390-K layers relative to the frequency of the trajectories obtained (shadings) in HYSPLIT model trajectory experiments, including: (a) Whole region more water vapor mass, (b) whole region less water vapor mass, (d) west more/east less water vapor mass, (e) west less/east more water vapor mass, and percentage differences in the frequency of trajectories (shadings) between (c) the experiments with whole region more and less water vapor mass, and between (f) the experiments with west more/ east less water vapor mass and the west less/ east more water vapor mass. The colored dots denote the layers in which the frequency of trajectories entering the stratosphere are highest

    图  9  针对水汽质量整体偏多试验中青藏高原地区340~380 K层次释放并绝热进入平流层的部分示踪物的前向轨迹路径的(a、b)水平和(c、d)垂直分布:(a、c)第一类轨迹;(b、d)第二类轨迹。(a、b)中,填色表示时间(单位:d)。(c、d)中横坐标为时间(单位:d),不同颜色的实线表示各个示踪物的轨迹。黑色圆点为示踪物释放位置,蓝色圆点为示踪物由对流层进入平流层的位置

    Figure  9.  The (a, b) horizontal and (c, d) vertical distributions of forward trajectory paths of some tracers released in the 340–380 K layers over the Tibetan Plateau that enter the stratosphere adiabatically, based on the experiment with whole region more water vapor mass: (a, c) The first trajectory pathway, and (b, d) the second trajectory pathway. In (a) and (b), shading denotes the time (units: d). In (c) and (d), the abscissa denotes the time (units: d) and the different colors denote the trajectory paths of the traces. Black dots denote the locations of the tracers released, and blue dots denote the locations where the tracers enter the stratosphere

  • [1] Berthet G, Esler J G, Haynes P H. 2007. A Lagrangian perspective of the tropopause and the ventilation of the lowermost stratosphere [J]. J. Geophys. Res., 112(D18): D18102. doi: 10.1029/2006jd008295
    [2] 卞建春, 严仁嫦, 陈洪滨. 2011. 亚洲夏季风是低层污染物进入平流层的重要途径 [J]. 大气科学, 35(5): 897-902
    [3] Bian Jianchun, Yan Renchang, Chen Hongbin. 2011. Tropospheric pollutant transport to the stratosphere by Asian summer monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(5): 897-902. doi: 10.3878/j.issn.1006-9895.2011.05.09
    [4] 曹治强, 吕达仁. 2015. 两次强对流背景下的对流层向平流层输送特征模拟与分析 [J]. 大气科学, 39(5): 875-884
    [5] Cao Zhiqiang, Lü Daren. 2015. Simulation and analysis of troposphere-to-stratosphere transport caused by two severe convection events [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(5): 875-884. doi: 10.3878/j.issn.1006-9895.1411.14175
    [6] 陈斌, 徐祥德, 施晓晖. 2009. 2005年夏季亚洲季风区下平流层水汽的对流源区 [J]. 自然科学进展, 19(10): 1094-1099
    [7] Chen Bin, Xu Xiangde, Shi Xiaohui. 2009. The dominant sources of water vapor in the low stratosphere over Asian monsoon region during the boreal summer in 2005 [J]. Progress in Natural Science (in Chinese), 19(10): 1094-1099. doi: 10.3321/j.issn:1002-008X.2009.10.011
    [8] 陈斌, 徐祥德, 卞建春, 等. 2010. 夏季亚洲季风区对流层向平流层输送的源区、路径及其时间尺度的模拟研究 [J]. 大气科学, 34(3): 495-505
    [9] Chen Bin, Xu Xiangde, Bian Jianchun, et al. 2010. Sources, pathways and timescales for the troposphere to stratosphere transport over Asian monsnoon regions in boreal summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(3): 495-505. doi: 10.3878/j.issn.1006-9895.2010.03.03
    [10] 陈斌, 徐祥德, 杨帅, 等. 2012. 夏季青藏高原地区近地层水汽进入平流层的特征分析 [J]. 地球物理学报, 55(2): 406-414
    [11] Chen Bin, Xu Xiangde, Yang Shuai, et al. 2012. On the characteristics of water vapor transport from atmosphere boundary layer to stratosphere over Tibetan Plateau regions in summer [J]. Chin. J. Geophys. (in Chinese), 55(2): 406-414.
