高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增温停滞背景下黑潮与湾流区域潜热通量年代际趋势变化差异及其成因分析

高英健 任保华 郑建秋 潘云峰

高英健, 任保华, 郑建秋, 等. 2020. 增温停滞背景下黑潮与湾流区域潜热通量年代际趋势变化差异及其成因分析[J]. 大气科学, 44(4): 776−791 doi:  10.3878/j.issn.1006-9895.1907.19137
引用本文: 高英健, 任保华, 郑建秋, 等. 2020. 增温停滞背景下黑潮与湾流区域潜热通量年代际趋势变化差异及其成因分析[J]. 大气科学, 44(4): 776−791 doi:  10.3878/j.issn.1006-9895.1907.19137
GAO Yingjian, REN Baohua, ZHENG Jianqiu, et al. 2020. Differences of the Interdecadal Trend Shifts of Latent Heat Fluxes in Kuroshio and Gulf Stream Regions in the Warming Hiatus Background and the Possible Mechanisms [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 776−791 doi:  10.3878/j.issn.1006-9895.1907.19137
Citation: GAO Yingjian, REN Baohua, ZHENG Jianqiu, et al. 2020. Differences of the Interdecadal Trend Shifts of Latent Heat Fluxes in Kuroshio and Gulf Stream Regions in the Warming Hiatus Background and the Possible Mechanisms [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 776−791 doi:  10.3878/j.issn.1006-9895.1907.19137

增温停滞背景下黑潮与湾流区域潜热通量年代际趋势变化差异及其成因分析

doi: 10.3878/j.issn.1006-9895.1907.19137
基金项目: 国家自然科学基金项目41675066,安徽省自然科学基金项目1908085MD108
详细信息
    作者简介:

    高英健,男,1992年出生,硕士研究生,主要研究方向为全球气候变化及海气通量。E-mail: dydara@mail.ustc.edu.cn

    通讯作者:

    任保华,E-mail: ren@ustc.edu.cn

  • 中图分类号: P467

Differences of the Interdecadal Trend Shifts of Latent Heat Fluxes in Kuroshio and Gulf Stream Regions in the Warming Hiatus Background and the Possible Mechanisms

Funds: National Natural Science Foundation of China (Grant 41675066), Anhui Provincial Natural Science Foundation (Grant 1908085MD108)
  • 摘要: 本文使用美国伍兹霍尔海洋研究所发布的客观分析海气通量项目数据集及日本海洋科学技术中心的Ishii次表层温盐数据,利用经验正交函数分析方法、小扰动展开、线性回归、海水热力学方程2010等方法,主要研究在增温停滞背景(1979~2000年,升温阶段;2001~2013年,停滞阶段)下,北半球两支西边界流区域即黑潮及其延伸区域(简称黑潮区域)和墨西哥湾流区域(简称湾流区域)海表潜热通量的年代际趋势转变和影响因子,以及内部热含量的年代际变化。结果表明,两支西边界流在增温停滞背景下都发生了年代际尺度的趋势反转,而反转的时间节点以及前后的反转趋势都不相同:黑潮区域潜热通量年代际趋势于2001年左右由正转负;而湾流区域潜热通量年代际趋势于1993年左右由负转正。其影响因子在前后阶段也有不同:通过影响海表饱和比湿进而影响海气比湿差,海表温度是影响黑潮区域全时间段以及湾流区域1993~2013年时间段潜热通量变化的主要因素;而风速通过直接的影响以及对空气湿度的影响也会对潜热通量变化产生间接影响,主要在湾流区域的1979~1992年时间段体现。黑潮及湾流区域0~1000 m海水热含量的年代际变化同样存在差异:黑潮区域表层热含量年代际变化同混合层一致;湾流区域表层热含量年代际变化同深层相异,而表层以下的变化较为一致;两个区域的深层热含量变化都体现了增温停滞的现象,黑潮区域可能存在下层至上层的影响;而湾流区域可能存在上层至下层的影响。黑潮与湾流区域表面的差异可以归结为海洋与大气因素的影响差异,而内部热含量年代际变化的垂直差异可能归结为两区域的结构差异。增温停滞对两区域的变化影响显著,而区域的变化可能存在对增温停滞的反馈。
  • 图  1  1979~2013年(a,c)全球及(b,d)北半球区域平均的(a,b)潜热通量变化及(c,d)滑动t检验趋势序列(虚线为通过99% 置信水平)

