高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北半球冬季平流层强、弱极涡事件演变过程的对比分析

马骥 陈文 兰晓青

马骥, 陈文, 兰晓青. 2020. 北半球冬季平流层强、弱极涡事件演变过程的对比分析[J]. 大气科学, 44(4): 726−747 doi:  10.3878/j.issn.1006-9895.1906.19110
引用本文: 马骥, 陈文, 兰晓青. 2020. 北半球冬季平流层强、弱极涡事件演变过程的对比分析[J]. 大气科学, 44(4): 726−747 doi:  10.3878/j.issn.1006-9895.1906.19110
MA Ji, CHEN Wen, LAN Xiaoqing. 2020. Comparative Analysis of the Evolution Processes of the Strong and Weak Stratosphere Polar Vortex Events in Boreal Winter [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 726−747 doi:  10.3878/j.issn.1006-9895.1906.19110
Citation: MA Ji, CHEN Wen, LAN Xiaoqing. 2020. Comparative Analysis of the Evolution Processes of the Strong and Weak Stratosphere Polar Vortex Events in Boreal Winter [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 726−747 doi:  10.3878/j.issn.1006-9895.1906.19110

北半球冬季平流层强、弱极涡事件演变过程的对比分析

doi: 10.3878/j.issn.1006-9895.1906.19110
基金项目: 国家自然科学基金项目 41721004
详细信息
    作者简介:

    马骥,男,1995年出生,硕士研究生,主要从事平流层—对流层相互作用方面的研究。E-mail: maji16@mails.ucas.ac.cn

  • 中图分类号: P434

Comparative Analysis of the Evolution Processes of the Strong and Weak Stratosphere Polar Vortex Events in Boreal Winter

Funds: National Natural Science Foundation of China (Grant 41721004)
  • 摘要: 利用1958~2017年逐日的NCEP/NCAR再分析资料对北半球冬季平流层强、弱极涡事件的演变过程进行了对比分析,同时比较了有平流层爆发性增温(SSW)和无SSW发生的两类弱极涡事件的环流演变和动力学特征。结果表明,强极涡的形成存在着缓慢发展和快速增强的过程,而弱极涡事件的建立非常迅速;和强极涡事件相比,弱极涡事件的峰值强度更强,异常中心的位置更高。此外,强、弱极涡事件的产生与波流相互作用的正反馈过程密切相关。对于强极涡事件,发展阶段的太平洋—北美(PNA)型异常削弱了行星波一波;当平流层西风达到一定强度,上传的行星波受到强烈抑制,使得极涡迅速增强达到峰值。而对于弱极涡事件,发展阶段一波型的异常增强了行星波上传,通过对纬向流的拖曳作用使得平流层很快处于弱西风状态,更多行星波进入平流层导致极涡急剧减弱甚至崩溃。针对有、无SSW发生的两类弱极涡事件的对比分析表明,有SSW发生的弱极涡事件发展阶段,平流层出现强的向上的一波Eliassen-Palm(EP)通量异常,通过正反馈过程使得一波和二波上传同时增强而导致极涡崩溃;无SSW发生的弱极涡事件发展阶段,平流层缺乏向上的一波通量,二波活动起到重要作用,其总的行星波上传远弱于有SSW发生的弱极涡事件。对于无SSW发生的弱极涡事件,其发展和成熟阶段对流层上部出现类似欧亚(EU)型的高度异常,伴随着强的向极的EP通量异常,导致对流层有极强的负北极涛动(AO)型异常。而有SSW发生的弱极涡事件发展阶段对流层上部主要表现为北太平洋上空来自低纬的波列异常,其后期的对流层效应更加滞后也不连续,对流层AO异常的强度明显弱于无SSW发生的弱极涡事件。
  • 图  1  (a)冬季每日的$ -Z_{\rm{P}} $ 指数以及强、弱极涡事件的分布;(b)50 hPa冬季平均的$ -Z_{\rm{P}} $指数,其中两条加粗的水平线分别表示1989~1997年和1998~2010年两个年代的平均值;(c)合成的强(弱)极涡事件50 hPa的$ -Z_{\rm{P}} $$ Z_{\rm{P}} $)指数的演变,黑色(红色)实线为强(弱)极涡,其中加粗部分通过信度为95%的双尾t检验,垂直实线及数字表示不同阶段的划分。(d)强(弱)极涡事件演变过程中50 hPa 极涡$ -Z_{\rm{P}} $$ Z_{\rm{P}} $)峰值强度的概率分布,其中实线(虚线)为强(弱)极涡