    [12] 陈洪滨, 卞建春, 吕达仁. 2006. 上对流层—下平流层交换过程研究的进展与展望 [J]. 大气科学, 30(5): 813-820
    [13] Chen Hongbin, Bian Jianchun, Lü Daren. 2006. Advances and prospects in the study of stratosphere-troposphere exchange [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(5): 813-820. doi: 10.3878/j.issn.1006-9895.2006.05.10
    [14] Davis S M, Hegglin M I, Fujiwara M, et al. 2017. Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP [J]. Atmos. Chem. Phys., 17(20): 12743-12778. doi: 10.5194/acp-17-12743-2017
    [15] Dessler A E, Schoeberl M R, Wang T, et al. 2013. Stratospheric water vapor feedback [J]. Proc. Natl. Acad. Sci. USA, 110(45): 18087-18091. doi: 10.1073/pnas.1310344110
    [16] Dethof A, O'Neill A, Slingo J M, et al. 1999. A mechanism for moistening the lower stratosphere involving the Asian summer monsoon [J]. Quart. J. Roy. Meteor. Soc., 125(556): 1079-1106. doi: 10.1002/qj.1999.49712555602
    [17] Fan Q J, Bian J C, Pan L L. 2017. Stratospheric entry point for upper-tropospheric air within the Asian summer monsoon anticyclone [J]. Sci. Chin. Earth Sci., 60(9): 1685-1693. doi: 10.1007/s11430-016-9073-5
    [18] Forster P M F, Shine K P. 2002. Assessing the climate impact of trends in stratospheric water vapor [J]. Geophys. Res. Lett., 29(6): 10-1-10-4. doi: 10.1029/2001gl013909
    [19] Fu R, Hu Y, Wright J S, et al. 2006. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau [J]. Proc. Natl. Acad. Sci. USA, 103(15): 5664-5669. doi: 10.1073/pnas.0601584103
    [20] 樊雯璇, 王卫国, 卞建春, 等. 2008. 青藏高原及其邻近区域穿越对流层顶质量通量的时空演变特征 [J]. 大气科学, 32(6): 1309-1318
    [21] Fan Wenxuan, Wang Weiguo, Bian Jianchun, et al. 2008. The distribution of cross-tropopause mass flux over the Tibetan Plateau and its surrounding regions [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(6): 1309-1318. doi: 10.3878/j.issn.1006-9895.2008.06.06
    [22] Garny H, Randel W J. 2013. Dynamic variability of the Asian monsoon anticyclone observed in potential vorticity and correlations with tracer distributions [J]. J. Geophys. Res. Atmos., 118(24): 13421-13433. doi: 10.1002/2013jd020908
    [23] Garny H, Randel W J. 2016. Transport pathways from the Asian monsoon anticyclone to the stratosphere [J]. Atmos. Chem. Phys., 16(4): 2703-2718. doi: 10.5194/acp-16-2703-2016
    [24] Gettelman A, Hoor P, Pan L L, et al. 2011. The extratropical upper troposphere and lower stratosphere [J]. Rev. Geophys., 49(3): RG3003. doi: 10.1029/2011rg000355
    [25] 黄荣辉, 陈文, 魏科, 等. 2018. 平流层大气动力学及其与对流层大气相互作用的研究: 进展与问题 [J]. 大气科学, 42(3): 463-487
    [26] Huang Ronghui, Chen Wen, Wei Ke, et al. 2018. Atmospheric dynamics in the stratosphere and its interaction with tropospheric processes: Progress and problems [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(3): 463-487. doi: 10.3878/j.issn.1006-9895.1802.17250
    [27] Anderson J G, Wilmouth D M, Smith J B, et al. 2012. UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor [J]. Science, 337(6096): 835-839. doi: 10.1126/science.1222978
