高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同PDO位相下El Niño发展年和La Niña年东亚夏季风的季节内变化

张雯 董啸 薛峰

张雯, 董啸, 薛峰. 不同PDO位相下El Niño发展年和La Niña年东亚夏季风的季节内变化[J]. 大气科学, 2020, 44(2): 390-406. doi: 10.3878/j.issn.1006-9895.1910.18269
引用本文: 张雯, 董啸, 薛峰. 不同PDO位相下El Niño发展年和La Niña年东亚夏季风的季节内变化[J]. 大气科学, 2020, 44(2): 390-406. doi: 10.3878/j.issn.1006-9895.1910.18269
ZHANG Wen, DONG Xiao, XUE Feng. Intraseasonal Variations of the East Asian Summer Monsoon in El Niño Developing Years and La Niña Years under Different Phases of the Pacific Decadal Oscillation[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(2): 390-406. doi: 10.3878/j.issn.1006-9895.1910.18269
Citation: ZHANG Wen, DONG Xiao, XUE Feng. Intraseasonal Variations of the East Asian Summer Monsoon in El Niño Developing Years and La Niña Years under Different Phases of the Pacific Decadal Oscillation[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(2): 390-406. doi: 10.3878/j.issn.1006-9895.1910.18269

不同PDO位相下El Niño发展年和La Niña年东亚夏季风的季节内变化

doi: 10.3878/j.issn.1006-9895.1910.18269
基金项目: 国家自然科学基金项目41706028、41630530

Intraseasonal Variations of the East Asian Summer Monsoon in El Niño Developing Years and La Niña Years under Different Phases of the Pacific Decadal Oscillation

  • 摘要: 基于1957~2017年观测和再分析资料,合成分析了北太平洋年代际振荡(Pacific decadal oscillation,PDO)不同位相下El Niño发展年和La Niña年东亚夏季风的环流、降水特征及季节内变化。结果表明,PDO正、负位相作为背景场,分别对El Niño发展年、La Niña年东亚夏季风及夏季降水具有加强作用。PDO正位相一方面可增强El Niño发展年夏季热带中东太平洋暖海温异常信号,另一方面通过冷海温状态加强中高纬东亚大陆与西北太平洋的环流异常,从而在一定程度上增强了东亚夏季风环流的异常程度;反之,PDO负位相则增强了La Niña年热带海气相互作用以及中高纬环流(如东北亚反气旋)的异常。在季节内变化方面,El Niño发展年6月贝湖以东反气旋性环流为东亚地区带来稳定的北风异常,东北亚位势高度减弱;7月开始,环流形势发生调整,日本以东洋面出现气旋性异常,东亚大陆偏北风及位势高度负异常均得到加强;8月,随着东亚夏季风季节进程和El Niño发展,西太平洋出现气旋性环流异常,东亚副热带位势高度进一步降低,西北太平洋副热带高压(简称副高)明显东退。La Niña年6月异常较弱,主要环流差异自7月西北太平洋为大范围气旋性异常控制开始,东亚—太平洋遥相关型显著,副高于季节内始终偏弱偏东。上述两种情况下,均造成东亚地区夏季降水总体上偏少,尤其是中国北方降水显著偏少。
  • 图  1  1957~2017年标准化的冬季Niño3.4指数(黑线)、PDO指数(红线)

    Figure  1.  The normalized time series of Niño3.4 index (black line) and PDO index (red line) from 1957 to 2017

    图  2  (a、d)PDO正位相、(b、e)PDO负位相下(a、b)El Niño发展年、(d、e)La Niña年以及不考虑PDO影响的(c)El Niño发展年、(f)La Niña年夏季平均海表面温度异常(阴影,单位:°C)及海平面气压异常(等值线,单位:hPa)。填色部分为温度异常超过90%信度水平的显著性检验。等值线间隔0.3 hPa,零线已略去

