高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2018年8月华南超历史极值降水事件的观测分析与机理研究

曾智琳 谌芸 王东海

曾智琳, 谌芸, 王东海. 2020. 2018年8月华南超历史极值降水事件的观测分析与机理研究[J]. 大气科学, 44(4): 695−715 doi:  10.3878/j.issn.1006-9895.1906.18265
引用本文: 曾智琳, 谌芸, 王东海. 2020. 2018年8月华南超历史极值降水事件的观测分析与机理研究[J]. 大气科学, 44(4): 695−715 doi:  10.3878/j.issn.1006-9895.1906.18265
ZENG Zhilin, CHEN Yun, WANG Donghai. 2020. Observation and Mechanism Analysis for a Record-Breaking Heavy Rainfall Event over Southern China in August 2018 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 695−715 doi:  10.3878/j.issn.1006-9895.1906.18265
Citation: ZENG Zhilin, CHEN Yun, WANG Donghai. 2020. Observation and Mechanism Analysis for a Record-Breaking Heavy Rainfall Event over Southern China in August 2018 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 695−715 doi:  10.3878/j.issn.1006-9895.1906.18265

2018年8月华南超历史极值降水事件的观测分析与机理研究

doi: 10.3878/j.issn.1006-9895.1906.18265
基金项目: 国家重点研发计划专项项目2017YFC1502501,国家自然科学基金项目——国际(地区)合作与交流项目41861164027,国家自然科学基金项目41775097
详细信息
    作者简介:

    曾智琳,男,博士研究生,主要从事中小尺度天气学机理与数值模拟研究。E-mail: 445800133@qq.com

    通讯作者:

    谌芸,E-mail: chenyun@cma.gov.cn

  • 中图分类号: P458.2

Observation and Mechanism Analysis for a Record-Breaking Heavy Rainfall Event over Southern China in August 2018

Funds: National Key Research and Development Program of China (Grant 2017YFC1502501), National Natural Science Foundation of China—International (Regional) Cooperation and Exchange Project (Grant 41861164027), National Natural Science Foundation of China (Grant 41775097)
  • 摘要: 2018年8月30~31日一条超长生命期的中尺度线状对流(线状β-MCS)引发了华南沿海一次极端降水事件[1056.7 mm(24 h)−1],刷新广东省24小时雨量历史纪录,造成严重洪涝并引起社会极大关注。文章采用多源观测资料与NCEP/NCAR_FNL分析资料,首先从观测分析角度提炼该次过程的降水特点与卫星、雷达的基本演变特征,然后分析了极端降水的天气尺度背景与中尺度环境条件,最后从中尺度大气动力学角度探讨超长生命期线状β-MCS的触发演变与海陆边界风向旋转维持的关系,并揭示线状对流组织与维持的可能物理机制。结果表明:季风低压作为稳定的天气尺度背景,大气层结表现为深厚暖湿与持续不稳定,季风云团北推上岸造成华南沿海大范围暴雨,一条超长生命期、准静止、低顶高、低质心并具备后向传播特征的线状β-MCS造成高潭持续性强降雨,降水强度大、持续时间极长是累积雨量破纪录的主要原因。对流触发及线状β-MCS组织发展与地面风场有密切关系,海陆边界风向旋转率方程定性分析发现地面风场受多尺度调节影响,季风低压的天气尺度项、局地地形摩擦项与中尺度气压梯度项对地面风场协同形成的反向强迫及平衡机制,是偏南气流长时间维持的关键。斜坡地形与黄江河谷一侧偏南气流增强并建立“暖脊”,致使山脉一侧冷池出流边界无法向南扩展,形成强烈的水平温度梯度,基于中尺度动力学方程定量诊断表明β-MCS的线状组织过程及对流维持的动力机制来源于局地垂直风切变,这种局地垂直风切变有别于环境垂直风切变,其显著增强是对地面强烈纬向水平温度梯度响应的结果。
  • 图  1  (a)2018年8月30日05时至31日05时(北京时,下同)自动站24小时雨量≥50 mm站点分布,灰色阴影为地形,黄色和绿色方框表示高潭(GT)、陆河(LH)极端降水中心,(b)基于卫星资料90 m分辨率地形与高潭中心(黄色方框)、陆河中心(绿色方框)位置,其中1056.7 mm [站号711730,高潭镇政府(23.19°N,115.30°E)]、885.4 mm [站号715516,高潭镇中学(23.20°N,115.30°E)]、578.6 mm [站号715615,河田镇农业基地(23.32°N,115.64°E)]、521.7 mm [站号715613,上护镇分健生站(23.26°N,115.61°E)] 为两个降水中心具有代表性的自动站24小时雨量,棕色三角形为标注山脉主峰及海拔高度

    Figure  1.  (a) Automatic weather stations (AWSs) for the observed accumulated rainfall (≥50 mm) from 0500 BT 30 Aug to 0500 BT 31 Aug 2018 (units: mm), gray shadings represent terrain elevation; (b) 90 m-resolution topography from satellite. Yellow and green frames in (a) and (b) denote the control region for Gaotan (GT) and Luhe (LH), respectively; representative rain gauge observations “×” from AWSs, station numbers: 711730 [1056.7 mm, GT town government (23.19°N, 115.30°E)], 711516 [885.4 mm, GT town middle school (23.20°N, 115.30°E)], 715615 [578.6 mm, Hetian (HT) town agriculture base (23.32°N, 115.64°E)], 715613 [521.7 mm, Shanghu (SH) town Fenjiansheng station (23.26°N, 115.61°E)], brick-red triangles in (b) denote the main peaks with the elevations labeled

    图  2  2018年8月30日05时至31日05时(a)高潭中心高潭镇政府、高潭镇中学,(b)陆河中心河田镇农业基地、上护镇分健生站小时雨量(柱状,单位:mm)和累积雨量(折线,单位:mm)

    Figure  2.  Observed hourly rainfall (bar, units: mm) and accumulated rainfall (fold line, units: mm)from 0500 BT 30 Aug to 0500 BT 31 Aug 2018: (a) The GT town government and GT town middle school; (b) the HT town agricultural base and SH town Fenjiansheng station

    图  3  2018年8月30日(a)03时、(b)07时、(c)11时、(d)15时、(e)19时、(f)23时,31日(g)03时、(h)05时、(i)07时地球静止轨道气象卫星FY-2G云顶亮温(Black Body Temperature,简称TBB,单位:K),虚线方框表示高潭、陆河中心所在区域