    Figure  1.  (a) Daily $ -{Z}_{\rm{P}} $ index in winter with the SPV (WPV) events detected in this study. (b) Winter mean $ -{Z}_{\rm{P}} $ index at 50 hPa, the two bold horizontal lines indicate the average values for 1989–1997 and 1998–2010. (c) Composite evolution of $ -{Z}_{\rm{P}} $ ($ {Z}_{\rm{P}} $) index at 50 hPa for the SPV (WPV) events, the black (red) solid line denotes the SPV (WPV) events, the thick line segments denote >95% confidence level (based on two-tailed student’s t test); the solid vertical lines and the numbers indicate the stages of SPV (WPV) events. (d) The probability distribution of peak $ -{Z}_{\rm{P}} $ ($ {Z}_{\rm{P}} $) index at 50 hPa during the life cycle of SPV (WPV) events, the solid (dashed) line denotes the SPV (WPV) events. SPV and WPV events denote the stratospheric and tropospheric evolutions during the lifecycle of both strong and weak stratosphere polar vortex events, respectively

    图  2  强(左列)、弱(右列)极涡事件(a、b)标准化的65°N以北平均的位势高度异常、(c、d)70°N–90°N纬向平均温度(等值线,单位:K)及其异常(填色,单位:K)、(e、f)60°N–70°N纬向平均纬向风(等值线,单位:m s−1)及其异常(填色,单位:m s−1)。(f)中加粗的等值线为纬向平均纬向风的零线。打点区域通过信度为95%的双尾t检验

    Figure  2.  (a, b) Standardized Z anomalies averaged northward of 65°N, (c, d) zonal-mean temperature (contours, units: K) and its anomalies (shading, units: K) averaged over 70°N–90°N and (e, f) zonal-mean zonal wind (contours, units: m s−1) and its anomalies (shading, units: m s−1) averaged over 60°N–70°N for the SPV (left column) and WPV (right column) events. The bold black line in (f) denotes the zero line of zonal-mean zonal wind; the dotted regions denote >95% confidence level (based on two-tailed Student’s t test)

    图  3  弱极涡事件(a)发展、(b)最强、(c)维持、(d)衰减、(e)消退、(f)消亡阶段的EP通量(矢量,单位:m3 s−2)及其散度的异常(等值线,单位:m s−1 d−1)。EP通量散度异常的等值线间隔为0.5 m s−1 d−1,红色实线(蓝色虚线)表示辐散(辐合),零线未显示。灰色阴影表示EP通量散度异常通过信度为95%的双尾t检验

    Figure  3.  Anomalies of EP fluxes (vectors; units: m3 s−2) and their divergence (contours; units: m s−1 d−1) during the (a) growth, (b) peak, (c) maturity, (d) decline, (e) decay, and (f) disappearance stages of the WPV events, the anomalies of EP flux divergence are contoured at every 0.5 m s−1 d−1 with the divergence (convergence) in red solid (blue dashed) lines, and the zero line is omitted; the gray shading denotes >95% confidence level for the divergence of EP flux (based on two-tailed Student’s t test)

    图  4  弱极涡事件(a)发展、(b)最强、(c)维持、(d)衰减、(e)消退、(f)消亡阶段的纬向平均纬向风(等值线,单位:m s−1)及其异常(填色,单位:m s−1)。纬向平均纬向风等值线间隔为4 m s−1,其中零线已加粗,异常等值线间隔为2 m s−1。打点区域表示纬向平均纬向风异常通过信度为95%的双尾t检验

    Figure  4.  Zonal-mean zonal wind (contour; units: m s−1) and its anomalies (shading; units: m s−1) during the (a) growth, (b) peak, (c) maturity, (d) decline, (e) decay, and (f) disappearance stages of the WPV events, the contour interval is 4 m s−1 for the zonal-mean zonal wind and 2 m s−1 for its anomalies; zero contours are given as bold lines for the zonal-mean zonal wind; the dotted areas denote >95% confidence level for anomalous wind (based on two-tailed Student’s t test)

    图  5  图3,但为强极涡事件的(a)形成、(b)发展、(c)最强、(d)衰减、(e)消退、(f)消亡阶段

    Figure  5.  Same as Fig. 3, but for the (a) onset, (b) growth, (c) peak, (d) decline, (e) decay, and (f) disappearance stages of the SPV events