    Figure  1.  (a, b)Variations of area–averaged latent heat flux (LHF) and (c, d) the trend series obtained by the moving t test (dotted lines indicate 99% confidence level) from 1979 to 2013: (a, c) Global means; (b, d) Northern Hemisphere (NH) means

    图  2  1979~2013年(a,b)北太平洋部分海域和(c,d)北大西洋部分海域去除长期趋势的潜热通量距平EOF第一模态(a,c)空间分布及(b,d)时间序列

    Figure  2.  First empirical orthogonal function (EOF) mode of detrended LHF anomaly in (a, b) a part of the North Pacific region and (c, d) a part of the North Atlantic region from 1979 and 2013: (a, c) Spatial pattern; (b, d) time series

    图  3  1979~2013年(a,c)黑潮区域和(b,d)湾流区域区域平均的(a,b)潜热通量变化及(c,d)滑动t检验趋势序列(虚线为通过99%置信水平)

    Figure  3.  (a, b) Variations of area–averaged LHF and (c, d) the trend series obtained by the moving t test (dotted lines indicate 99% confidence level) from 1979 to 2013: (a, c) Kuroshio Extension (KE) region; (b, d) Gulf Stream (GS) region

    图  4  1979~2013年区域平均的潜热通量各影响因子(海气比湿差$\Delta {q}$、海表饱和比湿${{q}}_{\rm{s}}$、2 m高度空气比湿${{q}}_{\rm{a}}$、10 m高度风速${U}$)变化:(a–d)黑潮区域;(e–h)湾流区域

    Figure  4.  Variations of area–averaged associated attributes of LHF (air–sea specific humidity difference $\Delta {q}$, sea surface saturation specific humidity ${{q}}_{\rm{s}}$, air specific humidity at 2 m ${{q}}_{\rm{a}}$, and wind speed at 10 m ${U}$) from 1979 to 2013: (a–d) KE region; (e–h) GS region

    图  5  1979~2013年区域平均的海表温度(Ts)序列:(a)黑潮区域;(b)湾流区域

    Figure  5.  Series of area–averaged sea surface temperature (Ts) from 1979 to 2013: (a) KE region; (b) GS region

    图  6  1979~2012年海水热含量年代际距平EOF特征值谱:(a)黑潮区域;(b)湾流区域。蓝点为特征值,灰色误差棒为North准则确定的误差范围

    Figure  6.  EOF eigenvalue spectra of interdecadal ocean heat content (OHC) anomaly from 1979 to 2012: (a) KE region; (b) GS region. Blue dots indicate the eigenvalues, grey error bars indicate the error range obtained by North’s criteria

    图  7  1979~2012年黑潮区域海水热含量年代际距平EOF第一模态:(a)空间分布;(b)同(a),但以垂直轴顺时针旋转90度;(c)时间序列

    Figure  7.  First EOF mode of interdecadal OHC anomaly in the KE region from 1979 to 2012: (a) Spatial pattern; (b) as in Fig. (a) but rotated 90° clockwise around the vertical axis; (c) time series

    图  8  1979~2012年湾流区域海水热含量年代际距平EOF第一模态:(a)空间分布;(b)同(a),但以垂直轴顺时针旋转90度;(c)时间序列

    Figure  8.  First EOF mode of interdecadal OHC anomaly in the GS region from 1979 to 2012: (a) Spatial pattern; (b) as in Fig. (a) but rotated 90° clockwise around the vertical axis; (c) time series

    图  9  1979~2012年湾流区域海水热含量年代际距平EOF第二模态:(a)空间分布;(b)同(a),但以垂直轴顺时针旋转90度;(c)时间序列

    Figure  9.  Second EOF mode of interdecadal OHC anomaly in the GS region from 1979 to 2012: (a) Spatial pattern; (b) as in Fig. (a) but rotated 90° clockwise around the vertical axis; (c) time series