    Figure  3.  Black body temperature (TBB, units: K) at (a) 0300 BT, (b) 0700 BT, (c) 1100 BT, (d) 1500 BT, (e) 1900 BT, (f) 2300 BT 30 Aug, and (g) 0300 BT, (h) 0500 BT, (i) 0700 BT 31 Aug 2018 from the geostationary orbit meteorological satellite FY-2G. Dashed frames denote the control region for GT and LH

    图  7  (a)2018年8月28日02时至9月1日02时高潭镇政府大气水平风(风杆,其中黑色风杆表示风速<12 m s−1,红色风杆表示风速≥12 m s−1)、比湿(等值线,单位:g kg−1;其中绿色等值线表示10~14 g kg−1)和假相当位温(θse,填色,单位:K)的垂直分布,虚线框表示假相当位温开始升高,实线框表示风速开始增强;(b)8月30日20时沿115.30°E过高潭镇政府(紫色三角形,711730)水汽通量散度 [绿色阴影,单位:g (hPa cm2 s)−1]、流线(经向风—垂直速度合成,垂直速度×100)和经向风风速(紫红色等值线,虚线为风速值<5,单位:m s−1)的垂直—经向剖面,蓝实线为海岸线

    Figure  7.  (a) Time–height crosssection of wind [barbs, black (red) barbs indicate wind speed <12.0 m s−1 (≥12.0 m s−1)], specific humidity (contours, units: g kg−1; green contours denote the value for specific humidity from 10 to 14 g kg−1), and pseudo-equivalent potential temperature (θse, shading, units: K) over GT town government from 0200 BT 28 Aug to 0200 BT 1 Sept 2018 (the dashed frame denotes the θse rising stage; the solid frame denotes the wind speed strengthening stage); (b) latitude–height cross section at 115.30°E for divergence of water vapor flux [green shading, units: g (hPa cm2 s)−1], stream lines (combine meridional wind with vertical velocity, 100 times for the vertical velocity), and meridional wind speed (magenta contours, dashed contours denote the values<5, units: m s−1) at 2000 BT 30 Aug 2018 [the blue solidline denotes the coastline; the purple triangle denotes GT town government (711730)]

    图  4  2018年8月30~31日汕尾多普勒天气雷达1.5°仰角基本反射率,“×”表示高潭镇政府,红色椭圆圈表示线状中尺度对流系统,其中位于高潭附近的线状中尺度对流系统以白色特别标示,亮蓝色圆圈表示零散对流单体(γ-MCS)

    Figure  4.  Reflectivity at 1.5° elevation for Shanwei Doppler weather radar on 30–31 Aug 2018. The “×” denotes the GT town government; the red-colored ellipses denote linearly shaped MCSs (mesoscale convective systems), within which the linearly shaped MCSs around GT was specially marked in white; the bright blue ellipses denote γ-MCSs (γ-meso convective systems)

    图  5  (a)2018年8月30日18时00分高潭附近线状β-MCS雷达反射率垂直剖面,紫红色虚线标注>40 dBZ对流回波顶高边界,右上角图为该时刻1.5°仰角上水平方向雷达反射率;(b)8月30日19时42分高潭附近雷达反射率三维结构,三维结构中黄色与红色反射率的部分表示>40 dBZ的对流回波,蓝色部分表示<20 dBZ的云顶回波,右上角图为该时刻雷达速度三维结构

    Figure  5.  (a) Vertical cross section of radar reflectivity for the linearly shaped β-MCS around GT town at 1800 BT 30 Aug 2018 (the magenta-colored dashed line denotes the top boundary of the 40 dBZ convection echo; the diagram at the top right in (a) denotes the radar reflectivity at 1.5° elevation at the corresponding time); (b) the radar reflectivity three-dimensional structure at 1942 BT 30 Aug around GT town (the radar reflectivity three-dimensional structure shaded in yellow and red colors denotes convective echo >40 dBZ, while shaded in blue denotes top echo with reflectivity <20 dBZ; the diagram at the top right in (b) denotes the three-dimensional structure for the Doppler radar velocity around GT town at the corresponding time)

    图  6  2018年8月30日(a)08时和(b)20时基于NCEP/NCAR_FNL分析资料500 hPa位势高度(等值线,单位:gpm)、925 hPa风(白色风杆)和PWAT(大气可降水量,填色,单位:mm),亮蓝色方框表示高潭中心与陆河中心所在区域

    Figure  6.  500 hPa geopotential height (solid black contours, units: gpm), 925 hPa wind (white barbs) and precipitable water (PWAT, color shading, units: mm) from NCEP/NCAR_FNL analysis data at (a) 0800 BT and (b) 2000 BT 30 Aug 2018. Bright blue frames denote the control region for GT and LH

    图  8  2018年(a)8月29日20时、(b)8月30日08时、(c)8月30日20时、(d)8月31日08时香港京士柏站(站号45004)T-lnp探空曲线图,黑色实线表示环境温度曲线,黑色虚线表示环境露点温度曲线,红色实线为气块绝热上升曲线,MUL为最不稳定层高度,LCL、LFC和EL分别为抬升凝结高度、自由对流高度和平衡高度,CAPE(对流有效位能,红色阴影)为从最不稳定层作为起始抬升点计算的对流有效位能,CIN(对流抑制能量)为基于订正虚温计算的对流抑制能量

    Figure  8.  Skew T-lnp diagram over Hong Kong Kings Park sounding station (45004) at (a) 2000 BT 29 Aug, (b) 0800 BT 30 Aug, (c) 2000 BT 30 Aug, and (d) 0800 BT 31 Aug 2018. Ambient temperature, dewpoint temperature, and path of adiabatic uplift for parcel are respresented by solid black line, dotted black line, and solid red line. MUL indicates the most unstable level; LCL, LFC, and El indicate the lifting condensation level, level of free convection, and equilibrium level, respectively; CAPE indicates the convective available potential energy calculated from the most unstable level; and CIN indicates the convective inhibition based on the revised virtual temperature of the most unstable level

    图  9  2018年8月30~31日华南极端降水事件的多尺度环境条件概念模型

    Figure  9.  Multiscale schematic diagram for the extreme rainfall event over southern China during 30–31 Aug 2018