    图  6  图4,但为强极涡事件的(a)形成、(b)发展、(c)最强、(d)衰减、(e)消退、(f)消亡阶段

    Figure  6.  Same as Fig. 4, but for the (a) onset, (b) growth, (c) peak, (d) decline, (e) decay, and (f) disappearance stages of the SPV events

    图  7  弱极涡事件发展、最强、维持、衰减、消退和消亡(第一至第六行)阶段50 hPa(左列)、300 hPa(中间列)和1000 hPa(右列)的位势高度异常(等值线,单位:m)。50 hPa、300 hPa和1000 hPa的等值线间隔分别为50 m、20 m和10 m。红色(蓝色)实线表示正(负)异常,零线未显示。灰色阴影区域通过信度为95%的双尾t检验

    Figure  7.  Geopotential height anomalies (contours; units: m) at 50 hPa (left column), 300 hPa (middle column) and 1000 hPa (right column) during the growth, peak, maturity, decline, decay, and disappearance (the first to the sixth row) stages of the WPV events, the contour intervals are 50 m, 20 m, and 10 m for 50 hPa, 300 hPa, and 1000 hPa, respectively; the red (blue) solid lines denote positive (negative) anomalies with the zero line omitted; the gray shading denotes >95% confidence level (based on two-tailed Student’s t test).

    图  8  图7,但为强极涡事件的形成、发展、最强、衰减、消退、消亡(第一至第六行)阶段

    Figure  8.  Same as Fig. 7, but for the onset, growth, peak, decline, decay, and disappearance (the first to the sixth row) stages of the SPV events

    图  9  图2,但为无SSW(平流层爆发性增温)发生的弱极涡事件(a, c, e)和有SSW发生的弱极涡事件(b, d, f)

    Figure  9.  Same as Fig. 2, but for the WPV events without SSW (Stratospheric Sudden Warming; left column) and the WPV events with SSW (right column)

    图  10  图3,但为无SSW发生的弱极涡事件的(a)形成、(b)发展、(c)最强、(d)衰减、(e)消退、(f)消亡阶段

    Figure  10.  Same as Fig. 3, but for the (a) onset, (b) growth, (c) peak, (d) decline, (e) decay, and (f) disappearance stages of the WPV events without SSW

    图  11  图3,但为有SSW发生的弱极涡事件

    Figure  11.  Same as Fig. 3, but for the WPV events with SSW

    图  12  图7,但为无SSW发生的弱极涡事件的形成、发展、最强、衰减、消退、消亡(第一至第六行)阶段

    Figure  12.  Same as Fig. 7, but for the onset, growth, peak, decline, decay and disappearance (the first to the sixth row) stages of the WPV events without SSW

    图  13  图7,但为有SSW发生的弱极涡事件

    Figure  13.  Same as Fig. 7, but for the WPV events with SSW

    图  14  无SSW发生和有SSW发生的弱极涡事件(a、b)50 hPa 50°N~80°N平均的EP通量垂直分量(Fz)异常(单位:105 m3 s−2;黑色实线和红色、蓝色虚线分别表示总波数和一波、二波)和(c、d)300 hPa 40°N~70°N平均的EP通量水平分量(Fy)异常(单位:108 m3 s−2;黑色实线表示总波数,蓝色、紫色和橙色虚线分别表示二波、三波和四波及以上波数之和)。(e、f)标准化的$ Z_{\rm{P}} $指数和1000 hPa的AO指数,其中$ Z_{\rm{P}} $指数给出了10 hPa、50 hPa、100 hPa、300 hPa和1000 hPa的变化,加粗部分通过信度为95%的双尾t检验

    Figure  14.  (a) 50 hPa vertical component of EP flux (Fz) anomalies averaged over 50°N–80°N (units: $ {10}^{5}{{\rm{m}}}^{3}{\rm{s}}^{-2} $); the black solid line and red (blue) dashed line denote total flux and wave number 1 (wave number 2) component, respectively. (c) 300 hPa horizontal component of EP flux (Fy) anomalies averaged over 40°N–70°N (units: $ {10}^{8}{{\rm{m}}}^{3}{\rm{s}}^{-2} $); the black solid line denotes the total flux, while the blue, purple, and orange dashed lines denote wave number 2, wave number 3, and wave number 4 and greater, respectively. (e) Standardized $ {Z}_{\rm{P}} $ index and 1000 hPa AO index; the $ {Z}_{\rm{P}} $ indexes on 10 hPa, 50 hPa, 100 hPa, 300 hPa, and 1000 hPa are given; the thick line segments denote the 95% confidence level (based on two-tailed Student’s t test). (a), (c), and (e) are for the WPV events without SSW; (b), (d), and (f) are same as (a), (c), and (e), respectively, but for the WPV events with SSW

