高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京多频段闪电三维定位网及一次雷暴过程的闪电时空演化特征

王东方 孙竹玲 袁善锋 卢晶雨 郄秀书 刘明远 徐燕 陆高鹏 田野

王东方, 孙竹玲, 袁善锋, 等. 2020. 北京多频段闪电三维定位网及一次雷暴过程的闪电时空演化特征[J]. 大气科学, 44(4): 851−864 doi:  10.3878/j.issn.1006-9895.1910.19161
引用本文: 王东方, 孙竹玲, 袁善锋, 等. 2020. 北京多频段闪电三维定位网及一次雷暴过程的闪电时空演化特征[J]. 大气科学, 44(4): 851−864 doi:  10.3878/j.issn.1006-9895.1910.19161
WANG Dongfang, SUN Zhuling, YUAN Shanfeng, et al. 2020. Beijing Broadband Lightning NETwork and the Spatiotemporal Evolution of Lightning Flashes during a Thunderstorm [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 851−864 doi:  10.3878/j.issn.1006-9895.1910.19161
Citation: WANG Dongfang, SUN Zhuling, YUAN Shanfeng, et al. 2020. Beijing Broadband Lightning NETwork and the Spatiotemporal Evolution of Lightning Flashes during a Thunderstorm [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 851−864 doi:  10.3878/j.issn.1006-9895.1910.19161

北京多频段闪电三维定位网及一次雷暴过程的闪电时空演化特征

doi: 10.3878/j.issn.1006-9895.1910.19161
基金项目: 国家自然科学基金项目41630425、41875008,国际(地区)合作与交流项目41761144074
详细信息
    作者简介:

    王东方,男,1980年出生,高级工程师,主要从事大气电学研究。E-mail: wangdf@mail.iap.ac.cn

    通讯作者:

    孙竹玲,E-mail: sunzhuling@gmail.com

  • 中图分类号: P411

Beijing Broadband Lightning NETwork and the Spatiotemporal Evolution of Lightning Flashes during a Thunderstorm

Funds: National Natural Science Foundation of China (Grants 41630425, 41875008), International (Regional) Cooperation and Exchange Project (Grant 41761144074)
  • 摘要: 北京多频段闪电三维定位网(Beijing Broadband Lightning NETwork,简称BLNET)是一个研究和业务相结合的区域性全闪三维定位网。2015年,对BLNET硬件、站网布局及定位算法等方面进行了更新升级,提高了传感器的灵敏度,提升了软件的运算效率和站网的探测性能。升级后的BLNET不仅具备了对云闪、地闪脉冲类型的快速识别和电流峰值估算等功能,也实现了对闪电辐射源脉冲的三维实时定位,以及通道可分辨的闪电放电过程精细定位。对2017年7月7日一次雷暴过程的闪电辐射源脉冲实时三维定位结果分析表明,这次雷暴过程一共观测到11902次闪电,以云闪为主,地闪占总闪的28%,正地闪较少,仅占总地闪的5%,在雷暴成熟期,最大闪电频数高达927 flashes (6 min)−1。通过对比分析闪电辐射源位置和对应时刻的雷达回波,发现辐射源基本集中在强回波范围内。对一次正地闪的精细定位表明,该正地闪初始阶段表现出明显的预击穿过程,闪电辐射源的始发位置位于海拔高度约5.4 km,随后通道向上发展,在约10 km高度,通道开始沿着水平发展。对一次负地闪的精细定位表明,初始阶段放电首先从约7.1 km高度处始发,通道向南水平发展,同时部分负先导分支向下发展,约38 ms后,通道短暂停止发展,17 ms后,通道始发处重新激发。以上结果表明,BLNET不仅具备对整个雷暴生命史闪电活动的三维实时定位和监测,而且可以实现对闪电三维放电通道的精细定位。
  • 图  1  北京多频段闪电三维定位网(BLNET)的测站分布。三角形代表测站位置(红色三角形表示有快天线、慢天线、磁天线和甚高频天线4个传感器;黑色三角形表示有快天线、慢天线和甚高频天线3个传感器;蓝色三角形表示有快天线、慢天线和磁天线3个传感器)。彩色阴影代表海拔高度

    Figure  1.  Distribution of BLNET (Beijing Broadband Lightning Network) stations. The triangles represent the positions of stations. The red triangles indicate that there are 4 sensors (fast antenna, slow antenna, magnetic antenna, and VHF antenna); the black triangles indicate that there are 3 sensors (fast antenna, slow antenna, and VHF antenna); the blue triangles indicate that there are 3 sensors (fast antenna, slow antenna, and Magnetic antenna). Color shadings represent altitude