    图  10  2018年8月30~31日高潭附近中小尺度地形分布。“×”表示高潭镇政府;字母表示河谷:A为漯河河谷、B为黄江河谷、C为大液河谷、D为赤石河谷、E为圭景河谷;数字表示山峰:①为五指嶂(海拔1186.2 m)、②为莲花山(海拔1337.3 m)、③为大银瓶山(海拔1100.0 m);黄色虚线为莲花山脉;红色方框为标注区域(23.08°N~23.22°N,115.24°E~115.38°E)

    Figure  10.  Meso-small scale terrain around GT town during 30–31 Aug 2018. The “×” denotes the GT town government; the letters denote the river valley, where A, B, C, D, and E indicate Luohe, Huangjiang, Daye, Chishi, and Guijing, respectively; figures denote mountain peaks, where ①, ②, and ③ indicate the Wuzhi, Lianhua, and Dayingping, respectively; the yellow dashed lines denote the Mountains Lianhua; the red frame indicates the labeled region (23.08°N–23.22°N,115.24°E–115.38°E)

    图  11  2018年8月29日(a)20时,8月30日(b)05时,(c)11时,(d)12时地面区域自动站观测格点化风场。深蓝色风杆表示全风速有北风分量(v<0),紫红色风杆表示全风速有南风分量(v>0);橙色和红色阴影表示2 km高度>35 dBZ雷达反射率(单位:dBZ);图b、c和d中的绿色双实线表示辐合线;图b虚线圈表示大液河谷;灰色阴影为地形

    Figure  11.  Observed surface gridding wind field at (a) 2000 BT 29 Aug, (b) 0500 BT, (c) 1100 BT, and (d) 1200 BT 30 Aug 2018. Wind barbs with a northerly component are in deep blue and with a southerly component are in magenta; the radar reflectivity >35 dBZ at 2 km above mean sea level (orange and red shading, units: dBZ); green double solid lines in (b), (c), and (d) denote shear lines; the circle in (b) denotes the Daye River valley; the gray shadings represent terrain

    图  12  图11,但为2018年8月不同时间:(a)30日17时;(b)30日18时;(c)31日00时;(d)31日01时;(e)31日03时;(f)31日04时;(g)31日05时;(h)31日14时。图(a)、(b)、(c)和(d)中椭圆内的数字和字母表示γ-MCSs,黑虚线表示该时刻至下一时刻γ-MCSs位置变化

    Figure  12.  Same as in Fig.11, but at (a) 1700 BT 30 Aug, (b) 1800 BT 30 Aug, (c) 0000 BT 31 Aug, (d) 0100 BT 31 Aug, (e) 0300 BT 31 Aug, (f) 0400 BT 31 Aug, (g) 0500 31 Aug, (h) 1400 BT 31 Aug 2018. The numbers and letters inside the ellipses in (a), (b), (c), and (d) denote γ-MCSs; the black dotted lines denote location evolution for γ-MCSs

    图  13  2018年8月29日20时至31日08时江牡岛自动站 [站号59504(22.74°N,115.18°E)] 逐小时气温、露点温度(单位:°C)和阵风(风杆)

    Figure  13.  Temperature, dew-point temperature (units: °C), and wind gusts (barbs) at 1 hour interval at Jiangmu Island station [AWS number: 59504 (22.74°N, 115.18°E)] from 2000 BT 29 Aug to 0800 BT 31 Aug 2018

    图  14  高潭附近区域(22.7°N~23.4°N,114.8°E~115.8°E)温度距平分布(单位:K):(a)30日12时;(b)30日18时;(c)31日01时;(d)31日04时。蓝色方框(同图10红色方框)为标注区域(23.08°N~23.22°N,115.24°E~115.38°E),“×”标注高潭镇政府

    Figure  14.  Temperature anomalies (units: K) distribution in area around GT (22.7°N–23.4°N,114.8°E–115.8°E) at (a) 1200 BT, (b) 1800 BT 30 Aug, (c) 0100 BT, (d) 0400 BT 31 Aug 2018. The blue frames (corresponding to the red frame in figure 10) denote the labeled region (23.08°N–23.22°N,115.24°E–115.38°E); the “×”denotes the GT town government

    表  1  极端降水之前(8月30日05时之前)、极端降水期间(8月30日05时至8月31日05时)高潭附近海陆边界风向旋转率变化

    Table  1.   Rotation rate evolution of the near-surface wind direction over the coastline around Gaotan (GT) before and during the extreme rainfall (from 0500 BT 30 Aug to 0500 BT Aug 2018)

    天气尺度项中尺度气压梯度项摩擦力项
    极端降水之前(盛行偏东风)旋转率增加,顺转偏东风→偏南风旋转率增加,顺转偏东风→偏南风旋转率增加,顺转偏东风→偏南风
    极端降水期间(盛行偏南风)旋转率减小,逆转偏南风→偏东风旋转率增加,顺转偏南风→偏西风旋转率减小,逆转偏南风→偏东风
    下载: 导出CSV

    表  2  高潭附近标注区域(23.08°N~23.22°N,115.24°E~115.38°E)的垂直风切变在高潭镇政府极端降水第Ⅰ~Ⅳ阶段的演变

    Table  2.   Evolution of the vertical wind shear in the labeled region (23.08°N–23.22°N, 115.24°E–115.38°E) around GT during states Ⅰ to Ⅳ of the extreme rainfall over GT town government

    $\displaystyle\frac{{\partial \theta }}{{\partial x}}{\text{/K}}{\left( {10 \; {\text{km}}} \right)^{ - 1}}$区域均温T/K环境的垂直风切变/10−3 s−1标注区域垂直风切变/10−3 s−1
    第Ⅰ阶段(2018年8月30日12时)0.50297.221.65*2.97
    第Ⅱ阶段(2018年8月30日18时)3.37298.671.10#19.90
    第Ⅲ阶段(2018年8月31日01时)3.47298.281.1720.50
    第Ⅳ阶段(2018年8月31日04时)3.38298.301.1720.00
    注:*、#和※分别为基于NCEP/NCAR_FNL分析资料2018年8月30日14、20时和31日02时计算的0~3 km垂直风切变
    下载: 导出CSV
  • [1] Bluestein H B, Jain M H. 1985. Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring [J]. J. Atmos. Sci., 42(16): 1711−1732. doi:10.1175/1520-0469(1985)042<1711:fomlop>2.0.co;2
    [2] 谌芸, 孙军, 徐珺, 等. 2012. 北京721特大暴雨极端性分析及思考(一)观测分析及思考 [J]. 气象, 38(10): 1255−1266. doi:  10.7519/j.issn.1000-0526.2012.10.012