    图  10  1979~2012年西边界流区域平均的海水热含量距平0~1000 m各深度年代际变化:(a)黑潮区域;(b)湾流区域。蓝色点代表年代际趋势由正转负,红色点代表年代际趋势由负转正,黑色实线为零距平值

    Figure  10.  Interdecadal variations of area–averaged OHC anomalies from 0 m to 1000 m in western boundary currents from 1979 to 2012: (a) KE region; (b) GS region. Blue dots indicate up-to-down trend shifts, and red dots indicate down-to-up trend shifts, black line indicates zero anomaly

    表  1  黑潮区域及湾流区域潜热通量距平(${{F}}_{\rm{lh}}^{{'}}$)及海气比湿差项($\rho {{L}}_{\rm{e}}{{C}}_{\rm{e}}{\bar U}\Delta {{q}}^{{'}}$)、海表饱和比湿项($\rho {{L}}_{\rm{e}}{{C}}_{\rm{e}}{\bar U}{{q}}_{\rm{s}}^{{'}}$)、2 m高度空气比湿项$(\rho {{L}}_{\rm{e}}{{C}}_{\rm{e}}{\bar U}{{q}}_{\rm{a}}^{{'}}$)及10 m高度风速项$(\rho {{L}}_{\rm{e}}{{C}}_{\rm{e}}{{U}}^{{'}}{\overline {\Delta q} }$)于趋势反转前(黑潮区域:1979~2000年,湾流区域:1979~1992年)及趋势反转后(黑潮区域:2001~2013年,湾流区域:1993~2013年)的线性趋势

    Table  1.   Linear trends of latent heat flux anomaly (${{F}}_{\rm{lh}}^{{'}}$), the term of air–sea specific humidity difference $(\rho {{L}}_{\rm{e}}{{C}}_{\rm{e}}{\bar U}\Delta {{q}}^{{'}}$), the term of sea surface saturation specific humidity $\left(\rho {{L}}_{\rm{e}}{{C}}_{\rm{e}}{\bar U}{{q}}_{\rm{s}}^{{'}}\right)$, the term of air specific humidity at 2 m $\left(\rho {{L}}_{\rm{e}}{{C}}_{\rm{e}}{\bar U}{{q}}_{\rm{a}}^{{'}}\right)$, and the term of wind speed at 10 m $\left(\rho {{L}}_{\rm{e}}{{C}}_{\rm{e}}{{U}}^{{'}}{\overline {\Delta q} }\right)$ before (for Kuroshio Extension: 1979–2000; for Gulf Stream: 1979–1992) and after (for Kuroshio Extension: 2001–2013; for Gulf Stream: 1993–2013) the trend shifts