  • [1] Ambaum M H P, Hoskins B J. 2002. The NAO troposphere–stratosphere connection [J]. J. Climate, 15(14): 1969−1978. doi:10.1175/1520-0442(2002)015<1969:tntsc>2.0.co;2
    [2] Andrews D G, Holton J R, Leovy C B. 1987. Middle Atmosphere Dynamics [M]. New York, NY, USA: Academic Press, 489pp.
    [3] Baldwin M P, Dunkerton T J. 1999. Propagation of the Arctic Oscillation from the stratosphere to the troposphere [J]. J. Geophys. Res. Atmos., 104(D24): 30937−30946. doi: 10.1029/1999jd900445
    [4] Baldwin M P, Dunkerton T J. 2001. Stratospheric harbingers of anomalous weather regimes [J]. Science, 294(5542): 581−584. doi: 10.1126/science.1063315
    [5] Baldwin M P, Thompson D W J. 2009. A critical comparison of stratosphere–troposphere coupling indices [J]. Quart. J. Roy. Meteor. Soc., 135(644): 1661−1672. doi: 10.1002/qj.479
    [6] Black R X, McDaniel B A. 2004. Diagnostic case studies of the northern annular mode [J]. J. Climate, 17(20): 3990−4004. doi:10.1175/1520-0442(2004)017<3990:dcsotn>2.0.co;2
    [7] Butler A H, Polvani L M, Deser C. 2014. Separating the stratospheric and tropospheric pathways of El Niño-Southern Oscillation teleconnections [J]. Environ. Res. Lett., 9(2): 024014. doi: 10.1088/1748-9326/9/2/024014
    [8] Charlton A J, Polvani L M. 2007. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks [J]. J. Climate, 20(3): 449−469. doi: 10.1175/jcli3996.1
    [9] Charney J G, Drazin P G. 1961. Propagation of planetary-scale disturbances from the lower into the upper atmosphere [J]. J. Geophys. Res., 66(1): 83−109. doi: 10.1029/JZ066i001p00083
    [10] Chen P, Robinson W A. 1992. Propagation of planetary waves between the troposphere and stratosphere [J]. J. Atmos. Sci., 49(24): 2533−2545. doi:10.1175/1520-0469(1992)049<2533:popwbt>2.0.co;2
    [11] 陈文, 黄荣辉. 2005. 北半球冬季准定常行星波的三维传播及其年际变化 [J]. 大气科学, 29(1): 137−146. doi:  10.3878/j.issn.1006-9895.2005.01.16

    Chen Wen, Huang Ronghui. 2005. The three-dimensional propagation of quasi-stationary planetary waves in the Northern Hemisphere winter and its interannual variations [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29(1): 137−146. doi: 10.3878/j.issn.1006-9895.2005.01.16
    [12] Chen W, Li T. 2007. Modulation of Northern Hemisphere wintertime stationary planetary wave activity: East Asian climate relationships by the Quasi-Biennial Oscillation [J]. J. Geophys. Res. Atmos., 112(D20): D20120. doi: 10.1029/2007jd008611
    [13] 陈文, 魏科. 2009. 大气准定常行星波异常传播及其在平流层影响东亚冬季气候中的作用 [J]. 地球科学进展, 24(3): 272−285. doi:  10.3321/j.issn:1001-8166.2009.03.006

    Chen Wen, Wei Ke. 2009. Anomalous propagation of the quasi-stationary planetary waves in the atmosphere and its roles in the impact of the stratosphere on the East Asian winter climate [J]. Adv. Earth Sci. (in Chinese), 24(3): 272−285. doi: 10.3321/j.issn:1001-8166.2009.03.006
    [14] 邓淑梅, 陈月娟, 陈权亮, 等. 2006. 平流层爆发性增温期间行星波的活动 [J]. 大气科学, 30(6): 1236−1248. doi:  10.3878/j.issn.1006-9895.2006.06.18

