高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江中下游地区夏季强降水前期的三维环流结构特征分析

方欢 原韦华 徐幼平

方欢, 原韦华, 徐幼平. 2020. 长江中下游地区夏季强降水前期的三维环流结构特征分析[J]. 大气科学, 44(4): 761−775 doi:  10.3878/j.issn.1006-9895.1905.19119
引用本文: 方欢, 原韦华, 徐幼平. 2020. 长江中下游地区夏季强降水前期的三维环流结构特征分析[J]. 大气科学, 44(4): 761−775 doi:  10.3878/j.issn.1006-9895.1905.19119
FANG Huan, YUAN Weihua, XU Youping. 2020. Three-Dimensional Circulation Structure in Advance of Summer Heavy Rainfall in the Middle–Lower Reaches of the Yangtze River [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 761−775 doi:  10.3878/j.issn.1006-9895.1905.19119
Citation: FANG Huan, YUAN Weihua, XU Youping. 2020. Three-Dimensional Circulation Structure in Advance of Summer Heavy Rainfall in the Middle–Lower Reaches of the Yangtze River [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 761−775 doi:  10.3878/j.issn.1006-9895.1905.19119

长江中下游地区夏季强降水前期的三维环流结构特征分析

doi: 10.3878/j.issn.1006-9895.1905.19119
基金项目: 国家自然科学基金项目41675075、916372114、41875112,国家重点研发计划项目 2018YFE0196000、2018YFC1507603
详细信息
    作者简介:

    方欢,男,1992年出生,硕士,主要从事东亚降水研究。E-mail: fanghuan@lasg.iap.ac.cn

    通讯作者:

    原韦华,E-mail: ywh@lasg.iap.ac.cn

  • 中图分类号: P456

Three-Dimensional Circulation Structure in Advance of Summer Heavy Rainfall in the Middle–Lower Reaches of the Yangtze River

Funds: National Natural Science Foundation of China (Grants 41675075, 916372114, 41875112), National Key Research and Development Program of China (Grants 2018YFE0196000, 2018YFC1507603)
  • 摘要: 利用1959~2013年台站逐日降水观测资料和JRA-55逐6小时再分析资料,分析了长江中下游地区夏季强降水对应的前期三维环流结构。通过对长江中下游地区373个强降水样本的大气环流场合成分析发现,在长江中下游地区对流层中上层存在暖异常,暖中心位于300 hPa。在静力平衡和准地转平衡的作用下,高层暖异常上层存在反气旋式环流,下层存在气旋式环流。一方面,暖异常通过高层的反气旋式环流异常,使得其北侧的200 hPa西风增强,并促使高层急流东伸、南移到长江中下游地区北侧附近,增强了长江中下游地区高空辐散;另一方面,暖异常通过低层的气旋式环流异常,加强了吹向长江中下游地区的西南风,使低层水汽输送及辐合增强。暖异常所引起的高低空环流异常的有利配置,对长江中下游地区夏季强降水形成有重要作用。300 hPa 暖异常在降水前48小时已经存在于青藏高原东部的400~300 hPa 高空,700 hPa 气旋式环流提前24小时出现在四川盆地中低层。高低层的环流要素相互配合并随时间东移,暖异常率先到达长江中下游地区,并配合低层气旋式环流和水汽辐合区,导致了长江中下游地区的强降水。
  • 图  1  1959~2013年373个强降水日的平均降水(填色,单位:mm d−1)和中国东部1438个气象台站分布(黑点)。黑色虚线方框表示长江中下游地区(28°~33°N,112°~122°E)

    Figure  1.  Spatial distribution of average precipitation (units: mm d−1) on 373 heavy rainfall days from 1959 to 2013 and the locations of 1438 stations (black dots) in eastern China. The middle–lower reaches of the Yangtze River (MLYR) (28°–33°N, 112°–122°E) is depicted by black dashed lines