    Figure  2.  Composites of summer mean SST anomalies (shadings, units: °C) and SLP anomalies (contours, units: hPa) for the (a–c) El Niño developing years and (d–f) La Niña years during (a, d) the positive PDO phase, (b, e) the negative PDO phase, (c, f) without considering the impact of PDO. The shadings indicate SST anomalies above the 90% confidence level. The contours interval is 0.3 hPa, zero lines are omitted

    图  3  (a、d)PDO正位相、(b、e)PDO负位相下(a、b)El Niño发展年、(d、e)La Niña年以及不考虑PDO影响的(c)El Niño发展年、(f)La Niña年夏季平均850 hPa风场异常(箭头,单位:m s−1)及500 hPa西太平洋副高5870 gpm线位置。填色部分为风场异常超过90%信度水平的显著性检验,黑色和红色等值线分别为气候平均和合成年副高5870 gpm线

    Figure  3.  Composites of the summer mean wind anomalies (vectors, units: m s−1) at 850 hPa and the location of western Pacific subtropical high 5870-gpm lines at 500 hPa for the (a–c) El Niño developing years and (d–f) La Niña years during (a, d) the positive PDO phase, (b, e) the negative PDO phase, (c, f) without considering the impact of PDO. The shadings indicate wind anomalies above the 90% confidence level. The black lines and red lines represent climatology results (averaged for the period 1957–2017) and composites of 5870-gpm lines, respectively

    图  4  (a、d)PDO正位相、(b、e)PDO负位相下(a、b)El Niño发展年、(d、e)La Niña年以及不考虑PDO影响的(c)El Niño发展年、(f)La Niña年夏季平均500 hPa位势高度异常(阴影,单位:gpm,等值线间隔5 gpm)。填色部分为位势高度异常超过90%信度水平的显著性检验

    Figure  4.  Composites of summer mean 500-hPa geopotential height anomalies (shadings, units: gpm, the contours interval is 5 gpm) for the (a–c) El Niño developing years and (d–f) La Niña years during (a, d) the positive PDO phase, (b, e) the negative PDO phase, (c, f) without considering the impact of PDO. The shadings indicate anomalies above the 90% confidence level

    图  5  (a、d)PDO正位相、(b、e)PDO负位相下(a、b)El Niño发展年、(d、e)La Niña年以及不考虑PDO影响的(c)El Niño发展年、(f)La Niña年夏季平均的东亚降水异常(单位:mm month−1),交叉区域代表降水异常超过90%信度水平的显著性检验

    Figure  5.  Composites of summer mean precipitation anomalies (shadings, units: mm month−1) in East Asia for the (a–c) El Niño developing years and (d–f) La Niña years during (a, d) the positive PDO phase, (b, e) the negative PDO phases, (c, f) without considering the impact of PDO. The crosses indicate precipitation anomalies above the 90% confidence level

    图  6  PDO正(+)位相El Niño发展年(a)6月、(b)7月、(c)8月平均海表面温度异常(阴影,单位:°C)及海平面气压异常(等值线,单位:hPa)。填色部分表示异常超过90%信度水平的显著性检验。等值线间隔为0.3 hPa,零线已略去

    Figure  6.  Composites of the mean SST anomalies (shadings, units: °C) and SLP anomalies (contours, units: hPa) in (a) June, (b) July, and (c) August for the El Niño developing years during the positive PDO phase. The shadings indicate anomalies above the 90% confidence level. The contours interval is 0.3 hPa, zero lines are omitted

    图  7  PDO正(+)位相El Niño发展年(a)6月、(b)7月、(c)8月平均的850 hPa风场异常(单位:m s−1)及500 hPa西太平洋副高5870 gpm线。蓝色箭头表示风场异常超过90%信度水平的显著性检验,黑色和红色等值线分别为气候平均和合成年副高5870 gpm线