    Deng Shumei, Chen Yuejuan, Chen Quanliang, et al. 2006. Planetary wave activity during stratospheric sudden warming [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(6): 1236−1248. doi: 10.3878/j.issn.1006-9895.2006.06.18
    [15] Garfinkel C I, Hartmann D L, Sassi F. 2010. Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices [J]. J. Climate, 23(12): 3282−3299. doi: 10.1175/2010jcli3010.1
    [16] Hartmann D L, Wallace J M, Limpasuvan V, et al. 2000. Can ozone depletion and global warming interact to produce rapid climate change? [J]. Proc. Natl. Acad. Sci. USA, 97(4): 1412−1417. doi: 10.1073/pnas.97.4.1412
    [17] Hitchcock P, Shepherd T G. 2013. Zonal-mean dynamics of extended recoveries from stratospheric sudden warmings [J]. J. Atmos. Sci., 70(2): 688−707. doi: 10.1175/jas-d-12-0111.1
    [18] Holton J R, Tan H C. 1980. The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb [J]. J. Atmos. Sci., 37(10): 2200−2208. doi:10.1175/1520-0469(1980)037<2200:tioteq>2.0.co;2
    [19] 黄荣辉. 1986. 大气中定常行星波的Eliassen-Palm通量与波折射指数的关系 [J]. 大气科学, 10(2): 145−153. doi:  10.3878/j.issn.1006-9895.1986.02.05

    Huang Ronghui. 1986. The relation between Eliassen-Palm flux and refractive index of stationary planetary waves in the atmosphere [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 10(2): 145−153. doi: 10.3878/j.issn.1006-9895.1986.02.05
    [20] Ineson S, Scaife A A. 2009. The role of the stratosphere in the European climate response to El Niño [J]. Nat. Geosci., 2(1): 32−36. doi: 10.1038/ngeo381
    [21] Jaiser R, Dethloff D, Handorf D. 2013. Stratospheric response to Arctic sea ice retreat and associated planetary wave propagation changes [J]. Tellus A, 65(1): 19375. doi: 10.3402/tellusa.v65i0.19375
    [22] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437−472. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [23] Kodera K, Kuroda Y, Pawson S. 2000. Stratospheric sudden warmings and slowly propagating zonal-mean zonal wind anomalies [J]. J. Geophys. Res. Atmos., 105(D10): 12351−12359. doi: 10.1029/2000jd900095
    [24] Kodera K, Mukougawa H, Maury P, et al. 2016. Absorbing and reflecting sudden stratospheric warming events and their relationship with tropospheric circulation [J]. J. Geophys. Res. Atmos., 121(1): 80−94. doi: 10.1002/2015jd023359
    [25] Kolstad E W, Breiteig T, Scaife A A. 2010. The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere [J]. Quart. J. Roy. Meteor. Soc., 136(649): 886−893. doi: 10.1002/qj.620
    [26] Kuroda Y, Kodera K. 1999. Role of planetary waves in the stratosphere–troposphere coupled variability in the Northern Hemisphere winter [J]. Geophys. Res. Lett., 26(15): 2375−2378. doi: 10.1029/1999gl900507
    [27] 兰晓青, 陈文. 2013. 2011~2012年冬季欧亚大陆低温严寒事件与平流层北极涛动异常下传的影响 [J]. 大气科学, 37(4): 863−872. doi:  10.3878/j.issn.1006-9895.2012.12061

    Lan Xiaoqing, Chen Wen. 2013. Strong cold weather event over Eurasia during the winter of 2011/2012 and a downward Arctic Oscillation signal from the stratosphere [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(4): 863−872. doi: 10.3878/j.issn.1006-9895.2012.12061
    [28] Li Q, Graf H F, Cui X F. 2011. The role of stationary and transient planetary waves in the maintenance of stratospheric polar vortex regimes in Northern Hemisphere winter [J]. Adv. Atmos. Sci., 28(1): 187−194. doi: 10.1007/s00376-010-9163-7
    [29] Limpasuvan V, Thompson D W J, Hartmann D L. 2004. The life cycle of the Northern Hemisphere sudden stratospheric warmings [J]. J. Climate, 17(13): 2584−2596. doi:10.1175/1520-0442(2004)017<2584:tlcotn>2.0.co;2
    [30] Limpasuvan V, Hartmann D L, Thompson D W J, et al. 2005. Stratosphere–troposphere evolution during polar vortex intensification [J]. J. Geophys. Res. Atmos., 110(D24): D24101. doi: 10.1029/2005jd006302
    [31] 陆春晖, 丁一汇. 2013. 平流层爆发性增温对阻塞高压的响应及其对对流层反馈的观测 [J]. 科学通报, 58(8): 653−663. doi:  10.1007/s11434-012-5505-4