    图  2  1959~2013年373个强降水日的(a)逐日和(b)逐候频数分布(单位:d)。蓝色、黄色、紫色柱状图分别表示6、7、8月的统计情况

    Figure  2.  Frequency (units: d) distribution of 373 heavy rainfall days from 1959 to 2013 in (a) daily mean and (b) pentad mean for June (blue bars), July (yellow bars), August (purple bars)

    图  3  (a)300 hPa 温度异常(单位:°C),蓝色线框表示长江中下游地区的位置。(b)112°~122°E平均温度异常(填色,单位:°C)、位势高度异常(等值线,单位:gpm)、水平风分量异常(单位:m s−1)与垂直速度异常(单位:10−2 Pa s−1)合成矢量的高度—纬度剖面。(c)同(b),但为28°~33°N平均的高度—经度剖面。异常由1959~2013年373个强降水个例和气候态导出,灰色填色表示地形

    Figure  3.  (a) 300 hPa temperature anomaly (units: °C), the blue dashed box indicates the MLYR. (b) Meridional–vertical section (averaged between 112°–122°E) of temperature anomaly (shading, units: °C), geopotential height anomaly (contours, units: gpm), composite vector from horizontal wind fields component anomaly (units: m s−1), and vertical velocity anomaly (units: 10−2 Pa s−1). (c) Same as (b), but for zonal–vertical section averaged between 28°–33°N. Anomalies are derived from 373 heavy rainfall cases from 1959 to 2013 and climatology. Gray shadings show topography

    图  4  (a)300 hPa 温度异常(填色,单位:°C)、200 hPa 纬向风的异常场(棕色等值线,单位:m s−1)及其30 m s−1等值线位置(灰色等值线:气候态,绿色等值线:373天平均)、200 hPa散度异常高于4×10−6 s−1 的区域(黑色打点区)。(b)500 hPa位势高度异常(填色,单位:gpm)、风场异常(矢量,单位:m s-1)以及5870 gpm等高线位置(灰色等值线:气候态,绿色等值线:373天平均)。(c)700 hPa位势高度异常(填色,单位:gpm)以及风场异常(矢量,单位:m s−1)。(d)850 hPa 水汽通量异常(矢量,单位:kg m−1 s−1 hPa−1)以及水汽通量散度异常(填色,单位:10−7 kg m−2 s−1 hPa−1)。异常由1959~2013年373个强降水个例和气候态导出,黑色填色表示地形位置,蓝色线框表示长江中下游地区的位置

    Figure  4.  (a) 300 hPa temperature anomaly (shadings, units: °C), zonal wind anomaly (brown contours, units: m s−1) and 30 m s−1 zonal wind contour (gray contours: climatology, green contours: mean for 373 rainy days) at 200 hPa, 200 hPa divergence anomaly greater than 4 × 10−6s−1 (black dots). (b) 500 hPa geopotential height anomaly (shadings, units: gpm), wind anomaly (vectors, units: m s−1), 5870 gpm contour of 500 hPa geopotential height (gray contours: climatology, green contours: mean for 373 rainy days). (c) 700 hPa geopotential height anomaly (shading, units: gpm) and wind anomaly (vectors, units: m s−1). (d) 850 hPa water vapor transport flux anomaly (vectors, units: kg m−1 s−1 hPa−1) and its divergence anomaly (shadings, units: 10−7 kg m−2 s−1 hPa−1). Anomalies are derived from 373 heavy rainfall samples from 1959 to 2013 and climatology. Black shadings show topography. The blue box indicates the MLYR

    图  5  1959~2013年373个强降水个例的(a)200 hPa纬向风、(b)300 hPa温度、(c)700 hPa位势、(d)925~850 hPa平均的经向风出现正异常(黑色实线)和负异常(褐色虚线)的频率。粉(蓝)色区域表示正(负)异常的频率高于0.65的区域,蓝色虚线框表示长江中下游地区的位置

    Figure  5.  Frequency of occurrence of positive (black solid contour) and negative (sienna dash contour) anomalous systems of 373 heavy rainfall cases from 1959 to 2013 for (a) 200 hPa zonal wind, (b) 300 hPa temperature, (c) 700 hPa geopotential height, and (d) meridional wind mean from 925 to 850 hPa. Frequency in pink (blue) shading regions are positive (negative) anomalous systems greater than 0.65. The blue dashed box indicates the MLYR