    Chen Yun, Sun Jun, Xu Jun, et al. 2012. Analysis and thinking on the extremes of the 21 July 2012 torrential rain in Beijing. Part Ⅰ: Observation and thinking [J]. Meteorological Monthly (in Chinese), 38(10): 1255−1266. doi: 10.7519/j.issn.1000-0526.2012.10.012
    [3] 陈元昭, 俞小鼎, 陈训来. 2016. 珠江三角洲地区重大短时强降水的基本流型与环境参量特征 [J]. 气象, 42(2): 144−155. doi:  10.7519/j.issn.1000-0526.2016.02.002

    Chen Yuanzhao, Yu Xiaoding, Chen Xunlai. 2016. Characteristics of short-time severe rainfall events based on weather flow and key environmental parameters in Pearl River Delta [J]. Meteorological Monthly (in Chinese), 42(2): 144−155. doi: 10.7519/j.issn.1000-0526.2016.02.002
    [4] Chappell C F. 1986. Quasi-stationary convective events [M]// Mesoscale Meteorology and Forecasting. Boston, MA: American Meteorological Society, 289-310. doi: 10.1007/978-1-935704-20-1_13
    [5] Chen C S, Lin C Y, Chuang Y J, et al. 2002. A study of afternoon heavy rainfall in Taiwan during the Mei-yu season [J]. Atmospheric Research, 65(1): 129−149. doi: 10.1016/s0169-8095(02)00061-3
    [6] Chen J, Zheng Y G, Zhang X L, et al. 2013. Distribution and diurnal variation of warm-season short-duration heavy rainfall in relation to the MCSs in China [J]. Acta Meteorologica Sinica, 27(6): 868−888. doi: 10.1007/s13351-013-0605-x
    [7] Chen T J. 1992. Mesoscale features observed in the Taiwan Mei-Yu season [J]. J. Meteor. Soc. Jpn., 70(1): 497−561. doi: 10.2151/jmsj1965.70.1b_497
    [8] 丁一汇. 2015. 论河南75.8”特大暴雨的研究: 回顾与评述 [J]. 气象学报, 73(3): 411−424. doi:  10.11676/qxxb2015.067

    Ding Yihui. 2015. On the study of the unprecedented heavy rainfall in Henan Province during 4−8 August 1975 [J]. Acta Meteorologica Sinica (in Chinese), 73(3): 411−424. doi: 10.11676/qxxb2015.067
    [9] Davis R S. 2001. Flash flood forecast and detection methods [J]. Meteor. Monogr., 28(50): 481−526. doi: 10.1175/0065-9401-28.50.481
    [10] Davis C A, Lee W C. 2012. Mesoscale analysis of heavy rainfall episodes from SoWMEX/TiMREX [J]. J. Atmos. Sci., 69(2): 521−537. doi: 10.1175/jas-d-11-0120.1
    [11] Ding Y H, Liu Y J. 2001. Onset and the evolution of the summer monsoon over the South China Sea during SCSMEX field experiment in 1998 [J]. J. Meteor. Soc. Jpn., 79(1): 255−276. doi: 10.2151/jmsj.79.255
    [12] Doswell C A Ⅲ, Brooks H E, Maddox R A. 1996. Flash flood forecasting: An ingredients-based methodology [J]. Wea. Forecasting, 11(4): 560−581. doi:10.1175/1520-0434(1996)011<0560:fffaib>2.0.co;2
    [13] 方翀, 毛冬艳, 张小雯, 等. 2012. 2012年7月21日北京地区特大暴雨中尺度对流条件和特征初步分析 [J]. 气象, 38(10): 1278−1287. doi:  10.7519/j.issn.1000-0526.2012.10.014

    Fang Chong, Mao Dongyan, Zhang Xiaowen, et al. 2012. Analysis on the mesoscale convective conditions and characteristics of an extreme torrential rain in Beijing on 21 July [J]. Meteorological Monthly (in Chinese), 38(10): 1278−1287. doi: 10.7519/j.issn.1000-0526.2012.10.014
    [14] 傅佩玲, 胡东明, 张羽, 等. 2018. 2017年5月7日广州特大暴雨微物理特征及其触发维持机制分析 [J]. 气象, 44(4): 500−510. doi:  10.7519/j.issn.1000-0526.2018.04.003

    Fu Peiling, Hu Dongming, Zhang Yu, et al. 2018. Microphysical characteristics, initiation and maintenance of record heavy rainfall over Guangzhou region on 7 May 2017 [J]. Meteorological Monthly (in Chinese), 44(4): 500−510. doi: 10.7519/j.issn.1000-0526.2018.04.003
    [15] 郝莹, 姚叶青, 郑媛媛, 等. 2012. 短时强降水的多尺度分析及临近预警 [J]. 气象, 39(8): 902−912.

    Hao Ying, Yao Yeqing, Zheng Yuanyuan, et al. 2012. Multi-scale analysis and nowcasting of short-time heavy rainfall [J]. Meteorological Monthly (in Chinese), 39(8): 902−912.
    [16] Jiang X L, Ren F M, Li Y J, et al. 2018. Characteristics and preliminary causes of tropical cyclone extreme rainfall events over Hainan Island [J]. Adv. Atmos. Sci., 35(5): 580−591. doi: 10.1007/s00376-017-7051-0
    [17] Johns R H, Doswell C A Ⅲ. 1992. Severe local storms forecasting [J]. Wea. Forecasting, 7(4): 588−612. doi:10.1175/1520-0434(1992)007<0588:slsf>2.0.co;2
    [18] 李博, 刘黎平, 赵思雄, 等. 2013. 局地低矮地形对华南暴雨影响的数值试验 [J]. 高原气象, 32(6): 1638−1650. doi:  10.7522/j.issn.1000-0534.2012.00156
    [19] Li Bo, Liu Liping, Zhao Sixiong, et al. 2013. Numerical experiment of the effect of local low terrain on heavy rainstorm of South China [J]. Plateau Meteorology (in Chinese), 32(6): 1638−1650.
    [20] 李春晖, 吴志伟, 蒙伟光, 等. 2017. 影响华南后汛期季风持续性暴雨和热带气旋持续性暴雨的大尺度环流背景分析 [J]. 热带气象学报, 33(1): 11−20. doi:  10.16032/j.issn.1004-4965.2017.01.002