    Lu Chunhui, Ding Yihui. 2013. Observational responses of stratospheric sudden warming to blocking highs and its feedbacks on the troposphere [J]. Chinese Science Bulletin, 58(8): 653−663. doi: 10.1007/s11434-012-5505-4
    [32] Matsuno T. 1971. A dynamical model of the stratospheric sudden warming [J]. J. Atmos. Sci., 28(8): 1479−1494. doi:10.1175/1520-0469(1971)028<1479:admots>2.0.co;2
    [33] Mitchell D M, Gray L J, Anstey J, et al. 2013. The influence of stratospheric vortex displacements and splits on surface climate [J]. J. Climate, 26(8): 2668−2682. doi: 10.1175/jcli-d-12-00030.1
    [34] Nakagawa K I, Yamazaki K. 2006. What kind of stratospheric sudden warming propagates to the troposphere? [J]. Geophys. Res. Lett., 33(4): L04801. doi: 10.1029/2005gl024784
    [35] Ohhashi Y, Yamazaki K. 1999. Variability of the Eurasian pattern and its interpretation by wave activity flux [J]. J. Meteor. Soc. Japan., 77(2): 495−511. doi: 10.2151/jmsj1965.77.2_495
    [36] Perlwitz J, Harnik N. 2003. Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection [J]. J. Climate, 16(18): 3011−3026. doi:10.1175/1520-0442(2003)016<3011:oeoasi>2.0.co;2
    [37] Perlwitz J, Harnik N. 2004. Downward coupling between the stratosphere and troposphere: The relative roles of wave and zonal mean processes [J]. J. Climate, 17(24): 4902−4909. doi: 10.1175/jcli-3247.1
    [38] Reichler T, Kim J, Manzini E, et al. 2012. A stratospheric connection to Atlantic climate variability [J]. Nat. Geosci., 5(11): 783−787. doi: 10.1038/ngeo1586
    [39] Song Y C, Robinson W A. 2004. Dynamical mechanisms for stratospheric influences on the troposphere [J]. J. Atmos. Sci., 61(14): 1711−1725. doi:10.1175/1520-0469(2004)061<1711:dmfsio>2.0.co;2
    [40] Thompson D W J, Wallace J M. 1998. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields [J]. Geophys. Res. Lett., 25(9): 1297−1300. doi: 10.1029/98gl00950
    [41] Wallace J M, Gutzler D S. 1981. Teleconnections in the geopotential height field during the northern hemisphere winter [J]. Mon. Wea. Rev., 109(4): 784−812. doi:10.1175/1520-0493(1981)109<0784:titghf>2.0.co;2
    [42] Wang L, Chen W. 2010. Downward Arctic Oscillation signal associated with moderate weak stratospheric polar vortex and the cold December 2009 [J]. Geophys. Res. Lett., 37(9): L09707. doi: 10.1029/2010gl042659
    [43] Woo S H, Kim B M, Kug J S. 2015. Temperature variation over East Asia during the lifecycle of weak stratospheric polar vortex [J]. J. Climate, 28(14): 5857−5872. doi: 10.1175/jcli-d-14-00790.1
    [44] 武炳义. 2018. 北极海冰融化影响东亚冬季天气和气候的研究进展以及学术争论焦点问题 [J]. 大气科学, 42(4): 786−805. doi:  10.3878/j.issn.1006-9895.1804.17262

    Wu Bingyi. 2018. Progresses in the impact study of Arctic sea ice loss on wintertime weather and climate variability over East Asia and key academic disputes [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(4): 786−805. doi: 10.3878/j.issn.1006-9895.1804.17262
    [45] Wu B Y, Overland J E, D’Arrigo R. 2012. Anomalous Arctic surface wind patterns and their impacts on September sea ice minima and trend [J]. Tellus A, 64(1): 18590. doi: 10.3402/tellusa.v64i0.18590
    [46] 张恒德, 高守亭, 刘毅. 2008. 极涡研究进展 [J]. 高原气象, 27(2): 452−461.