    Figure  7.  Composites of the mean wind anomalies (vectors, units: m s−1) at 850 hPa and the western Pacific subtropical high 5870-gpm lines at 500 hPa in (a) June, (b) July, and (c) August for the El Niño developing years during the positive PDO phase. The blue vectors indicate wind anomalies above the 90% confidence level. The black lines and red lines represent climatology results (averaged for the period 1957–2017) and composites of 5870-gpm lines, respectively

    图  8  PDO正(+)位相El Niño发展年(a)6月、(b)7月、(c)8月平均的500 hPa位势高度异常(单位:gpm)。填色部分为异常超过90%信度水平的显著性检验。等值线间隔为5 gpm,零线已略去

    Figure  8.  Composites of the mean 500-hPa geopotential height anomalies (units: gpm) in (a) June, (b) July, and (c) August for the El Niño developing years during the positive PDO phase. The shadings indicate anomalies above the 90% confidence level. Contours interval is 5 gpm, zero lines are omitted

    图  9  PDO正(+)位相El Niño发展年(a)6月、(b)7月、(c)8月平均的东亚降水异常(单位:mm month−1)合成场,交叉区域代表降水异常超过90%信度水平的显著性检验

    Figure  9.  Composites of the mean precipitation anomalies (shadings, units: mm month−1) in East Asia in (a) June, (b) July, and (c) August for the El Niño developing years during the positive PDO phase. The crosses indicate anomalies above the 90% confidence level

    图  10  PDO负(−)位相La Niña年(a)6月、(b)7月、(c)8月平均SST异常(阴影,单位:°C)及SLP异常(等值线,单位:hPa)。填色部分表示SST异常超过90%信度水平的显著性检验。等值线间隔0.3 hPa,零线已略去

    Figure  10.  Composites of the mean SST anomalies (shadings, units: °C) and SLP anomalies (contours, units: hPa) in (a) June, (b) July, and (c) August for the La Niña years during the negative PDO phase. The shadings indicate SST anomalies above the 90% confidence level. The contours interval is 0.3 hPa, zero lines are omitted

    图  11  PDO负(−)位相La Niña年(a)6月、(b)7月、(c)8月平均的850 hPa风场异常(单位:m s−1)及500 hPa西太平洋副高5870 gpm线。蓝色箭头表示风场异常超过90%信度水平的显著性检验,黑色和红色等值线分别为气候平均和合成年副高5870 gpm线位置

    Figure  11.  Composites of the mean wind anomalies (vectors, units: m s−1) at 850 hPa and the western Pacific subtropical high 5870-gpm lines at 500 hPa in (a) June, (b) July, and (c) August for the La Niña years during the negative PDO phase. The blue vectors indicate wind anomalies above the 90% confidence level. The black lines and red lines represent climatology results (averaged for the period 1957–2017) and composites of 5870-gpm lines, respectively

    图  12  PDO负(−)位相La Niña年(a)6月、(b)7月、(c)8月平均的500 hPa位势高度异常(单位:gpm)。填色部分表示位势高度异常超过90%信度水平的显著性检验。等值线间隔为5 gpm,零线已略去

    Figure  12.  Composites of the mean 500-hPa geopotential height anomalies (units: gpm) in (a) June, (b) July, and (c) August for the La Niña years during the negative PDO phase. The shadings indicate anomalies above the 90% confidence level. The contours interval is 5 gpm, zero lines are omitted

    图  13  PDO负(−)位相La Niña年(a)6月、(b)7月、(c)8月平均的东亚降水异常(单位:mm month−1)合成场,交叉区域代表降水异常超过90%信度水平的显著性检验

    Figure  13.  Composites of the mean precipitation anomalies (shadings, units: mm month−1) in East Asia in (a) June, (b) July, and (c) August for the La Niña years during the negative PDO phase. The crosses indicate precipitation anomalies above the 90% confidence level

    表  1  基于PDO不同位相的El Niño发展年及La Niña年

    Table  1.   El Niño developing years and La Niña years classified based on the different PDO phases