    图  6  300 hPa 温度异常(水平共用色标对应的填色,单位:°C)、200 hPa 纬向风的异常场(棕色等值线,单位:m s−1)及其30 m s−1等值线位置(灰色等值线:气候态,绿色等值线:240天平均)、地面6小时累积降水量(垂直色标所对的填色,单位:mm)的逐12小时变化。−48 h、−36 h、−24 h、−12 h/0 h、12 h分别对应降水前48、36、24、12/后0、12小时(下同),异常由1959~2013年240个典型强降水个例和气候态导出,蓝色线框表示长江中下游地区的位置

    Figure  6.  Evolution of 300 hPa temperature anomaly (shading in the horizontal color bar, units: °C), zonal wind anomaly (brown contours, units: m s−1) and 30 m s−1 zonal wind contour (gray contours: climatology, green contours: mean for 240 rainy days) at 200 hPa, 6-h accumulated precipitation (shading in the vertical color bar, units: mm). −48 h, −36 h, −24 h, −12 h/0 h, 12 h denote 48, 36, 24, 12 hours before/ 0, 12 hours after heavy rainfall (same as below). Anomalies are derived from 240 typical heavy rainfall cases from 1959 to 2013 and climatology. The blue box indicates the MLYR

    图  7  700 hPa 位势高度异常(紫色等值线,单位:gpm)、地面6小时累积降水量(褐色等值线,单位:mm)、850 hPa水汽通量异常(黑色矢量,单位:kg m−1 s−1 hPa−1)以及水汽通量散度异常(填色,单位:10−7 kg m−2 s−1 hPa−1)的逐12小时变化。异常由1959~2013年240个典型强降水个例和气候态导出,黑色填色表示地形,青绿色虚线框表示长江中下游地区的位置

    Figure  7.  Evolution of 700 hPa geopotential height anomaly (purple contours, units: gpm), 6-h accumulated precipitation (brown contours, units: mm), 850 hPa water vapor fluxtransport anomaly (vectors, units: kg m−1 s−1 hPa−1) and its divergence anomaly (shading, units: 10−7 kg m−2 s−1 hPa−1). Anomalies are derived from 240 typical heavy rainfall cases from 1959 to 2013 and climatology. The black shadings show the topography. The green box indicates the MLYR

    图  8  240个典型强降水样本环流要素异常的高度—经度剖面(取28°~33°N平均)逐12小时演变。填色表示温度异常(单位:°C);褐色等值线表示位势高度异常(单位:gpm);绿色等值线表示比湿异常(仅给出≥0.5的值,单位:g kg−1);矢量表示纬向风异常(单位:m s−1)和垂直速度异常(单位:10−2 Pa s−1)的合成。异常由1959~2013年240个典型强降水个例和气候态导出,灰色填色表示地形,蓝色虚线框表示长江中下游地区的位置

    Figure  8.  Evolution of circulation characteristics in meridional–vertical section (averaged between 28°~33°N) for the 240 heavy rainy days. Shadings denote the temperature anomaly (units: °C); brown contours denote geopotential height anomaly (units: gpm); green contours denote specific humidity anomaly (only values ≥0.5, units: g kg−1); Arrows denote vectors composed of the zonal wind anomaly (units: m s−1) and vertical velocity anomaly (units: 10−2 Pa s−1). Anomalies are derived from 240 typical heavy rainfall cases from 1959 to 2013 and climatology. Gray shadings show topography. The blue box indicates the MLYR