    [28] Jiang J H, Su H, Zhai C X, et al. 2015. An assessment of upper troposphere and lower stratosphere water vapor in MERRA, MERRA2, and ECMWF reanalyses using Aura MLS observations [J]. J. Geophys. Res. Atmos., 120(22): 11468-11485. doi: 10.1002/2015jd023752
    [29] Lelieveld J, Bourtsoukidis E, Bruehl C, et al. 2018. The South Asian monsoon: Pollution pump and purifier [J]. Science, 361(6399): 270-273. doi: 10.1126/science.aar2501
    [30] Li D, Vogel B, Bian J C, et al. 2017. Impact of typhoons on the composition of the upper troposphere within the Asian summer monsoon anticyclone: The SWOP campaign in Lhasa 2013 [J]. Atmos. Chem. Phys., 17(7): 4657-4672. doi: 10.5194/acp-17-4657-2017
    [31] Luo J L, Tian W S, Pu Z X, et al. 2013. Characteristics of stratosphere-troposphere exchange during the Meiyu season [J]. J. Geophys. Res. Atmos., 118(4): 2058-2072. doi: 10.1029/2012jd018124
    [32] 刘屹岷, 王子谦, 卓海峰, 等. 2017. 夏季亚洲大地形双加热及近对流层顶位涡强迫的激发Ⅱ: 伊朗高原—青藏高原感热加热 [J]. 中国科学(地球科学), 47(3): 354-366
    [33] Liu Yimin, Wang Ziqian, Zhuo Haifeng, et al. 2017. Two types of summertime heating over Asian large-scale orography and excitation of potential-vorticity forcing. Ⅱ. Sensible heating over Tibetan-Iranian Plateau [J]. Science China Earth Sciences (in Chinese), 47(3): 354-366. doi: 10.1360/N072016-00080
    [34] Park M, Randel W J, Gettelman A, et al. 2007. Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers [J]. J. Geophys. Res., 112(D16): D16309. doi: 10.1029/2006jd008294
    [35] Ploeger F, Günther G, Konopka P, et al. 2013. Horizontal water vapor transport in the lower stratosphere from subtropics to high latitudes during boreal summer [J]. J. Geophys. Res. Atmos., 118(14): 8111-8127. doi: 10.1002/jgrd.50636
    [36] Ploeger F, Konopka P, Walker K, et al. 2017. Quantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere [J]. Atmos. Chem. Phys., 17(11): 7055-7066. doi: 10.5194/acp-17-7055-2017
    [37] Randel W J, Wu F, Russell J M Ⅲ, et al. 1998. Seasonal cycles and QBO variations in stratospheric CH4 and H2O observed in UARS HALOE data [J]. J. Atmos. Sci., 55(2): 163-185. doi: 10.1175/1520-0469(1998)0550163:scaqvi>2.0.co;2
    [38] Randel W J, Park M, Emmons L, et al. 2010. Asian monsoon transport of pollution to the stratosphere [J]. Science, 328(5978): 611-613. doi: 10.1126/science.1182274
    [39] Randel W J, Zhang K, Fu R. 2015. What controls stratospheric water vapor in the NH summer monsoon regions? [J]. J. Geophys. Res. Atmos., 120(15): 7988-8001. doi: 10.1002/2015jd023622
    [40] Reichler T, Dameris M, Sausen R. 2003. Determining the tropopause height from gridded data [J]. Geophys. Res. Lett., 30(20): 2042. doi: 10.1029/2003gl018240
    [41] 任荣彩, 吴国雄, CAI Ming, et al. 2014. 平流层—对流层相互作用研究进展:等熵位涡理论的应用及青藏高原影响 [J]. 气象学报, 72(5): 853-868