    El Niño发展年La Niña年
    PDO正位相1957, 1982, 1991, 1997, 2002, 20141984, 1985, 1996
    PDO负位相1963, 19941971, 1974, 1975, 1989, 1999, 2000, 2001, 2008, 2011, 2012
    下载: 导出CSV
  • [1] Alexander M, Yin J, Branstator G, et al. 2006. Extratropical atmosphere-ocean variability in CCSM3[J]. J. Climate, 19(11):2496-2525. doi: 10.1175/JCLI3743.1
    [2] Bond N A, Overland J E, Spillane M, et al. 2003. Recent shifts in the state of the North Pacific[J]. Geophys. Res. Lett., 30(23):2183. doi: 10.1029/2003GL018597
    [3] Chan J C L, Zhou W. 2005. PDO, ENSO and the early summer monsoon rainfall over South China[J]. Geophys. Res. Lett., 32(8):L08810. doi: 10.1029/2004GL022015
    [4] 陈文. 2002. El Niño和La Niña事件对东亚冬、夏季风循环的影响[J]. 大气科学, 26(5):595-610. Chen W. 2002. Impacts of El Niño and La Niña on the cycle of the East Asian winter and summer monsoon[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26(5):595-610. doi: 10.3878/j.issn.1006-9895.2002.05.02
    [5] D'Arrigo R, Wilson R. 2006. On the Asian expression of the PDO[J]. Int. J. Climatol., 26(12):1607-1617. doi: 10.1002/joc.1326
    [6] Dong X. 2016. Influences of the Pacific decadal oscillation on the East Asian summer monsoon in non-ENSO years[J]. Atmos. Sci. Lett., 17(1):115-120. doi: 10.1002/asl.634
    [7] Dong X, Xue F. 2016. Phase transition of the Pacific decadal oscillation and decadal variation of the East Asian summer monsoon in the 20th century[J]. Adv. Atmos. Sci., 33(3):330-338. doi: 10.1007/s00376-015-5130-7
    [8] Dong X, Su T H, Wang J, et al. 2014. Decadal variation of the Aleutian low-Icelandic low seesaw simulated by a climate system model (CAS-ESM-C)[J]. Atmos. Oceanic Sci. Lett., 7(2):110-114. doi: 10.3878/j.issn.1674-2834.13.0061
    [9] 董啸, 薛峰, 曾庆存. 2014. 北半球冬季阿留申低压-冰岛低压相关关系的年代际变化及其模拟[J]. 气候与环境研究, 19(5):523-535. Dong X, Xue F, Zeng Q C. 2014. Observational analysis and numerical simulation of the decadal variation in the relationship between the Aleutian low and the Icelandic low during boreal winter[J]. Climatic and Environmental Research (in Chinese), 19(5):523-535. doi: 10.3878/j.issn.1006-9585.2013.13021
    [10] Dong X, Lin R P, Fan F X. 2017. Comparison of the two modes of the western Pacific subtropical high between early and late summer[J]. Atmos. Sci. Lett., 18(4):153-160. doi: 10.1002/asl.737
    [11] Fan Y, Fan K. 2017. Pacific decadal oscillation and the decadal change in the intensity of the interannual variability of the South China Sea summer monsoon[J]. Atmos. Oceanic Sci. Lett., 10(2):162-167. doi: 10.1080/16742834.2016.1256189
    [12] Fan Y, Fan K, Xu Z Q, et al. 2018. ENSO-South China Sea summer monsoon interaction modulated by the Atlantic multidecadal oscillation[J]. J. Climate, 31(8):3061-3076. doi: 10.1175/JCLI-D-17-0448.1
    [13] Feng J, Wang L, Chen W. 2014. How does the East Asian summer monsoon behave in the decaying phase of El Niño during different PDO phases?[J]. J. Climate, 27(7):2682-2698. doi: 10.1175/JCLI-D-13-00015.1
    [14] 符淙斌, 滕星林. 1988. 我国夏季的气候异常与埃尔尼诺/南方涛动现象的关系[J]. 大气科学, 12(S1):133-141. Fu C B, Teng X L. 1988. Climate anomalies in China associated with El Niño/southern oscillation[J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 12(S1):133-141. doi: 10.3878/j.issn.1006-9895.1988.t1.11