    黑潮区域各项线性趋势湾流区域各项线性趋势
    1979~2000年2001~2013年 1979~1992年1993~2013年
    ${{F}}_{\rm{lh}}^{{'}}$/ W m−2 a−10.88±0.36***−0.78±0.80*−1.15±0.82**0.65±0.41***
    $\rho {{L}}_{\rm{e}}{{C}}_{\rm{e}}{\bar U}\Delta {{q}}^{{'}}$/ W m−2 a−10.88±0.28***−0.46+0.63−0.68±0.63*0.67±0.30***
    $\rho {{L}}_{\rm{e}}{{C}}_{\rm{e}}{\bar U}{{q}}_{\rm{s}}^{{'}}$/ W m−2 a−11.25±0.78***−1.20±0.93**0.21±0.940.77±0.44***
    $\rho {{L}}_{\rm{e}}{{C}}_{\rm{e}}{\bar U}{{q}}_{\rm{a}}^{{'}}$/ W m−2 a−10.37±0.68−0.74±0.820.89±0.83**0.10±0.41
    $\rho {{L}}_{\rm{e}}{{C}}_{\rm{e}}{{U}}^{{'}}{\overline {\Delta q} }$/ W m−2 a−10.11±0.15−0.23±0.53−0.57±0.47**0.17±0.20*
    注:***、**、*分别为通过99%、95%、90%的信度检验。
    下载: 导出CSV
  • [1] Alexander M A, Scott J D. 1997. Surface flux variability over the North Pacific and North Atlantic oceans [J]. J. Climate, 10(11): 2963−2978. doi:10.1175/1520-0442(1997)010<2963:sfvotn>2.0.co;2
    [2] Behera S K, Salvekar P S, Yamagata T. 2000. Simulation of interannual SST variability in the tropical Indian Ocean [J]. J. Climate, 13(19): 3487−3499. doi:10.1175/1520-0442(2000)013<3487:soisvi>2.0.co;2
    [3] Cao N, Ren B H. 2019. Regime shift of global oceanic evaporation in the late 1990s using OAFlux dataset [J]. Theor. Appl. Climatol., 136(3-4): 1407−1417. doi: 10.1007/s00704-018-2566-6
    [4] Cayan D R. 1992. Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation [J]. J. Climate, 5(4): 354−369. doi:10.1175/1520-0442(1992)005<0354:LASHFA>2.0.CO;2
    [5] Chen X, Tung K K. 2014. Varying planetary heat sink led to global-warming slowdown and acceleration [J]. Science, 345(6199): 897−903. doi: 10.1126/science.1254937
    [6] Drijfhout S S, Blaker A T, Josey S A, et al. 2014. Surface warming hiatus caused by increased heat uptake across multiple ocean basins [J]. Geophys. Res. Lett., 41(22): 7868−7874. doi: 10.1002/2014gl061456
    [7] Easterling D R, Wehner M F. 2009. Is the climate warming or cooling? [J]. Geophys. Res. Lett., 36(8): L08706. doi: 10.1029/2009gl037810
    [8] Fairall C W, Bradley E F, Rogers D P, et al. 1996. Bulk parameterization of air–sea fluxes for tropical ocean–global atmosphere coupled-ocean atmosphere response experiment [J]. J. Geophys. Res., 101(C2): 3747−3764. doi: 10.1029/95jc03205
    [9] Feistel R. 2003. A new extended Gibbs thermodynamic potential of seawater [J]. Progress in Oceanography, 58(1): 43−114. doi: 10.1016/s0079-6611(03)00088-0
    [10] Feistel R. 2008. A Gibbs function for seawater thermodynamics for −6 to 80°C and salinity up to 120 g kg<sup>–1</sup> [J]. Deep Sea Research Part I: Oceanographic Research Papers, 55(12): 1639−1671. doi: 10.1016/j.dsr.2008.07.004
    [11] Hu S, Fedorov A V. 2017. The extreme El Niño of 2015–2016 and the end of global warming hiatus [J]. Geophys. Res. Lett., 44(8): 3816−3824. doi: 10.1002/2017gl072908
    [12] Ishii M, Kimoto M, Sakamoto K, et al. 2005. Subsurface Temperature And Salinity Analyses [DB]. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/Y6CR-KW66 [Accessed 1 Dec 2018]
    [13] Kintisch E. 2014. Is Atlantic holding Earth's missing heat? [J]. Science, 345(6199): 860−861. doi: 10.1126/science.345.6199.860
    [14] Kwon Y O, Alexander M A, Bond N A, et al. 2010. Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review [J]. J. Climate, 23(12): 3249−3281. doi: 10.1175/2010jcli3343.1
    [15] Li G, Ren B H, Yang C Y, et al. 2011a. Revisiting the trend of the tropical and subtropical Pacific surface latent heat flux during 1977–2006 [J]. J. Geophys. Res., 116(D10): 0148−0227. doi: 10.1029/2010jd015444
    [16] Li G, Ren B H, Zheng J Q, et al. 2011b. Net air–sea surface heat flux during 1984–2004 over the North Pacific and North Atlantic oceans (10°N–50°N): Annual mean climatology and trend [J]. Theor. Appl. Climatol., 104(3-4): 387−401. doi: 10.1007/s00704-010-0351-2
    [17] Li G, Ren B H. 2012. Evidence for strengthening of the tropical Pacific Ocean surface wind speed during 1979–2001 [J]. Theor. Appl. Climatol., 107(1-2): 59−72. doi: 10.1007/s00704-011-0463-3
    [18] Liu J, Curry J A. 2006. Variability of the tropical and subtropical ocean surface latent heat flux during 1989–2000 [J]. Geophys. Res. Lett., 33(5): L05706. doi: 10.1029/2005gl024809
    [19] Liu W T, Katsaros K B, Businger J A. 1979. Bulk parameterization of air–sea exchanges of heat and water vapor including the molecular constraints at the interface [J]. J. Atmos. Sci., 36(9): 1722−1735. doi:10.1175/1520-0469(1979)036<1722:bpoase>2.0.co;2
    [20] Liu W, Xie S P, Lu J. 2016. Tracking ocean heat uptake during the surface warming hiatus [J]. Nature communications, 7: 10926. doi: 10.1038/ncomms10926
    [21] McDougall T J, Barker P M. 2011. Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox [J]. SCOR/IAPSO WG, 127: 1−28.
    [22] Medhaug I, Stolpe M B, Fischer E M, et al. 2017. Reconciling controversies about the ‘global warming hiatus’ [J]. Nature, 545(7652): 41−47. doi: 10.1038/nature22315
    [23] Millero F J, Feistel R, Wright D G, et al. 2008. The composition of standard seawater and the definition of the reference-composition salinity scale [J]. Deep Sea Research Part I: Oceanographic Research Papers, 55(1): 50−72. doi: 10.1016/j.dsr.2007.10.001
    [24] North G R, Bell T L, Cahalan R F, et al. 1982. Sampling errors in the estimation of empirical orthogonal functions [J]. Mon. Wea. Rev., 110(7): 699−706. doi:10.1175/1520-0493(1982)110<0699:seiteo>2.0.co;2
    [25] Santer B D, Wigley T M L, Boyle J S, et al. 2000. Statistical significance of trends and trend differences in layer-average atmospheric temperature time series [J]. Journal of Geophysical Research: Atmospheres, 105(D6): 7337−7356. doi: 10.1029/1999JD901105
    [26] 单永强, 任保华, 齐义泉, 等. 2016. 西太平洋—南海地区潜热通量长期变化趋势的南北差异及成因分析 [J]. 气候与环境研究, 21(4): 467−478. doi:  10.3878/j.issn.1006-9585.2016.15241

