高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京城区相继多次降雹的一次强雷暴的闪电特征

孙萌宇 郄秀书 孙凌 刘冬霞 王东方 袁善峰 陈志雄 徐文静 孙成云 苏德斌

孙萌宇, 郄秀书, 孙凌, 刘冬霞, 王东方, 袁善峰, 陈志雄, 徐文静, 孙成云, 苏德斌. 北京城区相继多次降雹的一次强雷暴的闪电特征[J]. 大气科学, 2020, 44(3): 601-610. doi: 10.3878/j.issn.1006-9895.1910.19134
引用本文: 孙萌宇, 郄秀书, 孙凌, 刘冬霞, 王东方, 袁善峰, 陈志雄, 徐文静, 孙成云, 苏德斌. 北京城区相继多次降雹的一次强雷暴的闪电特征[J]. 大气科学, 2020, 44(3): 601-610. doi: 10.3878/j.issn.1006-9895.1910.19134
SUN Mengyu, QIE Xiushu, SUN Ling, LIU Dongxia, WANG Dongfang, YUAN Shanfeng, CHEN Zhixiong, XU Wenjing, SUN Chengyun, SU Debin. Lightning Activity of a Severe Thunderstorm with Several Hail-Fall Stages in Beijing Metropolitan Region[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(3): 601-610. doi: 10.3878/j.issn.1006-9895.1910.19134
Citation: SUN Mengyu, QIE Xiushu, SUN Ling, LIU Dongxia, WANG Dongfang, YUAN Shanfeng, CHEN Zhixiong, XU Wenjing, SUN Chengyun, SU Debin. Lightning Activity of a Severe Thunderstorm with Several Hail-Fall Stages in Beijing Metropolitan Region[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(3): 601-610. doi: 10.3878/j.issn.1006-9895.1910.19134

北京城区相继多次降雹的一次强雷暴的闪电特征

doi: 10.3878/j.issn.1006-9895.1910.19134
基金项目: 国家自然科学基金项目41630425,国际(地区)合作与交流项目41761144074

Lightning Activity of a Severe Thunderstorm with Several Hail-Fall Stages in Beijing Metropolitan Region

  • 摘要: 受东北冷涡和低层暖湿气流影响,2016年6月10日北京午后爆发了相继5次降冰雹的一次强雷暴天气过程。利用国家“973”项目“雷电重大灾害天气系统的动力—微物理—电过程和成灾机理(雷暴973)”2016年夏季协同观测期间获得的闪电全闪三维定位和多普勒天气雷达等资料,详细分析了此次雹暴的闪电活动和雷达回波特征。此次雹暴过程包括三个孤立的单体相继发展、并合,所分析的4次降雹过程中,总闪电频数在降雹期间都有明显增多,最高可达179 flashes min?1。云闪占全部闪电的80%以上,其中3次降雹前出现正地闪突增,其比例升高,占全部地闪的比例最高达58%。降雹时雷达回波>45 dBZ的面积增大,顶高超过13 km。整个雹暴过程,闪电辐射源主要分布在6~10 km的高度区域,与强回波具有一致性。所分析的4次降雹过程均出现明显的总闪频数跃增,并通过2σ阈值检验,其中3次提前时间为8~18 min,说明总闪频数对于降雹过程有一定的预警能力。
  • 图  1  2016年6月10日08时(北京市,下同)(a)500 hPa等高线(黑线,单位:dagpm)、温度(填色,单位:°C)和风矢量(箭头,单位:m s−1),(b)850 hPa等高线(黑线,单位:dagpm)、比湿(填色,单位:g kg−1)和风矢量(箭头,单位:m s−1

    Figure  1.  (a) 500-hPa geopotential height (black lines, units: dagpm), temperature (shadings, units: °C), and wind vectors (arrows, units: m s−1), (b) 850-hPa geopotential height (black lines, units: dagpm), specific humidity (shadings, units: g kg−1), and wind vectors (arrows, units: m s−1) at 0800 BJT (Beijing time) on 10 June 2016

    图  2  2016年6月10日(a)08时、(b)20时北京站探空廓线。黑色实线表示温度,蓝色实线表示露点温度,红色虚线表示状态曲线

    Figure  2.  Sounding profiles for Beijing station at (a) 0800 BJT and (b) 2000 BJT on 10 June 2016. The black solid lines represent temperature, blue solid lines represent dew point temperature, and red dashed line represents parcel adiabatic lapse rate

    图  3  2016年6月10日发生于北京地区一次雹暴过程中(a)地闪(CG)、云闪(IC)频数[单位:flashes (6 min)−1],(b)正(PCG)、负地闪(NCG)频数[单位:flashes (6 min)−1,左侧纵坐标]及正地闪比例(PCG/CG,右侧纵坐标表示每20 min正地闪数占总地闪数的百分比),(c)辐射源密度(填色,单位:pulses (0.5 km 6 min)−1),40 dBZ(虚线)、50 dBZ(实线)回波顶高度(单位:km)随时间的变化