    [15] Gao H, Wang Y G, He J H. 2006. Weakening significance of ENSO as a predictor of summer precipitation in China[J]. Geophys. Res. Lett., 33(9):L09807. doi: 10.1029/2005GL025511
    [16] Harris I, Jones P D, Osborn T J, et al. 2014. Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 dataset[J]. Int. J. Climatol., 34(3):623-642. doi: 10.1002/joc.3711
    [17] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project[J]. Bull. Amer. Meteor. Soc., 77(3):437-471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [18] Lau N C, Nath M J. 2000. Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments[J]. J. Climate, 13(24):4287-4309. doi: 10.1175/1520-0442(2000)013<4287:IOEOTV>2.0.CO;2
    [19] Lin R P, Zheng F, Dong X. 2018. ENSO frequency asymmetry and the Pacific decadal oscillation in observations and 19 CMIP5 models[J]. Adv. Atmos. Sci, 35(5):495-506. doi: 10.1007/s00376-017-7133-z
    [20] 刘长征, 薛峰. 2010a. 不同强度El Niño的衰减过程. I:强El Niño的衰减过程[J]. 地球物理学报, 53(1):39-48. Liu C Z, Xue F. 2010a. The decay of El Niño with different intensity. Part I:The decay of the strong El Niño[J]. Chinese Journal of Geophysics (in Chinese), 53(1):39-48. doi: 10.3969/j.issn.0001-5733.2010.01.005
    [21] 刘长征, 薛峰. 2010b. 不同强度El Niño的衰减过程. II:中等和较弱El Niño的衰减过程[J]. 地球物理学报, 53(11):2564-2573. Liu C Z, Xue F. 2010b. The decay of El Niño with different intensity. Part II:The decay of the moderate and relatively-weak El Niño[J]. Chinese Journal of Geophysics (in Chinese), 53(11):2564-2573. doi: 10.3969/j.issn.0001-5733.2010.11.004
    [22] Mantua N J, Hare S R, Zhang Y, et al. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bull. Amer. Meteor. Soc., 78(6):1069-1079. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
    [23] Newman M, Alexander M A, Ault T R, et al. 2016. The Pacific decadal oscillation, revisited[J]. J. Climate, 29(12):4399-4427. doi: 10.1175/JCLI-D-15-0508.1
    [24] Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. J. Geophys. Res., 108(D14):4407. doi: 10.1029/2002JD002670
    [25] Song F F, Zhou T J. 2015. The crucial role of internal variability in modulating the decadal variation of the East Asian summer monsoon-ENSO relationship during the twentieth century[J]. J. Climate, 28(18):7093-7107. doi: 10.1175/JCLI-D-14-00783.1
    [26] Wang B. 1995. Interdecadal changes in El Niño onset in the last four decades[J]. J. Climate, 8(2):267-285. doi: 10.1175/1520-0442(1995)008<0267:ICIENO>2.0.CO;2
    [27] Wang B, Yang J, Zhou T J, et al. 2008. Interdecadal changes in the major modes of Asian-Australian monsoon variability:Strengthening relationship with ENSO since the late 1970s[J]. J. Climate, 21(8):1771-1789. doi: 10.1175/2007JCLI1981.1
    [28] Wang H J. 2001. The weakening of the Asian monsoon circulation after the end of 1970's[J]. Adv. Atmos. Sci., 18(3):376-386. doi: 10.1007/BF02919316
    [29] Wang H J. 2002. The instability of the East Asian summer monsoon-ENSO relations[J]. Adv. Atmos. Sci., 19(1):1-11. doi: 10.1007/s00376-002-0029-5
    [30] Wang L, Chen W, Huang R H. 2008. Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon[J]. Geophys. Res. Lett., 35(20):L20702. doi: 10.1029/2008GL035287