    Li Chunhui, Wu Zhiwei, Meng Weiguang, et al. 2017. Compared analysis characteristics of impact of large scale circulation on the persistent heavy rains in post-flood season in South China associated with monsoon and tropical cyclone [J]. Journal of Tropical Meteorology (in Chinese), 33(1): 11−20. doi: 10.16032/j.issn.1004-4965.2017.01.002
    [21] 李泽椿, 谌芸, 张芳华, 等. 2015. 由河南“75·8”特大暴雨引发的思考 [J]. 气象与环境科学, 38(3): 1−12. doi:  10.3969/j.issn.1673-7148.2015.03.001

    Li Zechun, Chen Yun, Zhang Fanghua, et al. 2015. Consideration by "75·8" extreme heavy rainfall event in Henan [J]. Meteorological and Environmental Sciences (in Chinese), 38(3): 1−12. doi: 10.3969/j.issn.1673-7148.2015.03.001
    [22] 鲁蓉, 孙建华, 傅慎明. 2018. 近海水汽初值和对流影响一次华南前汛期沿海强降水对流系统发展过程的机理研究 [J]. 大气科学, 42(1): 1−15. doi:  10.3878/j.issn.1006-9895.1705.16261

    Lu Rong, Sun Jianhua, Fu Shenming. 2018. Influence of offshore initial moisture field and convection on the development of coastal convection in a heavy rainfall event over South China during the pre-summer rainy season [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(1): 1−15. doi: 10.3878/j.issn.1006-9895.1705.16261
    [23] Luo Yali, Wang Hui, Zhang Renhe, et al. 2013. Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over South China and the Yangtze and Huai River basin [J]. J. Climate, 26(1): 110−132. doi: 10.1175/jcli-d-12-00100.1
    [24] Luo Yali, Chen Y. 2015. Investigation of the predictability and physical mechanisms of an extreme-rainfall-producing mesoscale convective system along the Meiyu front in East China: An ensemble approach [J]. J. Geophys. Res. Atmos., 120(20): 10593−10618. doi: 10.1002/2015jd023584
    [25] Luo Yali, Wu Mengwen, Ren Fumin, et al. 2016. Synoptic situations of extreme hourly precipitation over China [J]. J. Climate, 29(24): 8703−8719. doi: 10.1175/jcli-d-16-0057.1
    [26] Luo Yali, Zhang Renhe, Wan Qilin, et al. 2017. The southern China monsoon rainfall experiment (SCMREX) [J]. Bull. Amer. Meteor. Soc., 98(5): 999−1013. doi: 10.1175/bams-d-15-00235.1
    [27] 蒙伟光, 王安宇, 李江南, 等. 2004. 华南暴雨中尺度对流系统的形成及湿位涡分析 [J]. 大气科学, 28(3): 330−341. doi:  10.3878/j.issn.1006-9895.2004.03.02

    Meng Weiguang, Wang Anyu, Li Jiangnan, et al. 2004. Moist potential vorticity analysis of the heavy rainfall and mesoscale convective systems in South China [J]. Chinese Journal of Atmospheric sciences (in Chinese), 28(3): 330−341. doi: 10.3878/j.issn.1006-9895.2004.03.02
    [28] 蒙伟光, 张艳霞, 戴光丰, 等. 2007. 华南沿海一次暴雨中尺度对流系统的形成和发展过程 [J]. 热带气象学报, 23(6): 521−530. doi:  10.16032/j.issn.1004-4965.2007.06.001

    Meng Weiguang, Zhang Yanxia, Dai Guangfeng, et al. 2007. The formation and development of a heavy rainfall mesoscale convective system along southern China coastal area [J]. Journal of Tropical Meteorology (in Chinese), 23(6): 521−530. doi: 10.16032/j.issn.1004-4965.2007.06.001
    [29] 苗春生, 杨艺亚, 王坚红, 等. 2017. 两类华南沿海暖区暴雨特征及热力发展机制对比研究 [J]. 热带气象学报, 33(1): 53−63. doi:  10.16032/j.issn.1004-4965.2017.01.006

    Miao Chunsheng, Yang Yiya, Wang Jianhong, et al. 2017. Comparative study of characteristics and thermodynamical development mechanism on two types of warm sector heavy rainfall in South China coast [J]. Journal of Tropical Meteorology (in Chinese), 33(1): 53−63. doi: 10.16032/j.issn.1004-4965.2017.01.006
    [30] 慕建利, 王建捷, 李泽椿, 等. 2008. 2005年6月华南特大连续性暴雨的环境条件和中尺度扰动分析 [J]. 气象学报, 66(3): 437−451.

    Mu Jianli, Wang Jianjie, Li Zechun, et al. 2008. A study of environment and mesoscale convective systems of continuous heavy rainfall in the South of China in June 2005 [J]. Acta Meteorologica Sinica (in Chinese), 66(3): 437−451.
    [31] Maddox R A, Chappell C F, Hoxit L R. 1979. Synoptic and meso-α scale aspects of flash flood events [J]. Bull. Amer. Meteor. Soc., 60(2): 115−123. doi: 10.1175/1520-0477-60.2.115
    [32] Meng Weiguang, Zhang Yanxia, Dai Guangfeng, et al. 2008. The formation and development of a mesoscale convective system with heavy rainfall along South China coastal area [J]. Journal of Tropical Meteorology, 14(1): 57−61.
    [33] Melhauser C, Zhang F Q. 2012. Practical and intrinsic predictability of severe and convective weather at the mesoscales [J]. J. Atmos. Sci., 69(11): 3350−3371. doi: 10.1175/jas-d-11-0315.1
    [34] Neumann J. 1977. On the rotation rate of the direction of sea and land breezes [J]. J. Atmos. Sci., 34(12): 1913−1917. doi:10.1175/1520-0469(1977)034<1913:otrrot>2.0.co;2
    [35] Parker M D, Johnson R H. 2000. Organizational modes of midlatitude mesoscale convective systems [J]. Mon. Wea. Rev., 128(10): 3413−3436. doi:10.1175/1520-0493(2001)129<3413:omommc>2.0.co;2
    [36] Parker M D, Johnson R H. 2004. Structures and dynamics of quasi-2D mesoscale convective systems [J]. J. Atmos. Sci., 61(5): 545−567. doi:10.1175/1520-0469(2004)061<0545:sadoqm>2.0.co;2
    [37] Rotunno R, Klemp J B, Weisman M L. 1988. A theory for strong, long-lived squall lines [J]. J. Atmos. Sci., 45(3): 463−485. doi:10.1175/1520-0469(1988)045<0463:atfsll>2.0.co;2
    [38] 孙继松, 杨波. 2008. 地形与城市环流共同作用下的β中尺度暴雨 [J]. 大气科学, 32(6): 1352−1364. doi:  10.3878/j.issn.1006-9895.2008.06.10