    Figure  3.  Time evolution of (a) lightning frequency [units: flashes (6 min)−1] of IC (intra-cloud) and CG (cloud to ground) lightning flashes, (b) lightning frequency [units: flashes (6 min)−1, left y-axis] of PCG (positive cloud to ground), NCG (negative cloud to ground) lightning flashes and percentage of PCG (PCG/CG), the right y-axis represents the percentage of PCG to CG per 20 min, (c) lightning radiation source density [shadings, units: pulses (0.5 km 6 min)−1] and height (units: km) of echo tops for 40 dBZ (dashed line) and 50 dBZ (solid line) during the hailstorm generated in Beijing region on 10 June 2016

    图  4  2016年6月10日(a)15时、(b)16时、(c)17时、(d)18时云顶亮温(填色,单位:°C)、30 dBZ雷达组合反射率(绿色等值线)与前后6 min内闪电分布(黑色“·”为云闪,深蓝色“×”为正地闪,浅蓝色“×”为负地闪)

    Figure  4.  TBB (black body temperature, shadings, units: °C), 30-dBZ composite reflectivity (green contours), and corresponding lightning (IC: black “·”; PCG: dark blue “×”; NCG: light blue “×”) in the preceding and following 6 min at (a) 1500 BJT, (b) 1600 BJT, (c) 1700 BJT, (d) 1800 BJT on 10 June 2016

    图  5  2016年6月10日(a)15:24、(b)16:00、(c)16:54、(d)17:30四次降雹阶段的雷达组合反射率(填色,单位:dBZ)与前后6 min内的闪电分布(黑色“·”)。A、B、C为对流单体

    Figure  5.  Composite reflectivity (shadings, units: dBZ) at four hail-falling stages and distribution of lightnings (black “·”) in the preceding and following 6 min at (a) 1524 BJT, (b) 1600 BJT, (c) 1654 BJT, (d) 1730 BJT on 10 June 2016. A, B, and C represent different convective cells

    图  6  沿图5中线段做剖面的雷达反射率(填色,单位:dBZ)与前后6 min内剖线±0.1°范围内的闪电辐射源(“·”)

    Figure  6.  Cross sections of radar reflectivity (shadings, units: dBZ) along lines in Fig. 5 and distribution of corresponding lightning radiation sources (black “·”) in the preceding and following 6 min and within ±0.1° of the lines shown in Fig. 5

    图  7  2016年6月10日发生于北京地区一次雹暴过程中总闪频数(右侧纵坐标,蓝色线,单位:flashes (2 min)−1)、总闪频数的时间变化率(左侧纵坐标,柱状,单位:flashes (2 min)−2)、跃增阈值(左侧纵坐标,黑色线,单位:flashes (2 min)−2

    Figure  7.  Total lightning frequency (right y-axis, blue line, units: flashes (2 min)−1), change rate of total lightning frequency (left y-axis, bars, units: flashes (2 min)−2), and jump threshold (left y-axis, black line, units: flashes (2 min)−2) during the hailstorm generated in Beijing region on 10 June 2016

    表  1  不同降雹过程的降雹时间、总闪跃增时刻以及总闪频数超前时间

    Table  1.   Time of hail-falling, total lightning jump, and advance of total lightning frequency in different hail-fall processes