    图  9  1959~2013年240个典型强降水28°~33oN平均的不同环流要素和地面6小时累积降水量 [图(a)、(b)、(c)中绿色等值线及d中填色] 的时间演变:(a)300 hPa 温度异常(填色,单位:°C)、(b)700 hPa位势高度异常(填色,单位:gpm)及风场异常(矢量,单位:m s−1)、(c)850 hPa 水汽通量异常(矢量,单位:kg m−1 s−1 hPa−1)以及水汽通量散度异常(填色,单位:10−6 kg m−2 s−1 hPa−1)、(d)地面6小时累积降水量(填色,单位:mm)。纵坐标代表时间,其中−18 h(+18 h)表示降水开始前(后)18小时;异常由1959~2013年240个典型强降水个例和气候态导出;黑色填色表示地形;蓝色虚线表示0 h;紫色虚线框出长江中下游地区的位置

    Figure  9.  Evolution of different circulation elements and 6-h accumulated precipitation [green contours in (a, b, c) and shading in (d)] averaged between 28°~33°N: (a) 300 hPa temperature anomaly (shading, units: °C), (b) 700 hPa geopotential height anomaly (shading, units: gpm) and wind anomaly (vectors, units: m s−1), (c) 850 hPa water vapor flux transport anomaly (vectors, units: kg m−1 s−1 hPa−1) and its divergence anomaly (shading, units: 10−6 kg m−2 s−1 hPa−1). (d) surface 6-h accumulated precipitation (shading, units: mm). Horizontal axis stands for time, −18 h (+18 h) for 18 hours before (after) heavy rainfall. Anomalies are derived from 240 typical heavy rainfall cases from 1959 to 2013 and climatology. The black shadings show topography. Blue dashed lines indicate 0 h. The purple box indicates the MLYR

  • [1] 陈隆勋. 1984. 东亚季风环流系统的结构及其中期变动 [J]. 海洋学报, 6(6): 744−758.

    Chen Longxun. 1984. The structure and medium-range variations of the East Asian monsoon circulation system [J]. Acta Oceanologica Sinica (in Chinese), 6(6): 744−758.
    [2] 陈隆勋, 朱乾根, 罗会邦, 等. 1991. 东亚季风 [M]. 北京: 气象出版社, 49−61.

    Chen Longxun, Zhu Qian’gen, Luo Huibang, et al. 1991. East Asian Monsoon (in Chinese) [M]. Beijing: China Meteorological Press, 49−61.
    [3] 丁一汇. 2005. 高等天气学第2版, [M]. 北京: 气象出版社, 138-150.

    Ding Yihui. 2005. Advanced Synoptic Meteorology. 2nd ed (in Chinese) [M]. Beijing: China Meteorological Press, 138−150.
    [4] 杜银, 张耀存, 谢志清. 2008. 高空西风急流东西向形态变化对梅雨期降水空间分布的影响 [J]. 气象学报, 66(4): 566−576.

    Du Yin, Zhang Yaocun, Xie Zhiqing. 2008. Impacts of longitude location changes of East Asian westerly jet core on the precipitation distribution during Meiyu period in middle–lower reaches of Yangtze River valley [J]. Acta Meteorologica Sinica (in Chinese), 66(4): 566−576.
    [5] Huang B, Cubasch U, Li Y. 2018. East Asian summer monsoon representation in re-analysis datasets [J]. Atmosphere, 9(6): 235. doi: 10.3390/atmos9060235
    [6] He Jinhai, Zhou Bing, Wen Min, et al. 2001. Vertical circulation structure, interannual variation features and variation mechanism of western Pacific subtropical high [J]. Adv. Atmos. Sci., 18(4): 497−510. doi: 10.1007/s00376-001-0040-2
    [7] Kobayashi S, Ota Y, Harada Y, et al. 2015. The JRA-55 reanalysis: General specifications and basic characteristics [J]. J. Meteor. Soc. Japan., 93(1): 5−48. doi: 10.2151/jmsj.2015-001
    [8] 况雪源, 张耀存. 2006a. 东亚副热带西风急流位置异常对长江中下游夏季降水的影响 [J]. 高原气象, 25(3): 382−389. doi:  10.3321/j.issn:1000-0534.2006.03.004