    Sun Jisong, Yang Bo. 2008. Meso-β scale torrential rain affected by topography and the urban circulation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(6): 1352−1364. doi: 10.3878/j.issn.1006-9895.2008.06.10
    [39] 孙继松, 陶祖钰. 2012. 强对流天气分析与预报中的若干基本问题 [J]. 气象, 38(2): 163−173.

    Sun Jisong, Tao Zuyu. 2012. Some essential issues connected with severe convective weather analysis and forecast [J]. Meteorological Monthly (in Chinese), 38(2): 163−173.
    [40] 孙继松. 2014. 从天气动力学角度看云物理过程在降水预报中的作用 [J]. 气象, 40(1): 1−6. doi:  10.7519/j.issn.1000-0526.2014.01.001

    Sun Jisong. 2014. Role of cloud physics in precipitation forecasting by synoptic dynamics [J]. Meteorological Monthly (in Chinese), 40(1): 1−6. doi: 10.7519/j.issn.1000-0526.2014.01.001
    [41] 孙继松. 2017. 短时强降水和暴雨的区别与联系 [J]. 暴雨灾害, 36(6): 498−506. doi:  10.3969/j.issn.1004-9045.2017.06.002

    Sun Jisong. 2017. Differences and relationship between flash heavy rain and heavy rainfall [J]. Torrential Rain and Disasters (in Chinese), 36(6): 498−506. doi: 10.3969/j.issn.1004-9045.2017.06.002
    [42] 孙建华, 赵思雄. 2002. 华南“94·6”特大暴雨的中尺度对流系统及其环境场研究 Ⅱ. 物理过程、环境场以及地形对中尺度对流系统的作用 [J]. 大气科学, 26(5): 633−646. doi:  10.3878/j.issn.1006-9895.2002.05.05

    Sun Jianhua, Zhao Sixiong. 2002. A study of mesoscale convective systems and its environmental fields during the June 1994 record heavy rainfall in South China. Part Ⅱ: Effect of physical processes, initial environmental fields and topography on meso-<italic>β</italic> convective system [J]. Chinese Journal of Atmospheric sciences (in Chinese), 26(5): 633−646. doi: 10.3878/j.issn.1006-9895.2002.05.05
    [43] 孙建华, 郑淋淋, 赵思雄. 2014. 水汽含量对飑线组织结构和强度影响的数值试验 [J]. 大气科学, 38(4): 742−755. doi:  10.3878/j.issn.1006-9895.2013.13187

    Sun Jianhua, Zheng Linlin, Zhao Sixiong. 2014. Impact of moisture on the organizational mode and intensity of squall lines determined through numerical experiments [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(4): 742−755. doi: 10.3878/j.issn.1006-9895.2013.13187
    [44] Schumacher R S, Johnson R H. 2005. Organization and environmental properties of extreme-rain-producing mesoscale convective systems [J]. Mon. Wea. Rev., 133(4): 961−976. doi: 10.1175/mwr2899.1
    [45] Schumacher R S, Johnson R H. 2008. Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood [J]. Mon. Wea. Rev., 136(10): 3964−3986. doi: 10.1175/2008mwr2471.1
    [46] Shir C C. 1973. A preliminary numerical study of atmospheric turbulent flows in the idealized planetary boundary layer [J]. J. Atmos. Sci., 30(7): 1327−1339. doi:10.1175/1520-0469(1973)030<1327:apnsoa>2.0.co;2
    [47] Srock A F, Bosart L F. 2009. Heavy precipitation associated with southern Appalachian cold-air damming and Carolina coastal frontogenesis in advance of weak landfalling tropical storm Marco (1990) [J]. Mon. Wea. Rev., 137(8): 2448−2470. doi: 10.1175/2009mwr2819.1
    [48] 田付友, 郑永光, 张小玲, 等. 2018. 2017年5月7日广州极端强降水对流系统结构、触发和维持机制 [J]. 气象, 44(4): 469−484. doi:  10.7519/j.issn.1000-0526.2018.04.001

    Tian Fuyou, Zheng Yongguang, Zhang Xiaoling, et al. 2018. Structure, triggering and maintenance mechanism of convective systems during the Guangzhou extreme rainfall on 7 May 2017 [J]. Meteorological Monthly (in Chinese), 44(4): 469−484. doi: 10.7519/j.issn.1000-0526.2018.04.001
    [49] Tian Fuyou, Zheng Yongguang, Zhang Tao, et al. 2015. Statistical characteristics of environmental parameters for warm season short-duration heavy rainfall over central and eastern China [J]. J. Meteorol. Res., 29(3): 370−384. doi: 10.1007/s13351-014-4119-y
    [50] Vitale J, Ryan T. 2013. Operational recognition of high precipitation efficiency and low-echo-centroid convection [J]. J. Operational. Meteor., 1(12): 128−143. doi: 10.15191/nwajom.2013.0112
    [51] 王坚红, 徐碧裕, 刘刚, 等. 2014. 华南前汛期广东暴雨分区动力特征及特大暴雨分析 [J]. 气象与环境学报, 30(6): 43−51.