    [42] Ren Rongcai, Wu Guoxiong, Cai Ming, et al. 2014. Progress in research of stratosphere-troposphere interactions: Application of isentropic potential vorticity dynamics and the effects of the Tibetan Plateau [J]. Acta Meteor. Sin. (in Chinese), 72(5): 853-868. doi: 10.11676/qxxb2014.076
    [43] Solomon S, Rosenlof K H, Portmann R W, et al. 2010. Contributions of stratospheric water vapor to decadal changes in the rate of global warming [J]. Science, 327(5970): 1219-1223. doi: 10.1126/science.1182488
    [44] Stein A F, Draxler R R, Rolph G D, et al. 2015. NOAA's HYSPLIT atmospheric transport and dispersion modeling system [J]. Bull. Amer. Meteor. Soc., 96(12): 2059-2077. doi: 10.1175/bams-d-14-00110.1
    [45] 唐南军, 任荣彩, 邹晓蕾, 等. 2019. 夏季青藏高原地区水汽向平流层的等熵绝热和非绝热传输的气候学特征及其与落基山地区的对比 [J]. 大气科学, 43(1): 183-201
    [46] Tang Nanjun, Ren Rongcai, Zou Xiaolei, et al. 2019. Characteristic of adiabatic and diabatic water vapor transport from the troposphere to the stratosphere over the Tibetan Plateau and its comparison with the Rocky Mountains in the summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(1): 183-201. doi: 10.3878/j.issn.1006-9895.1804.17255
    [47] 唐南军, 任荣彩, 吴国雄. 2020. 青藏高原及周边UTLS水汽时空特征的多源资料对比 [J]. 大气科学学报, 待刊.
    [48] Tang Nanjun, Ren Rongcai, Wu Guoxiong. 2020. Comparison of upper troposphere and lower stratosphere water vapor spatial and temporal distribution over Tibetan Plateau in reanalysis data and MLS observations [J]. Transactions of Atmospheric Sciences (in Chinese), in press, doi: 10.13878/j.cnki.dakxxb.20170706001.
    [49] 唐南军, 任荣彩, 吴国雄, 等. 2020. 夏季青藏高原及周边上对流层水汽质量及其向平流层传输年际异常Ⅰ:水汽质量异常主导型 [J]. 大气科学, 44(2): 239-256
    [50] Tang Nanjun, Ren Rongcai, Wu Guoxiong, et al. 2020. Interannual anomalies of upper tropospheric water vapor mass and its transport into the stratosphere over the Tibetan Plateau area in summer. Part Ⅰ: Leading patterns of water vapor mass anomalies [J]. Chinese Journal of Atmospheric Sciences, 44(2): 239-256. doi: 10.3878/j.issn.1006-9895.1905.18267
    [51] 田红瑛, 田文寿, 雒佳丽, 等. 2014. 青藏高原地区上对流层—下平流层区域水汽分布和变化特征 [J]. 高原气象, 33(1): 1-13
    [52] Tian Hongying, Tian Wenshou, Luo Jiali, et al. 2014. Characteristics of water vapor distribution and variation in upper troposphere and lower stratosphere over Qinghai-Xizang Plateau [J]. Plateau Meteor. (in Chinese), 33(1): 1-13. doi: 10.7522/j.issn.1000-0534.2013.00074
    [53] Vogel B, Günther G, Müller R, et al. 2014. Fast transport from Southeast Asia boundary layer sources to northern Europe: Rapid uplift in typhoons and eastward eddy shedding of the Asian monsoon anticyclone [J]. Atmos. Chem. Phys., 14(23): 12745-12762. doi: 10.5194/acp-14-12745-2014
    [54] Vogel B, Günther G, Müller R, et al. 2016. Long-range transport pathways of tropospheric source gases originating in Asia into the northern lower stratosphere during the Asian monsoon season 2012 [J]. Atmos. Chem. Phys., 16(23): 15301-15325. doi: 10.5194/acp-16-15301-2016