    图  2  利用蒙特卡罗法模拟BLNET升级后辐射源高度为(a)0 km、(b)5 km和(c)10 km的水平定位误差(单位:km)。图中黑色钉子代表BLNET观测站

    Figure  2.  Radiation source horizontal location error (units: km) simulated by the Monte Carlo method after the BLNET upgrade at (a) 0 km, (b) 5 km, and (c) 10 km altitude. Black pins indicate BLNET stations

    图  3  BLNET升级后单站硬件系统构成图示

    Figure  3.  Block diagram of hardware system composition at single station after the BLNET upgrade

    图  4  2017年7月7日总闪、地闪的频数以及正地闪/地闪比例的演变特征。左边纵坐标:总闪、地闪的频数;右边纵坐标:正地闪/地闪的比例

    Figure  4.  Evolution characteristics of the total flashes and CG (cloud-to-ground) flashes frequencies (left y-axis), and percentage of positive CG (PCG) flashes in CG flashes (PCG/CG, right y-axis) on 7 July 2017

    图  5  2017年7月7日辐射源密度(彩色阴影)和不同强度(30 dBZ、45 dBZ、50 dBZ)雷达回波高度(黑色虚线,单位:km)及大于50 dBZ雷达回波面积(红色虚线,单位:m2)随时间的变化。左边纵坐标:海拔高度;右边纵坐标:大于50 dBZ雷达回波面积

    Figure  5.  Evolutions of radar radiation source densities (color shadings), altitudes (black dashed lines, units: km) of radar echoes of different intensities (30 dBZ, 45 dBZ, 50 dBZ), and areas (red dashed line, units: m2) of radar echoes greater than 50 dBZ on 7 July 2017. The left y-axis represents altitudes; the right y-axis represents areas of radar echoes greater than 50 dBZ

    图  6  2017年7月7日雷暴过程初始—成熟—消散三个阶段四个不同时刻(20:30、20:54、21:24和21:48,北京时间,下同)闪电辐射源定位结果和雷达回波(单位:dBZ)的叠加:(a–d)水平分布;(e–h)沿图(a–d)红色直线的剖面。黑色圈代表云闪辐射源,蓝色加号代表正地闪辐射源,粉紫色叉号代表负地闪辐射源

    Figure  6.  The superpositions of lightning radiation source location results and radar echoes (units: dBZ) at four moments (2030 BJT, 2054 BJT, 2124 BJT, and 2148 BJT) for three stages (initial–mature–dissipated) of thunderstorm process on 7 July 2017: (a–d) Horizontal distribution; (e–h) cross sections along the red straight lines in Figs. a–d. The black dots represent the Intra-Cloud (IC) lightning flashes radiation source, the blue plus signs represent the PCG lightning flashes radiation source, and the pink purple crosses represent the NCG lightning flashes radiation source

    图  7  2017年7月7日23时25分08秒的一次正地闪的三维结构图:(a)闪电辐射源高度随时间的变化,左侧纵坐标是海拔高度,右侧纵坐标是电场变化的归一化值(Normalized EFC);(b)辐射源在南北方向上的立面投影;(c)辐射源发生数目(RSN)随高度的分布;(d)辐射源在平面的投影;(e)辐射源在东西方向上的立面投影。图中“×”代表辐射源的始发高度,“+”代表正地闪打到地面对应的时刻

    Figure  7.  3D (three-dimensional) structure mapping of PCG at 2325:08 BJT on 7 July 2017: (a) Evolutions of the lightning radiation source height with time, the left y-axis indicates the altitude, and the right y-axis indicates the normalized value of the electric field change (Normalized EFC); (b) projection of the radiation source in the north–south direction; (c) distributions of the radiation source numbers (RSN) with height; (d) projection of the radiation sources in the plane; (e) projection of the radiation source in the east–west direction. “×” represent the originating height of the radiation source, “+” represent the moment of the PCG lightning flashing return stroke

    图  8  2017年7月7日23时25分08秒正地闪的预击穿过程。左侧纵坐标是海拔高度,右侧纵坐标是电场变化的归一化值

    Figure  8.  The pre-breakdown process of the PCG lightning flashes occurring at 2325:08 BJT on 7 July 2017. The left y-axis indicates the altitude, and the right y-axis indicates the normalized value of the electric field change (Normalized EFC)