    Kuang Xueyuan, Zhang Yaocun. 2006a. Impact of the position abnormalities of East Asian subtropical westerly jet on summer precipitation in middle-lower reaches of Yangtze River [J]. Plateau Meteorology (in Chinese), 25(3): 382−389. doi: 10.3321/j.issn:1000-0534.2006.03.004
    [9] 况雪源, 张耀存. 2006b. 东亚副热带西风急流季节变化特征及其热力影响机制探讨 [J]. 气象学报, 65(4): 564−575. doi:  10.11676/qxxb2006.055

    Kuang Xueyuan, Zhang Yaocun. 2006b. The seasonal variation of the East Asian subtropical westerly jet and its thermal mechanism [J]. Acta Meteorologica Sinica (in Chinese), 65(4): 564−575. doi: 10.11676/qxxb2006.055
    [10] Liang Xinzhong, Wang Weichyung. 1998. Associations between China monsoon rainfall and tropospheric jets [J]. Quart. J. Roy. Meteor. Soc., 124(552): 2597−2623. doi: 10.1002/qj.49712455204
    [11] 廖清海, 高守亭, 王会军, 等. 2004. 北半球夏季副热带西风急流变异及其对东亚夏季风气候异常的影响 [J]. 地球物理学报, 47(1): 10−18. doi:  10.3321/j.issn:0001-5733.2004.01.003

    Liao Qinghai, Gao Shouting, Wang Huijun, et al. 2004. Anomalies of the extratropical westerly jet in the North Hemisphere and their impacts on East Asian summer monsoon climate anomalies [J]. Chinese Journal of Geophysics (in Chinese), 47(1): 10−18. doi: 10.3321/j.issn:0001-5733.2004.01.003
    [12] Lin Zhongda, Lu Riyu. 2005. Interannual meridional displacement of the East Asian upper-tropospheric jet stream in summer [J]. Adv. Atmos. Sci., 22(2): 199−211. doi: 10.1007/bf02918509
    [13] 罗绍华, 金祖辉. 1986. 南海海温变化与初夏西太平洋副高活动及长江中、下游汛期降水关系的分析 [J]. 大气科学, 10(4): 409−418. doi:  10.3878/j.issn.1006-9895.1986.04.08

    Luo Shaohua, Jin Zuhui. 1986. Statistical analyses for sea surface temperature over the South China Sea, behavior of subtropical high over the West Pacific and monthly mean over the Changjiang middle and lower reaches [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 10(4): 409−418. doi: 10.3878/j.issn.1006-9895.1986.04.08
    [14] 吕俊梅, 任菊章, 琚建华. 2004. 东亚夏季风的年代际变化对中国降水的影响 [J]. 热带气象学报, 20(1): 73−80. doi:  10.3969/j.issn.1004-4965.2004.01.008

    Lü Junmei, Ren Junzhang, Ju Jianhua. 2004. The interdecadal variability of East Asia monsoon and its effect on the rainfall over China [J]. Journal of Tropical Meteorology (in Chinese), 20(1): 73−80. doi: 10.3969/j.issn.1004-4965.2004.01.008
    [15] 斯公望. 1989. 暴雨和强对流环流系统 [M]. 北京: 气象出版社, 51−58.

    Si Gongwang. 1989. The Circulation Systems of Rainstorm and Severe Convection (in Chinese) [M]. Beijing: China Meteorological Press, 51−58.
    [16] Sun Wei, Li Jian, Yu Rucong, et al. 2015a. Two major circulation structures leading to heavy summer rainfall over central North China [J]. J. Geophys. Res. Atmos., 120(10): 4466−4482. doi: 10.1002/2014jd022853
    [17] Sun Wei, Yu Rucong, Li Jian, et al. 2015b. Three-dimensional circulation structure of summer heavy rainfall in central North China [J]. Wea. Forecasting, 30(1): 238−250. doi: 10.1175/waf-d-14-00046.1
    [18] Tao Shiyan, Chen Longxun. 1987. A review of the East Asian summer monsoon[M]//Krishnamurti T N, Chang C P. Monsoon Meteorology. Oxford: Oxford University Press, 60−92.
    [19] Uccellini L W, Johnson D R. 1979. The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms [J]. Mon. Wea. Rev., 107(6): 682−703. doi:10.1175/1520-0493(1979)107<0682:tcoual>2.0.co;2
    [20] 王晓春, 吴国雄. 1997. 中国夏季降水异常空间模与副热带高压的关系 [J]. 大气科学, 21(2): 34−42. doi:  10.3878/j.issn.1006-9895.1997.02.04