    [55] Wright J S, Fu R, Fueglistaler S, et al. 2011. The influence of summertime convection over Southeast Asia on water vapor in the tropical stratosphere [J]. J. Geophys. Res., 116(D12): D12302. doi: 10.1029/2010jd015416
    [56] Wu G X, He B, Liu Y M, et al. 2015. Location and variation of the summertime upper-troposphere temperature maximum over South Asia [J]. Clim. Dyn., 45(9-10): 2757-2774. doi: 10.1007/s00382-015-2506-4
    [57] 吴国雄, 卓海峰, 王子谦, 等. 2016. 夏季亚洲大地形双加热及近对流层顶位涡强迫的激发 Ⅰ: 青藏高原主体加热 [J]. 中国科学:地球科学, 46(9): 1209-1222
    [58] Wu Guoxiong, Zhuo Haifeng, Wang Ziqian, et al. 2016. Two types of summertime heating over the Asian large-scale orography and excitation of potential-vorticity forcing. I. Over Tibetan Plateau [J]. Science China Earth Sciences (in Chinese), 46(9): 1209-1222. doi: 10.1360/N072015-00519
    [59] 夏昕, 任荣彩, 吴国雄, 等. 2016. 青藏高原周边对流层顶的时空分布、热力成因及动力效应分析 [J]. 气象学报, 74(4): 525-541
    [60] Xia Xin, Ren Rongcai, Wu Guoxiong, et al. 2016. An analysis on the spatio-temporal variations and dynamic effects of the tropopause and the related stratosphere-troposphere coupling surrounding the Tibetan Plateau area [J]. Acta Meteor. Sin. (in Chinese), 74(4): 525-541. doi: 10.11676/qxxb2016.036
    [61] Yu P F, Rosenlof K H, Liu S, et al. 2017. Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone [J]. Proc. Natl. Acad. Sci. USA, 114(27): 6972-6977. doi: 10.1073/pnas.1701170114
    [62] Yu Y Y, Ren R C, Hu J G, et al. 2014. A mass budget analysis on the interannual variability of the polar surface pressure in the winter season [J]. J. Atmos. Sci., 71(9): 3539-3553. doi: 10.1175/jas-d-13-0365.1
    [63] Yu Y Y, Cai M, Ren R C, et al. 2018. A closer look at the relationships between meridional mass circulation pulses in the stratosphere and cold air outbreak patterns in northern hemispheric winter [J]. Clim. Dyn., 51(7-8): 3125-3143. doi: 10.1007/s00382-018-4069-7
    [64] 占瑞芬, 李建平. 2008. 青藏高原和热带西北太平洋大气热源在亚洲地区夏季平流层-对流层水汽交换的年代际变化中的作用 [J]. 中国科学:地球科学, 38(8): 1028-1040
    [65] Zhan Ruifen, Li Jianping. 2008. Influence of atmospheric heat sources over the Tibetan Plateau and the tropical western North Pacific on the inter-decadal variations of the stratosphere-troposphere exchange of water vapor [J]. Science China Earth Sciences (in Chinese), 38(8): 1028-1040.
    [66] 占瑞芬, 李建平. 2012. 亚洲夏季平流层—对流层水汽交换年际变化与亚洲夏季风的联系 [J]. 地球物理学报, 55(10): 3181-3193
    [67] Zhan Ruifen, Li Jianping. 2012. Relationship of interannual variations of the stratosphere-troposphere exchange of water vapor with the Asian summer monsoon [J]. Chin. J. Geophys. (in Chinese), 55(10): 3181-3193. doi: 10.6038/j.issn.0001-5733.2012.10.001
    [68] Zhang K, Fu R, Wang T, et al. 2016. Impact of geographic variations of the convective and dehydration center on stratospheric water vapor over the Asian monsoon region [J]. Atmos. Chem. Phys., 16(12): 7825-7835. doi: 10.5194/acp-16-7825-2016
  • 加载中
图(9)
计量
  • 文章访问数:  547
  • HTML全文浏览量:  66
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-12

目录

    /

    返回文章
    返回