    Wang Jianhong, Xu Biyu, Liu Gang, et al. 2014. Dynamics characteristics of rainstorm division in Guangdong Province and analysis of a severe rainstorm process [J]. Journal of Meteorology and Environment (in Chinese), 30(6): 43−51.
    [52] 王坚红, 杨艺亚, 苗春生, 等. 2017. 华南沿海暖区辐合线暴雨地形动力机制数值模拟研究 [J]. 大气科学, 41(4): 784−796. doi:  10.3878/j.issn.1006-9895.1702.16182

    Wang Jianhong, Yang Yiya, Miao Chunsheng, et al. 2017. The numerical study of terrain dynamic influence on warm area heavy rainfall of convergence lines in South China coast [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(4): 784−796. doi: 10.3878/j.issn.1006-9895.1702.16182
    [53] 王立琨, 郑永光, 王洪庆, 等. 2001. 华南暴雨试验过程的环境场和云团特征的初步分析 [J]. 气象学报, 59(1): 115−119.

    Wang Likun, Zheng Yongguang, Wang Hongqing, et al. 2001. Preliminary analysis of environment and cloud clusters during Huanan rainstorm experiment [J]. Acta Meteorologica Sinica (in Chinese), 59(1): 115−119.
    [54] 吴亚丽, 蒙伟光, 陈德辉, 等. 2018. 一次华南暖区暴雨过程可预报性的初值影响研究 [J]. 气象学报, 76(3): 323−342.

    Wu Yali, Meng Weiguang, Chen Dehui, et al. 2018. A study of the impact of initial conditions on the predictability of a warm-sector torrential rain over South China [J]. Acta Meteorologica Sinica (in Chinese), 76(3): 323−342.
    [55] 伍志方, 蔡景就, 林良勋, 等. 2018. 2017年广州“5·7”暖区特大暴雨的中尺度系统和可预报性 [J]. 气象, 44(4): 485−499. doi:  10.7519/j.issn.1000-0526.2018.04.002

    Wu Zhifang, Cai Jingjiu, Lin Liangxun, et al. 2018. Analysis of mesoscale systems and predictability of the torrential rain process in Guangzhou on 7 May 2017 [J]. Meteorological Monthly. (in Chinese), 44(4): 485−499. doi: 10.7519/j.issn.1000-0526.2018.04.002
    [56] Wandishin M S, Stensrud D J, Mullen S L, et al. 2008. On the predictability of mesoscale convective systems: Two-dimensional simulations [J]. Wea. Forecasting, 23(5): 773−785. doi: 10.1175/2008waf2007057.1
    [57] Wandishin M S, Stensrud D J, Mullen S L, et al. 2010. On the predictability of mesoscale convective systems: Three-dimensional simulations [J]. Mon. Wea. Rev., 138(3): 863−885. doi: 10.1175/2009mwr2961.1
    [58] Wang C C, Kuo H C, Chen Y H, et al. 2012. Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall [J]. J. Atmos. Sci., 69(11): 3172−3196. doi: 10.1175/jas-d-11-0346.1
    [59] Wang H, Luo Y L, Jou J D. 2014. Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis [J]. J. Geophys. Res. Atmos., 119(23): 13206−13232. doi: 10.1002/2014jd022339
    [60] Weisman M L, Klemp J B. 1982. The dependence of numerically simulated convective storms on vertical wind shear and buoyancy [J]. Mon. Wea. Rev., 110(6): 504−520. doi:10.1175/1520-0493(1982)110<0504:tdonsc>2.0.co;2
    [61] Weisman M L, Klemp J B. 1984. The structure and classification of numerically simulated convective storms in directionally varying wind shears [J]. Mon. Wea. Rev., 112(12): 2479−2498. doi:10.1175/1520-0493(1984)112<2479:tsacon>2.0.co;2
    [62] Weisman M L, Rotunno R. 2000. The use of vertical wind shear versus helicity in interpreting supercell dynamics [J]. J. Atmos. Sci., 57(9): 1452−1472. doi:10.1175/1520-0469(2000)057<1452:tuovws>2.0.co;2
    [63] Wu Duochang, Meng Zhiyong, Yan Dachun. 2013. The predictability of a squall line in South China on 23 April 2007 [J]. Adv. Atmos. Sci., 30(2): 485−502. doi: 10.1007/s00376-012-2076-x
    [64] Wu Mengwen, Luo Yali. 2016. Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015 [J]. J. Meteorol. Res., 30(5): 719−736. doi: 10.1007/s13351-016-6089-8
    [65] 夏茹娣, 赵思雄. 2009. 2005年6月广东锋前暖区暴雨β中尺度系统特征的诊断与模拟研究 [J]. 大气科学, 33(3): 468−488. doi:  10.3878/j.issn.1006-9895.2009.03.06

    Xia Rudi, Zhao Sixiong. 2009. Diagnosis and modeling of meso-β-scale systems of heavy rainfall in warm sector ahead of front in South China (middle part of Guangdong Province) in June 2005 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(3): 468−488. doi: 10.3878/j.issn.1006-9895.2009.03.06
    [66] 徐珺, 毕宝贵, 谌芸, 等. 2018. “5.7”广州局地突发特大暴雨中尺度特征及成因分析 [J]. 气象学报, 76(4): 511−524.

    Xu Jun, Bi Baogui, Chen Yun, et al. 2018. Mesoscale characteristics and mechanism analysis of the unexpected local torrential rain in Guangzhou on 7 May 2017 [J]. Acta Meteorologica. Sinica (in Chinese), 76(4): 511−524.
    [67] Xu Weixin, Zipser E J. 2011. Diurnal variations of precipitation, deep convection, and lightning over and east of the eastern Tibetan Plateau [J]. J. Climate, 24(2): 448−465. doi: 10.1175/2010jcli3719.1
    [68] Xu W X, Zipser E J. 2012. Properties of deep convection in tropical continental, monsoon, and oceanic rainfall regimes [J]. Geophys. Res. Lett., 39(7): L07802. doi: 10.1029/2012gl051242
    [69] Xu Weixin, Zipser E J, Chen Yileng, et al. 2012. An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance [J]. Mon. Wea. Rev., 140(8): 2555−2574. doi: 10.1175/mwr-d-11-00208.1
    [70] 俞小鼎. 2013. 短时强降水临近预报的思路与方法 [J]. 暴雨灾害, 32(3): 202−209. doi:  10.3969/j.issn.1004-9045.2013.03.002

    Yu Xiaoding. 2013. Nowcasting thinking and method of flash heavy rain [J]. Torrential Rain and Disasters (in Chinese), 32(3): 202−209. doi: 10.3969/j.issn.1004-9045.2013.03.002
    [71] 俞小鼎, 周小刚, 王秀明. 2012. 雷暴与强对流临近天气预报技术进展 [J]. 气象学报, 70(3): 311−337.