    Wang Xiaochun, Wu Guoxiong. 1997. The analysis of the relationship between the spatial modes of summer precipitation anomalies over China and the general circulation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 21(2): 34−42. doi: 10.3878/j.issn.1006-9895.1997.02.04
    [21] 叶笃正, 黄荣辉. 1996. 长江黄河流域旱涝规律和成因研究 [M]. 济南: 山东科学技术出版社, 1−53.

    Ye Duzheng, Huang Ronghui. 1996. Research on the Regularity and Cause of Droughts and Floodings in the Yangtze River Valley and the Yellow River Valley (in Chinese) [M]. Jinan: Shandong Science and Technology Press, 1−53.
    [22] 叶笃正, 陶诗言, 李麦村. 1958. 在六月和十月大气环流的突变现象 [J]. 气象学报, 29(4): 249−263.

    Yeh Tucheng, Dao Shihyen, Li Meitsiun. 1958. The abrupt change of circulation over Northern Hemisphere during June and October [J]. Acta Meteorologica Sinica (in Chinese), 29(4): 249−263.
    [23] Yu Ruong, Wang Bin, Zhou Tianjun. 2004. Tropospheric cooling and summer monsoon weakening trend over East Asia [J]. Geophys. Res. Lett., 31: L22212. doi: 10.1029/2004gl021270
    [24] 张可苏. 1980. 在有热源和耗散情况下的大气适应过程 [J]. 大气科学, 4(3): 199−211. doi:  10.3878/j.issn.1006-9895.1980.03.01

    Zhang Kesu. 1980. On the geostrophic adjustment process in the atmosphere in the presence of heat sources and dissipation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 4(3): 199−211. doi: 10.3878/j.issn.1006-9895.1980.03.01
    [25] 张庆云, 陶诗言, 张顺利. 2003. 夏季长江流域暴雨洪涝灾害的天气气候条件 [J]. 大气科学, 27(6): 1018−1030. doi:  10.3878/j.issn.1006-9895.2003.06.06

    Zhang Qingyun, Tao Shiyan, Zhang Shunli. 2003. The persistent heavy rainfall over the Yangtze River valley and its associations with the circulations over East Asia during summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27(6): 1018−1030. doi: 10.3878/j.issn.1006-9895.2003.06.06
    [26] Zhang Yaocun, Kuang Xueyuan, Guo Weidong, et al. 2006. Seasonal evolution of the upper-tropospheric westerly jet core over East Asia [J]. Geophys. Res. Lett., 33: L11708. doi: 10.1029/2006gl026377
    [27] Zhao Siyao, Li Jian, Yu Rucong, et al. 2015. Recent reversal of the upper-tropospheric temperature trend and its role in intensifying the East Asian summer monsoon [J]. Sci. Rep., 5: 11847. doi: 10.1038/srep11847
    [28] Zhou Tianjun, Yu Rucong. 2005. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China [J]. Geophys. Res. Lett., 110: D08104. doi: 10.1029/2004JD005413
    [29] 竺可桢. 1934. 东南季风与中国之雨量 [J]. 地理学报, 1(1): 1−27. doi:  10.11821/xb193401001

    Chu Coching. 1934. The enigma of southeast monsoon in China [J]. Acta Geographica Sinica (in Chinese), 1(1): 1−27. doi: 10.11821/xb193401001
    [30] 朱乾根, 周伟灿, 张海霞. 2001. 高低空急流耦合对长江中游强暴雨形成的机理研究 [J]. 南京气象学院学报, 24(3): 308−314. doi:  10.3969/j.issn.1674-7097.2001.03.002