    Shan Yongqiang, Ren Baohua, Qi Yiquan, et al. 2016. The north-south contrast of long-term trend of latent heat flux in West Pacific–South China Sea and the possible mechanism [J]. Climatic and Environmental Research (in Chinese), 21(4): 467−478. doi: 10.3878/j.issn.1006-9585.2016.15241
    [27] Tanimoto Y, Nakamura H, Kagimoto T, et al. 2003. An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux [J]. J. Geophys. Res., 108(C10): 0148−0227. doi: 10.1029/2002jc001750
    [28] Tomita H, Kubota M. 2005. Increase in turbulent heat flux during the 1990s over the Kuroshio/Oyashio extension region [J]. Geophys. Res. Lett., 32(9): L09705. doi: 10.1029/2004gl022075
    [29] Trenberth K E, Fasullo J T. 2013. An apparent hiatus in global warming? [J]. Earth's Future, 1(1): 19−32. doi: 10.1002/2013ef000165
    [30] Xie S P, Kosaka Y, Okumura Y M. 2016. Distinct energy budgets for anthropogenic and natural changes during global warming hiatus [J]. Nature Geoscience, 9(1): 29−33. doi: 10.1038/ngeo2581
    [31] Yu L S, Weller R A. 2007. Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005) [J]. Bulletin of the American Meteorological Society, 88(4): 527−540. doi: 10.1175/BAMS-88-4-527
    [32] Yu L S, Jin X Z, Weller R A. 2008. Multidecade global flux datasets from the objectively analyzed air−sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables [R]. OAFlux Project Tech. Rep. OA-2008-01.
    [33] 郑建秋, 任保华, 李根. 2009. 北太平洋海气界面湍流热通量的年际变化 [J]. 大气科学, 33(5): 1111−1121. doi:  10.3878/j.issn.1006-9895.2009.05.20