    图  9  2017年7月7日23时25分08秒正地闪辐射源与雷达回波(彩色阴影,单位:dBZ)的叠加:(a)水平分布;(b)沿图a中红色直线的剖面。图a中黑点代表辐射源,图b中右边的色标代表闪电辐射源随时间的变化,粉紫色“×”代表正地闪的始发位置,黑色“+”代表回击的位置

    Figure  9.  The superpositions of lightning radiation source location results of PCG lightning flashes and radar echoes, which occurred at 2325:08 BJT on 7 July 2017: (a) Horizontal distribution; (b) cross-section along the red line in Fig. a. In Fig. a, black dots indicate the radiation sources. The color bar on the right of Fig. b is the change of lightning flashes radiation source with time. In Fig. b, the pink purple “×” represents the starting position of the PCG lightning flashes and the black “+” represents the position of the return stroke

    图  10  图7,但为2017年7月14日18时35分25秒的一次单回击负地闪的三维结构图

    Figure  10.  As in Fig. 7, but for 3D structure mapping of NCG at 1835:25 BJT on 14 July 2017

  • [1] Betz H D, Schmidt K, Laroche P, et al. 2009. LINET—An international lightning detection network in Europe [J]. Atmospheric Research, 91(2−4): 564−573. doi: 10.1016/j.atmosres.2008.06.012
    [2] Biagi C J, Cummins K L, Kehoe K E, et al. 2007. National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003−2004 [J]. J. Geophys. Res., 112(D5): D05208. doi: 10.1029/2006JD007341
    [3] 曹冬杰, 郄秀书, 杨静, 等. 2011. 闪电初始放电阶段亚微秒电场变化波形特征 [J]. 大气科学, 35(4): 645−656. doi:  10.3878/j.issn.1006-9895.2011.04.05

    Cao Dongjie, Qie Xiushu, Yang Jing, et al. 2011. Analysis on characteristics of sub-microsecond electric field change waveform during the initial stage of lightning discharge [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(4): 645−656. doi: 10.3878/j.issn.1006-9895.2011.04.05
    [4] Chronis T G, Anagnostou E N. 2003. Error analysis for a long-range lightning monitoring network of ground-based receivers in Europe [J]. J. Geophys. Res., 108(D24): 4779. doi: 10.1029/2003JD003776
    [5] Chronis T G, Anagnostou E N. 2006. Evaluation of a long-range lightning detection network with receivers in Europe and Africa [J]. IEEE Trans. Geosci. Remote Sens., 44(6): 1504−1510. doi: 10.1109/TGRS.2006.871217
    [6] Cummins K L, Cramer J A, Biagi C J, et al. 2006. The U.S. National Lightning Detection Network: Post-upgrade status [C]//Proceedings of the Second Conference on Meteorological Applications of Lightning Data. Atlanta, GA: American Meteorological Society.
    [7] Fan X P, Zhang Y J, Zheng D, et al. 2018. A new method of three-dimensional location for low-frequency electric field detection array [J]. J. Geophys. Res., 123(16): 8792−8812. doi: 10.1029/2017JD028249
    [8] 樊艳峰, 陆高鹏, 蒋如斌, 等. 2017. 利用低频磁场天线遥感测量人工引雷中的初始连续电流 [J]. 大气科学, 41(5): 1027−1036. doi:  10.3878/j.issn.1006-9895.1702.16248

    Fan Yanfeng, Lu Gaopeng, Jiang Rubin, et al. 2017. Application of low-frequency magnetic sensor for remote measurement of the initial continuous current in rocket-triggering lightning [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(5): 1027−1036. doi: 10.3878/j.issn.1006-9895.1702.16248
    [9] Hamlin T D. 2004. The New Mexico tech lightning mapping array [D]. Ph. D. dissertation, New Mexico Institute of Mining and Technology.
    [10] Jerauld J, Rakov V A, Uman M A, et al. 2005. An evaluation of the performance characteristics of the U.S. National Lightning Detection Network in Florida using rocket-triggered lightning [J]. J. Geophys. Res., 110(D19): D19106. doi: 10.1029/2005JD005924
    [11] Krehbiel P R, Thomas R J, Rison W, et al. 2000. Lightning mapping observations in central Oklahoma [J]. EOS, 81(3): 21−25. doi: 10.1029/00EO00014
    [12] Lagouvardos K, Kotroni V, Betz H D, et al. 2009. A comparison of lightning data provided by ZEUS and LINET networks over western Europe [J]. Natural Hazards and Earth System Sciences, 9(5): 1713−1717. doi: 10.5194/nhess-9-1713-2009
    [13] Lhermitte R, Krehbiel P R. 1979. Doppler radar and radio observations of thunderstorms [J]. IEEE Transactions on Geoscience Electronics, 17(4): 162−171. doi: 10.1109/TGE.1979.294644
    [14] 黎勋, 郄秀书, 刘昆, 等. 2017. 基于高时间分辨率快电场变化资料的北京地区地闪回击统计特征 [J]. 气候与环境研究, 22(2): 231−241. doi:  10.3878/j.issn.1006-9585.2016.16007