    Yu Xiaoding, Zhou Xiaogang, Wang Xiuming. 2012. The advances in the nowcasting techniques on thunderstorms and severe convection [J]. Acta Meteorologica Sinica (in Chinese), 70(3): 311−337.
    [72] 张晓美, 蒙伟光, 张艳霞, 等. 2009. 华南暖区暴雨中尺度对流系统的分析 [J]. 热带气象学报, 25(5): 551−560. doi:  10.3969/j.issn.1004-4965.2009.05.005

    Zhang Xiaomei, Meng Weiguang, Zhang Yanxia, et al. 2009. Analysis of mesoscale convective systems associated with a warm sector heavy rainfall event over South China [J]. Journal of Tropical Meteorology (in Chinese), 25(5): 551−560. doi: 10.3969/j.issn.1004-4965.2009.05.005
    [73] 郑永光, 陶祖钰, 俞小鼎. 2017. 强对流天气预报的一些基本问题 [J]. 气象, 43(6): 641−652.

    Zheng Yongguang, Tao Zuyu, Yu Xiaoding. 2017. Some essential issues of severe convective weather forecasting [J]. Meteorological Monthly (in Chinese), 43(6): 641−652.
    [74] Zhang F Q, Weng Y H, Kuo Y H, et al. 2010. Predicting typhoon Morakot’s catastrophic rainfall with a convection-permitting mesoscale ensemble system [J]. Wea. Forecasting, 25(6): 1816−1825. doi: 10.1175/2010waf2222414.1
    [75] Zhang R H, Ni Y Q, Liu L P, et al. 2011. South China heavy rainfall experiment [J]. J. Meteor. Soc. Japan, 89A: 153−166. doi: 10.2151/jmsj.2011-a10
    [76] Zhao Y Y, Zhang Q H, Du Y, et al. 2013. Objective analysis of circulation extremes during the 21 July 2012 torrential rain in Beijing [J]. Acta Meteorologica Sinica, 27(5): 626−635. doi: 10.1007/s13351-013-0507-y
    [77] Zheng Yongguang, Xue Ming, Li Bo, et al. 2016. Spatial characteristics of extreme rainfall over China with hourly through 24-hour accumulation periods based on national-level hourly rain gauge data [J]. Adv. Atmos. Sci., 33(11): 1218−1232. doi: 10.1007/s00376-016-6128-5
  • [1] 郭英莲, 孙继松.  湖北三类组织形态强对流系统造成的地面强对流大风特征, 大气科学. doi: 10.3878/j.issn.1006-9895.1812.18206
    [2] 张文龙, 崔晓鹏, 黄荣, 黎慧琦.  北京“623”大暴雨的强降水超级单体特征和成因研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1905.18230
    [3] 王宁, 平凡.  垂直分辨率对广州“5·7”特大暴雨数值模拟影响的研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1812.18193
    [4] 郑淋淋, 孙建华.  风切变对中尺度对流系统强度和组织结构影响的数值试验, 大气科学. doi: 10.3878/j.issn.1006-9895.1505.14311
    [5] 张建军, 王咏青, 钟玮.  飑线组织化过程对环境垂直风切变和水汽的响应, 大气科学. doi: 10.3878/j.issn.1006-9895.1505.14337
    [6] 陈海山, 朱月佳, 刘蕾.  长江中下游地区冬季极端降水事件与天气尺度瞬变波活动的可能联系, 大气科学. doi: 10.3878/j.issn.1006-9895.2012.12033
    [7] 齐彦斌, 冉令坤, 洪延超.  强降水过程中热力切变平流参数的诊断分析, 大气科学. doi: 10.3878/j.issn.1006-9895.2010.06.13
    [8] 张铭, 安洁.  大气波动的波谱和谱函数──垂直切变基流中的波谱分析, 大气科学. doi: 10.3878/j.issn.1006-9895.2007.05.15
    [9] 刘淑媛, 孙健, 王洪庆, 等.  香港特大暴雨β中尺度线状对流三维结构研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2007.02.16
    [10] 孙建华, 张小玲, 齐琳琳, 张高英, 赵思雄, 陶诗言.  2002年中国暴雨试验期间一次低涡切变上发生发展的中尺度对流系统研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2004.05.03
    [11] 张立凤, 施连俊.  切变基流中β中尺度扰动的特征波动, 大气科学. doi: 10.3878/j.issn.1006-9895.2004.04.11
    [12] 张立凤, 王丽琼, 张铭.  垂直切变基流中非地转涡旋波的不稳定, 大气科学. doi: 10.3878/j.issn.1006-9895.2001.03.08
    [13] 赵强, 刘式适.  切变基本纬向流中赤道Rossby包络孤立波, 大气科学. doi: 10.3878/j.issn.1006-9895.2001.01.13
    [14] 吴国雄, 蔡雅萍.  风垂直切变和下滑倾斜涡度发展, 大气科学. doi: 10.3878/j.issn.1006-9895.1997.03.03
    [15] 万军, 赵平, 闵文彬.  风速垂直切变下非均匀层结大气中重力惯性内波的稳定性, 大气科学. doi: 10.3878/j.issn.1006-9895.1992.01.17
    [16] 程麟生, 郭英华.  边界层参数化和湿过程对切变线低涡发展影响的中尺度模拟, 大气科学. doi: 10.3878/j.issn.1006-9895.1992.02.02
    [17] 李崇银.  感热加热和垂直风切变对温带CISK扰动的影响, 大气科学. doi: 10.3878/j.issn.1006-9895.1990.02.05
    [18] 王学永, 金维明, 洪钟祥, 等.  雷暴型风切变及其对飞机飞行影响的初步探讨, 大气科学. doi: 10.3878/j.issn.1006-9895.1986.01.07
    [19] 雷孝恩.  风垂直切变对中距离扩散特征的影响, 大气科学. doi: 10.3878/j.issn.1006-9895.1983.02.07
    [20] 李崇银.  垂直风切变中的CISK, 大气科学. doi: 10.3878/j.issn.1006-9895.1983.04.10
  • 加载中
图(14) / 表ll (2)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  3
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-09
  • 网络出版日期:  2019-10-31
  • 刊出日期:  2020-07-25

目录

    /

    返回文章
    返回