    Zheng Jianqiu, Ren Baohua, Li Gen. 2009. Interannual variability of air–sea turbulent heat fluxes over the North Pacific [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(5): 1111−1121. doi: 10.3878/j.issn.1006-9895.2009.05.20
  • [1] 李智, 刘宣飞, 李传浩.  大气对春季东海黑潮锋响应的气压调整机制分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1503.14257
    [2] 马静, 徐海明, 董昌明.  大气对黑潮延伸区中尺度海洋涡旋的响应——冬季暖、冷涡个例分析, 大气科学. doi: 10.3878/j.issn.1006-9895.2013.13151
    [3] 张晓惠, 高志球, 魏东平.  简单生物圈模式 (SiB2) 中湍流能量通量对近地层两类阻抗系数的敏感性研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2012.11216
    [4] 郑建秋, 任保华, 李根.  北太平洋海气界面湍流热通量的年际变化, 大气科学. doi: 10.3878/j.issn.1006-9895.2009.05.20
    [5] 况雪源, 张耀存, 刘健, 等.  冬季黑潮暖流区加热异常对东亚副热带西风急流影响的数值研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2009.01.07
    [6] 周天军, 张学洪.  印度洋海气热通量交换研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2002.02.02
    [7] 任军芳, 苏炳凯, 赵鸣.  标量粗糙度对地气交换的影响, 大气科学. doi: 10.3878/j.issn.1006-9895.1999.03.11
    [8] 方之芳, J.M.Wallace.  冬季大气环流对北太平洋海冰和黑潮暖流海温的强迫作用, 大气科学. doi: 10.3878/j.issn.1006-9895.1996.05.04
    [9] 张强, 胡隐樵.  热平流影响下湿润地表的通量-廓线关系, 大气科学. doi: 10.3878/j.issn.1006-9895.1995.01.02
    [10] 金向泽, 张学洪.  温盐环流与全球增暖的数值模拟 (一)纬向平均温盐环流的模拟, 大气科学. doi: 10.3878/j.issn.1006-9895.1994.z1.01
    [11] 金向泽, 张学洪.  温盐环流与全球增暖的数值模拟 (二)温盐环流在全球增暖事件中的作用, 大气科学. doi: 10.3878/j.issn.1006-9895.1994.z1.02
    [12] 李荣凤, 王文质, 黄企洲.  南海夏季海流的数值模拟, 大气科学. doi: 10.3878/j.issn.1006-9895.1994.03.01
    [13] 徐桂玉, 苏炳凯, 符淙斌.  太平洋海-气热通量与长江流域降水及东亚500 hPa环流的遥相关, 大气科学. doi: 10.3878/j.issn.1006-9895.1994.01.11
    [14] 曲绍厚, 安磊明.  西太平洋热带海域厄尔尼诺年和非厄尔尼诺年期间湍流通量输送的不同特征, 大气科学. doi: 10.3878/j.issn.1006-9895.1993.04.04
    [15] 石广玉.  CFCs及其代用品的全球增温潜能, 大气科学. doi: 10.3878/j.issn.1006-9895.1992.03.11
    [16] 李毓芳, 鹿晓丹, 高坤.  地面热通量对降水的影响, 大气科学. doi: 10.3878/j.issn.1006-9895.1991.05.13
    [17] 邵庆秋, 周明煜, 李兴生.  洋面动量、感热和潜热通量计算的研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1991.03.02
    [18] 高登义, 川口贞男.  春季南极昭和站上空增温与臭氧含量和分布的关系, 大气科学. doi: 10.3878/j.issn.1006-9895.1987.03.04
    [19] 李兴生, 卞新棣, 钟世远.  近地面层中湍流热通量和长波辐射通量相互作用的数值研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1985.04.02
    [20] 赵绪孔, 李若钝, 韩福荣.  东海黑潮变异与青岛汛期降水关系的初步研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1982.02.15
  • 加载中
图(10) / 表ll (1)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  2
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-01
  • 网络出版日期:  2019-10-31
  • 刊出日期:  2020-07-25

目录

    /

    返回文章
    返回