    降雹过程降雹时间总闪跃增超前时间/min
    215:18~15:3015:0612
    316:00~16:0615:4218
    416:54~17:00未通过阈值检验
    517:24~17:3617:168
    下载: 导出CSV
  • [1] 冯桂力, 郄秀书, 袁铁, 等. 2007. 雹暴的闪电活动特征与降水结构研究 [J]. 中国科学D辑: 地球科学, 37(1): 123-132
    [2] Feng G L, Qie X S, Yuan T, et al. 2007. Lightning activity and precipitation structure of hailstorms [J]. Sci. China Ser. D: Earth Sci., 37(1): 123-132. doi: 10.1007/s11430-007-2063-8
    [3] Gatlin P N, Goodman S J. 2010. A total lightning trending algorithm to identify severe thunderstorms [J]. J. Atmos. Oceanic Technol., 27(1): 3-22. doi: 10.1175/2009jtecha1286.1
    [4] Liu D X, Feng G L, Wu S J. 2009. The characteristics of cloud-to-ground lightning activity in hailstorms over northern China [J]. Atmos. Res., 91(2–4): 459-465. doi: 10.1016/j.atmosres.2008.06.016
    [5] MacGorman D R, Burgess D W. 1994. Positive cloud-to-ground lightning in tornadic storms and hailstorms [J]. Mon. Wea. Rev., 122(8): 1671-1697. doi: 10.1175/1520-0493(1994)122<1671:PCTGLI>2.0.CO;2
    [6] Reap R M, MacGorman D R. 1989. Cloud-to-ground lightning: Climatological characteristics and relationships to model fields, radar observations, and severe local storms [J]. Mon. Wea. Rev., 117(3): 518-535. doi: 10.1175/1520-0493(1989)117<0518:CTGLCC>2.0.CO;2
    [7] Saunders C P R, Peck S L. 1998. Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions [J]. J. Geophys. Res., 103(D12): 13949-13956. doi: 10.1029/97JD02644
    [8] Saunders C P R, Keith W D, Mitzeva R P. 1991. The effect of liquid water on thunderstorm charging [J]. J. Geophys. Res., 96(D6): 11007-11017. doi: 10.1029/91JD00970
    [9] Schultz C J, Petersen W A, Carey L D. 2009. Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather [J]. Journal of Applied Meteorology and Climatology, 48(12): 2543-2563. doi: 10.1175/2009JAMC2237.1
    [10] Soula S, Seity Y, Feral L, et al. 2004. Cloud-to-ground lightning activity in hail-bearing storms [J]. J. Geophys. Res., 109(D2): D02101. doi: 10.1029/2003JD003669
    [11] Srivastava A, Tian Y, Qie X S, et al. 2017. Performance assessment of Beijing Lightning Network (BLNET) and comparison with other lightning location networks across Beijing [J]. Atmos. Res., 197: 76-83. doi: 10.1016/j.atmosres.2017.06.026
    [12] Stolzenburg M. 1994. Observations of high ground flash densities of positive lightning in summertime thunderstorms [J]. Mon. Wea. Rev., 122(8): 1740-1750. doi: 10.1175/1520-0493(1994)122<1740:OOHGFD>2.0.CO;2
    [13] 孙凌, 郄秀书, Edward R. Mansell, 等 2018. 雷暴云内电场力对起电和电荷结构的反馈作用 [J]. 物理学报, 67(16): 169201
    [14] Sun L, Qie X S, Mansell, E R, et al. 2018. Feedback effect of electric field force on electrification and charge structure in thunderstorm [J]. Acta Physica Sinica, 67(16): 169201. doi: 10.7498/aps.67.20180505
    [15] Takahashi T. 1978. Riming electrification as a charge generation mechanism in thunderstorms [J]. J. Atmos. Sci., 35(8): 1536-1548. doi: 10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2
    [16] 王东方, 郄秀书, 袁善锋, 等. 2020. 北京地区的闪电时空分布特征及不同强度雷暴的贡献 [J]. 大气科学, 44(2): 225-238
    [17] Wand D F, Qie X S, Yuan S F, et al. 2020. Spatial and temporal distribution of lightning activity and contribution of thunderstorms with different lightning-producing capabilities in Beijing metropolitan region [J]. Chinese Journal of Atmospheric Sciences, 44(2): 225-238. doi: 10.3878/j.issn.1006-9895.1904.19128
    [18] 王宇, 郄秀书, 王东方, 等. 2015. 北京闪电综合探测网(BLNET): 网络构成与初步定位结果 [J]. 大气科学, 39(3): 571-582
    [19] Wang Y, Qie X S, Wang D F, et al. 2015. Beijing lightning NETwork (BLNET): Configuration and preliminary results of lightning location [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(3): 571-582. doi: 10.3878/j.issn.1006-9895.1407.14138
    [20] Williams E, Boldi B, Matlin A, et al. 1999. The behavior of total lightning activity in severe Florida thunderstorms [J]. Atmos. Res., 51(3–4): 0-265. doi: 10.1016/s0169-8095(99)00011-3
    [21] 徐燕, 孙竹玲, 周筠珺, 等. 2018. 一次具有对流合并现象的强飑线系统的闪电活动特征及其与动力场的关系 [J]. 大气科学, 42(6): 1393-1406
    [22] Xu Y, Sun Z L, Zhou Y J, et al. 2018. Lightning activity of a severe squall line with cell merging process and its relationships with dynamic fields [J]. Chinese Journal of Atmospheric Sciences, 42(6): 1393-1406. doi: 10.3878/j.issn.1006-9895.1801.17220
    [23] 郑栋, 张义军, 孟青, 等. 2010. 一次雹暴的闪电特征和电荷结构演变研究 [J]. 气象学报, 68(2): 248-263
    [24] Zheng D, Zhang Y J, Meng Q, et al. 2010. Total lightning characteristics and the electric structures evolution in a hailstorm [J]. Acta Meteor. Sinica (in Chinese), 68(2): 248-263. doi: 10.11676/qxxb2010.025
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  3
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-26

目录

    /

    返回文章
    返回