    Li Xun, Qie Xiushu, Liu Kun, et al. 2017. Characteristics of cloud-to-ground lightning return strokes in Beijing based on high temporal resolution data of fast electric field change [J]. Climatic and Environmental Research (in Chinese), 22(2): 231−241. doi: 10.3878/j.issn.1006-9585.2016.16007
    [15] Li Y J, Zhang G S, Wen J, et al. 2012. Spatial and temporal evolution of a multi-cell thunderstorm charge structure in coastal areas [J]. Chinese Journal of Geophysics, 55(5): 498−508. doi: 10.1002/cjg2.1745
    [16] Li Y J, Zhang G S, Wen J, et al. 2013. Electrical structure of a Qinghai-Tibet Plateau thunderstorm based on three-dimensional lightning mapping [J]. Atmospheric Research, 134: 137−149. doi: 10.1016/j.atmosres.2013.07.020
    [17] 刘恒毅, 董万胜, 蔡力, 等. 2019. 一套双频段三维全闪电定位系统及其初步观测结果 [J]. 中国电机工程学报, 39(12): 3561−3569. doi:  10.13334/j.0258-8013.pcsee.181285

    Liu Hengyi, Dong Wansheng, Cai Li, et al. 2019. Initial results of a dual band 3-D lightning locating system [J]. Proceedings of the CSEE (in Chinese), 39(12): 3561−3569. doi: 10.13334/j.0258-8013.pcsee.181285
    [18] Lu G P, Cummer S A, Li J B, et al. 2013. Coordinated observations of sprites and in-cloud lightning flash structure [J]. J. Geophys. Res., 118(12): 6607−6632. doi: 10.1002/jgrd.50459
    [19] Lu G P, Jiang R B, Qie X S, et al. 2014. Burst of intracloud current pulses during the initial continuous current in a rocket-triggered lightning flash [J]. Geophys. Res. Lett., 41(24): 9174−9181. doi: 10.1002/2014GL062127
    [20] Maier L, Lennon C, Britt T, et al. 1995. Lightning Detection and Ranging (LDAR) system performance analysis [C]//Proceedings of the 6th Conference on Aviation Weather Systems. Dallas, Texas: American Meteorological Society.
    [21] Poehler H, Lennon C. 1979. Lightning Detection and Ranging (LDAR) system description & performance objectives [J]. NASA Technical Memorandum, 74106: 86.
    [22] Rison W, Thomas R, Krehbiel P R, et al. 1999. A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico [J]. Geophys. Res. Lett., 26(23): 3573−3576. doi: 10.1029/1999GL010856
    [23] Shao X M, Stanley M, Regan A, et al. 2006. Total lightning observations with the new and improved Los Alamos Sferic Array (LASA) [J]. J. Atmos. Oceanic Technol., 23(10): 1273−1288. doi: 10.1175/JTECH1908.1
    [24] Srivastava A, Tian Y, Qie X S, et al. 2017. Performance assessment of Beijing Lightning Network (BLNET) and comparison with other lightning location networks across Beijing [J]. Atmospheric Research, 197: 76−83. doi: 10.1016/j.atmosres.2017.06.026
    [25] 孙凌, 陈志雄, 徐燕, 等. 2019. 北京一次强飑线过程的闪电辐射源演变特征及其与对流区域和地面热力条件的关系 [J]. 大气科学, 43(4): 759−772. doi:  10.3878/j.issn.1006-9895.1805.18128