    Zhu Qiangen, Zhou Weican, Zhang Haixia. 2001. Mechanism of the formation of torrential rain by coupled high/low level jets over the middle reaches of the Yangtze River [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 24(3): 308−314. doi: 10.3969/j.issn.1674-7097.2001.03.002
  • [1] 黄明策, CAOZuohao, 沈新勇.  中国东部夏季风雨带向北推进与条件对称不稳定的关系研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1811.18109
    [2] 李明刚, 管兆勇, 梅士龙.  夏季长江中下游地区降水持续性年(代)际变异及其与环流和Rossby波活动的联系, 大气科学. doi: 10.3878/j.issn.1006-9895.1511.15257
    [3] 叶敏, 封国林.  长江中下游地区夏季降水的水汽路径的客观定量化研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1409.14208
    [4] 李淑萍, 侯威, 封泰晨.  近52年长江中下游地区夏季年代际尺度干湿变化及其环流演变分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1412.14186
    [5] 冉令坤, 李娜, 高守亭.  华东地区强对流降水过程湿斜压涡度的诊断分析, 大气科学. doi: 10.3878/j.issn.1006-9895.2012.12110
    [6] 吕爱民, 文永仁, 李英.  一次孟加拉湾风暴Akash (0701) 对我国西南地区强降水过程的影响分析, 大气科学. doi: 10.3878/j.issn.1006-9895.2012.12040
    [7] 陈海山, 朱月佳, 刘蕾.  长江中下游地区冬季极端降水事件与天气尺度瞬变波活动的可能联系, 大气科学. doi: 10.3878/j.issn.1006-9895.2012.12033
    [8] 郭玲, 何金海, 祝从文.  影响长江中下游夏季降水的前期潜在预报因子评估, 大气科学. doi: 10.3878/j.issn.1006-9895.2011.11060
    [9] 王启光, 封国林, 郑志海, 等.  长江中下游汛期降水优化多因子组合客观定量化预测研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2011.02.08
    [10] 魏凤英.  长江中下游夏季降水异常变化与若干强迫因子的关系, 大气科学. doi: 10.3878/j.issn.1006-9895.2006.02.03
    [11] 吴志伟, 何金海, 李建平, 江志红.  长江中下游夏季旱涝并存及其异常年海气特征分析, 大气科学. doi: 10.3878/j.issn.1006-9895.2006.04.03
    [12] 闵锦忠, 李春, 吴芃.  夏季热带西太平洋对流与长江中下游降水关系的研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2005.06.10
    [13] 肖辉, 王孝波, 周非非, 洪延超, 黄美元.  强降水云物理过程的三维数值模拟研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2004.03.06
    [14] 施能, 朱乾根, 吴彬贵.  近40年东亚夏季风及我国夏季大尺度天气气候异常, 大气科学. doi: 10.3878/j.issn.1006-9895.1996.05.08
    [15] 吴仁广, 陈烈庭.  长江中下游地区梅雨期降水与全球500hPa环流的关系, 大气科学. doi: 10.3878/j.issn.1006-9895.1994.06.06
    [16] 徐群.  近20年长江中下游汛期旱涝趋势季度预报的检验及分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1990.01.12
    [17] 徐群.  近20年长江中下游汛期旱涝趋势季度预报的检验及分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1990.01.12
    [18] 罗绍华, 金祖辉, 陈烈庭.  印度洋和南海海温与长江中下游夏季降水的相关分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1985.03.13
    [19] 张汉琳.  长江中下游丰枯梅雨环流配置及其前期演变特征, 大气科学. doi: 10.3878/j.issn.1006-9895.1985.01.11
    [20] 李鸿洲, 梁佩婰, 梁幼林.  长江中下游汛期长期旱涝预报与500毫巴环流型及其变化, 大气科学. doi: 10.3878/j.issn.1006-9895.1977.03.03
  • 加载中
图(9)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  4
  • PDF下载量:  274
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-01
  • 网络出版日期:  2019-07-09
  • 刊出日期:  2020-07-25

目录

    /

    返回文章
    返回