    Zhang Hengde, Gao Shouting, Liu Yi. 2008. Advances of research on polar vortex [J]. Plateau Meteorology (in Chinese), 27(2): 452−461.
    [47] Zhou S T, Miller A J, Wang J L, et al. 2002. Downward-propagating temperature anomalies in the preconditioned polar stratosphere [J]. J. Climate, 15(7): 781−792. doi:10.1175/1520-0442(2002)015<0781:dptait>2.0.co;2
  • [1] 李淑萍, 侯威, 封泰晨.  近52年长江中下游地区夏季年代际尺度干湿变化及其环流演变分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1412.14186
    [2] 邓淑梅, 陈月娟, 易明建.  2007/2008和2008/2009冬季平流层强、弱极涡事件对应的行星波活动的对比分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1405.14124
    [3] 饶建, 任荣彩, 杨扬.  热带加热异常影响冬季平流层极涡强度的数值模拟, 大气科学. doi: 10.3878/j.issn.1006-9895.1404.13268
    [4] 魏麟骁, 陈权亮, 程炳岩, 刘晓冉.  平流层强、弱极涡事件的演变过程及其对我国冬季天气的影响, 大气科学. doi: 10.3878/j.issn.1006-9895.2013.13233
    [5] 易明建, 陈月娟, 周任君, 毕云, 邓淑梅.  亚洲东部冬季地面温度变化与平流层弱极涡的关系, 大气科学. doi: 10.3878/j.issn.1006-9895.2012.12032
    [6] 于超越, 周天军, 李博, 等.  对流层和平流层温度中ENSO信号的多种资料比较, 大气科学. doi: 10.3878/j.issn.1006-9895.2011.06.03
    [7] 谭桂容, 陈海山, 孙照渤, 等.  2008年1月中国低温与北大西洋涛动和平流层异常活动的联系, 大气科学. doi: 10.3878/j.issn.1006-9895.2010.01.16
    [8] 邓淑梅, 陈月娟, 罗涛, 等.  平流层爆发性增温过程中臭氧的垂直分布特征, 大气科学. doi: 10.3878/j.issn.1006-9895.2009.03.05
    [9] 陆春晖, 刘毅, 陈月娟, 等.  2003~2004年冬季平流层爆发性增温动力诊断分析, 大气科学. doi: 10.3878/j.issn.1006-9895.2009.04.07
    [10] 魏科, 陈文, 黄荣辉.  涡动在南北半球平流层极涡崩溃过程中作用的比较, 大气科学. doi: 10.3878/j.issn.1006-9895.2008.02.02
    [11] 陈权亮, 陈月娟.  平流层剩余环流及其时间演变特征, 大气科学. doi: 10.3878/j.issn.1006-9895.2007.01.14
    [12] 陈洪滨, 卞建春, 吕达仁.  上对流层-下平流层交换过程研究的进展与展望, 大气科学. doi: 10.3878/j.issn.1006-9895.2006.05.10
    [13] 邓淑梅, 陈月娟, 陈权亮, 毕云.  平流层爆发性增温期间行星波的活动, 大气科学. doi: 10.3878/j.issn.1006-9895.2006.06.18
    [14] 吕达仁, 陈洪滨.  平流层和中层大气研究的进展, 大气科学. doi: 10.3878/j.issn.1006-9895.2003.04.21
    [15] 黄荣辉, 陈金中.  平流层球面大气地转适应过程和惯性重力波的激发, 大气科学. doi: 10.3878/j.issn.1006-9895.2002.03.01
    [16] 李崇银, 龙振夏.  西太平洋副高活动与平流层QBO关系的研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1997.06.04
    [17] 郭卫东, 纪立人.  三层准地转斜压模式中的准常定波与平流层极涡形成,维持和演变的机制, 大气科学. doi: 10.3878/j.issn.1006-9895.1988.t1.15
    [18] 郭卫东, 纪立人.  三层准地转斜压模式中的准常定波与平流层极涡形成,维持和演变的机制, 大气科学. doi: 10.3878/j.issn.1006-9895.1988.t1.15
    [19] 孙金辉, 邱金桓, 夏其林, 等.  激光探测平流层气溶胶层后向散射系数分布, 大气科学. doi: 10.3878/j.issn.1006-9895.1986.04.11
    [20] 翁衡毅.  平流层爆发性增温动力机制的初步研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1984.03.08
  • 加载中
图(14)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  5
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-15
  • 网络出版日期:  2020-03-25
  • 刊出日期:  2020-07-25

目录

    /

    返回文章
    返回