    Sun Ling, Chen Zhixiong, Xu Yan, et al. 2019. Evolution of lightning radiation sources of a strong squall line over Beijing metropolitan region and its relation to convection region and surface thermodynamic condition [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(4): 759−772. doi: 10.3878/j.issn.1006-9895.1805.18128
    [26] 孙萌宇, 郄秀书, 孙凌, 等. 2020. 北京城区相继多次降雹的一次强雷暴的闪电特征 [J]. 大气科学, 44(3): 601−610. doi:  10.3878/j.issn.1006-9895.1910.19134

    Sun Mengyu, Qie Xiushu, Sun Ling, et al. 2020. Lightning activity of a severe thunderstorm with several hail-fall stages in Beijing metropolitan region [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(3): 601−610. doi: 10.3878/j.issn.1006-9895.1910.19134
    [27] Sun Z L, Qie X S, Liu M Y, et al. 2013. Lightning VHF radiation location system based on short-baseline TDOA technique—Validation in rocket-triggered lightning [J]. Atmospheric Research, 129-130: 58−66. doi: 10.1016/j.atmosres.2012.11.010
    [28] Thomas R J, Krehbiel P R, Rison W, et al. 2004. Accuracy of the lightning mapping array [J]. J. Geophys. Res., 109(D14): D14207. doi: 10.1029/2004JD004549
    [29] Uman M A, McLain D K, Krider E P. 1975. The electromagnetic radiation from a finite antenna [J]. Am. J. Phys., 43(1): 33−38. doi: 10.1119/1.10027
    [30] Uman M A, Beasley W H, Tiller J A, et al. 1978. An unusual lightning flash at Kennedy Space Center [J]. Science, 201(4350): 9−16. doi: 10.1126/science.201.4350.9
    [31] 徐燕, 孙竹玲, 周筠珺, 等. 2018. 一次具有对流合并现象的强飑线系统的闪电活动特征及其与动力场的关系 [J]. 大气科学, 42(6): 1393−1406.
    [32] Xu Yan, Sun Zhuling, Zhou Yunjun, et al. 2008. Lightning activity of a severe squall line with cell merging process and its relationships with dynamic fields [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(6): 1393−1406. doi: 10.3878/j.issn.1006-9895.1801.17220
    [33] 王东方, 郄秀书, 袁铁, 等. 2009. 利用快电场变化脉冲定位进行云闪初始放电过程的研究 [J]. 气象学报, 67(1): 165−174. doi:  10.3321/j.issn:0577-6619.2009.01.017

    Wang Dongfang, Qie Xiushu, Yuan Tie, et al. 2009. An analysis on the initial stage of intracloud lightning with the location technique of fast electric field change pulses [J]. Acta Meteor. Sinica (in Chinese), 67(1): 165−174. doi: 10.3321/j.issn:0577-6619.2009.01.017
    [34] 王东方, 郄秀书, 袁善锋, 等. 2020. 北京地区的闪电时空分布特征及不同强度雷暴的贡献 [J]. 大气科学, 44(2): 225−238.

    Wang Dongfang, Qie Xiushu, Yuan Shanfeng, et al. 2020. Spatial and temporal distribution of lightning activity and contribution of thunderstorms with different lightning-producing capabilities in Beijing metropolitan region [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 225−238.
    [35] 王宇, 郄秀书, 王东方, 等. 2015. 北京闪电综合探测网(BLNET): 网络构成与初步定位结果 [J]. 大气科学, 39(3): 571−582. doi:  10.3878/j.issn.1006-9895.1407.14138