    [31] Xue F, Fan F X. 2016. Anomalous western Pacific subtropical high during late summer in weak La Niña years:Contrast between 1981 and 2013[J]. Adv. Atmos. Sci., 33(12):1351-1360. doi: 10.1007/s00376-016-5281-1
    [32] Xue F, Zhao J J. 2017. Intraseasonal variation of the East Asian summer monsoon in La Niña years[J]. Atmos. Oceanic Sci. Lett., 10(2):156-167. doi: 10.1080/16742834.2016.1254008
    [33] Xue F, Dong X, Fan F X. 2018. Anomalous western Pacific subtropical high during El Niño developing summer in comparison with decaying summer[J]. Adv. Atmos. Sci., 35(3):360-367. doi: 10.1007/s00376-016-5281-1
    [34] 薛峰, 段欣妤, 苏同华. 2018. El Niño发展年和La Niña年东亚夏季风季节内变化的比较[J]. 气候与环境研究, 23(3):321-331. Xue F, Duan X Y, Su T H. 2018. Comparison of intraseasonal variation of the East Asian summer monsoon between El Niño developing years and La Niña years[J]. Climatic and Environmental Research (in Chinese), 23(3):321-331. doi: 10.3878/j.issn.1006-9585.2017.17044
    [35] 杨修群, 谢倩, 朱益民, 等. 2005. 华北降水年代际变化特征及相关的海气异常型[J]. 地球物理学报, 48(4):789-797. Yang X Q, Xie Q, Zhu Y M, et al. 2005. Decadal-to-interdecadal variability of precipitation in North China and associated atmospheric and oceanic anomaly patterns[J]. Chinese Journal of Geophysics (in Chinese), 48(4):789-797. doi: 10.3321/j.issn:0001-5733.2005.04.009
    [36] Ye H, Lu R Y. 2011. Subseasonal variation in ENSO-related East Asian rainfall anomalies during summer and its role in weakening the relationship between the ENSO and summer rainfall in eastern China since the late 1970s[J]. J. Climate, 24(9):2271-2284. doi: 10.1175/2010JCLI3747.1
    [37] Yoon J, Yeh S W. 2010. Influence of the Pacific decadal oscillation on the relationship between El Niño and the Northeast Asian summer monsoon[J]. J. Climate, 23(17):4525-4537. doi: 10.1175/2010JCLI3352.1
    [38] Yu L, Furevik T, Otterå O H, et al. 2015. Modulation of the Pacific decadal oscillation on the summer precipitation over East China:A comparison of observations to 600-years control run of Bergen climate model[J]. Climate Dyn., 44(1-2):475-494. doi: 10.1007/s00382-014-2141-5
    [39] 赵俊杰, 薛峰, 林万涛, 等. 2016. El Niño对东亚夏季风和夏季降水季节内变化的影响[J]. 气候与环境研究, 21(6):678-686. Zhao J J, Xue F, Lin W T, et al. 2016. The El Niño influence on intra-seasonal variations of East Asian summer monsoon and summer rainfall[J]. Climatic and Environmental Research (in Chinese), 21(6):678-686. doi: 10.3878/j.issn.1006-9585.2016.15244
    [40] Zhou T J, Gong D Y, Li J, et al. 2009. Detecting and understanding the multi-decadal variability of the East Asian summer monsoon recent progress and state of affairs[J]. Meteor. Z., 18(4):455-467. doi: 10.1127/0941-2948/2009/0396
    [41] 朱益民, 杨修群. 2003. 太平洋年代际振荡与中国气候变率的联系[J]. 气象学报, 61(6):641-654. Zhu Y M, Yang X Q. 2003. Relationships between Pacific decadal oscillation (PDO) and climate variabilities in China[J]. Acta Meteorologica Sinica (in Chinese), 61(6):641-654. doi: 10.11676/qxxb2003.065
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  252
  • HTML全文浏览量:  0
  • PDF下载量:  764
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-12

目录

    /

    返回文章
    返回