    Wang Yu, Qie Xiushu, Wang Dongfang, et al. 2015. Beijing Lightning NETwork (BLNET): Configuration and preliminary results of lightning location [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(3): 571−582. doi: 10.3878/j.issn.1006-9895.1407.14138
    [36] Wang Y, Qie X S, Wang D F, et al. 2016. Beijing Lightning Network (BLNET) and the observation on preliminary breakdown processes [J]. Atmospheric Research, 171: 121−132. doi: 10.1016/j.atmosres.2015.12.012
    [37] Wu B, Zhang G S, Wen J, et al. 2016. Correlation analysis between initial preliminary breakdown process, the characteristic of radiation pulse, and the charge structure on the Qinghai-Tibetan Plateau [J]. J. Geophys. Res., 121(20): 12434−12459. doi: 10.1002/2016JD025281
    [38] Zhang G S, Wang Y H, Qie X S, et al. 2010. Using lightning locating system based on time-of-arrival technique to study three-dimensional lightning discharge processes [J]. Sci. China Earth Sci., 53(4): 591−602. doi: 10.1007/s11430-009-0116-x
    [39] Zhang H B, Lu G P, Qie X S, et al. 2016. Locating narrow bipolar events with single-station measurement of low-frequency magnetic fields [J]. J. Atmos. Sol. Terr. Phy., 143−144: 88−101. doi: 10.1016/j.jastp.2016.03.009
  • [1] 孙萌宇, 郄秀书, 孙凌, 刘冬霞, 王东方, 袁善峰, 陈志雄, 徐文静, 孙成云, 苏德斌.  北京城区相继多次降雹的一次强雷暴的闪电特征, 大气科学. doi: 10.3878/j.issn.1006-9895.1910.19134
    [2] 王东方, 郄秀书, 袁善锋, 孙竹玲, 陈志雄, 李进梁, 张鸿波, 刘明远, SRIVASTAVAAbhay, 刘冬霞.  北京地区的闪电时空分布特征及不同强度雷暴的贡献, 大气科学. doi: 10.3878/j.issn.1006-9895.1904.19128
    [3] 师正, 谭涌波, 唐慧强, 杨忆, 彭琳, 郭秀峰, 陈浩然.  气溶胶对雷暴云起电以及闪电发生率影响的数值模拟, 大气科学. doi: 10.3878/j.issn.1006-9895.1412.14230
    [4] 王宇, 郄秀书, 王东方, 刘明远, 苏德斌, 沈永海, 武智君, 刘冬霞, 孙竹玲.  北京闪电综合探测网(BLNET):网络构成与初步定位结果, 大气科学. doi: 10.3878/j.issn.1006-9895.1407.14138
    [5] 徐蓉, 苗峻峰, 谈哲敏.  南京地区城市下垫面特征对雷暴过程影响的数值模拟, 大气科学. doi: 10.3878/j.issn.1006-9895.2012.12128
    [6] 陈洪滨, 朱彦良.  雷暴探测研究的进展, 大气科学. doi: 10.3878/j.issn.1006-9895.2011.11064
    [7] 朱克云, 孙照渤, 张琪, 任景轩.  西藏地区雷暴与大气热源关系研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2012.11141
    [8] 刘冬霞, 郄秀书, 冯桂力.  华北一次中尺度对流系统中的闪电活动特征及其与雷暴动力过程的关系研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2010.01.09
    [9] 周志敏, 郭学良.  强雷暴云中电荷多层分布与形成过程的三维数值模拟研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2009.03.17
    [10] 臧增亮, 张铭, 张瑰.  三维三层背风波的理论和数值研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2007.03.18
    [11] 蒙伟光, 闫敬华, 扈海波.  城市化对珠江三角洲强雷暴天气的可能影响, 大气科学. doi: 10.3878/j.issn.1006-9895.2007.02.17
    [12] 刘平, 吴国雄, 李伟平, 刘屹岷.  副热带高压带的三维结构特征, 大气科学. doi: 10.3878/j.issn.1006-9895.2000.05.01
    [13] 逄勇, 濮培民.  太湖区域三维湖陆风场数值模拟, 大气科学. doi: 10.3878/j.issn.1006-9895.1995.02.14
    [14] 周伯生, 李宗恺.  三维大气扩散粒子分裂(ADPS)模式, 大气科学. doi: 10.3878/j.issn.1006-9895.1992.03.15
    [15] 金皓, 王彦昌.  三维海陆风的数值模拟, 大气科学. doi: 10.3878/j.issn.1006-9895.1991.05.04
    [16] 孔凡铀, 黄美元, 徐华英.  对流云中冰相过程的三维数值模拟 Ⅱ:繁生过程作用, 大气科学. doi: 10.3878/j.issn.1006-9895.1991.06.09
    [17] 言穆弘, 郭昌明, 刘欣生.  雷暴对流起电机制理论分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1991.02.14
    [18] 薛松, 庄洪春.  雷暴起电过程的电响应考察, 大气科学. doi: 10.3878/j.issn.1006-9895.1990.04.08
    [19] 马振骅, 杨平, 孙明忠.  三维云模式在衰减波长雷达上的回波图象, 大气科学. doi: 10.3878/j.issn.1006-9895.1981.03.11
    [20] 中国科学院大气物理研究所二室模拟组.  夏季青藏高原流场三维结构的模拟实验, 大气科学. doi: 10.3878/j.issn.1006-9895.1977.04.01
  • 加载中
图(10)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  0
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-23
  • 网络出版日期:  2019-11-04
  • 刊出日期:  2020-07-25

目录

    /

    返回文章
    返回