高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TRAMS_RUC_1 km模式初始场和侧边界方案的改进研究

徐道生 陈德辉 张邦林 吴乃庚

徐道生, 陈德辉, 张邦林, 吴乃庚. TRAMS_RUC_1 km模式初始场和侧边界方案的改进研究[J]. 大气科学, 2020, 44(3): 625-638. doi: 10.3878/j.issn.1006-9895.1911.19183
引用本文: 徐道生, 陈德辉, 张邦林, 吴乃庚. TRAMS_RUC_1 km模式初始场和侧边界方案的改进研究[J]. 大气科学, 2020, 44(3): 625-638. doi: 10.3878/j.issn.1006-9895.1911.19183
XU Daosheng, CHEN Dehui, ZHANG Banglin, WU Naigeng. Revised Initial Field and Lateral Boundary Condition Scheme for the TRAMS_RUC_1 km Model[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(3): 625-638. doi: 10.3878/j.issn.1006-9895.1911.19183
Citation: XU Daosheng, CHEN Dehui, ZHANG Banglin, WU Naigeng. Revised Initial Field and Lateral Boundary Condition Scheme for the TRAMS_RUC_1 km Model[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(3): 625-638. doi: 10.3878/j.issn.1006-9895.1911.19183

TRAMS_RUC_1 km模式初始场和侧边界方案的改进研究

doi: 10.3878/j.issn.1006-9895.1911.19183
基金项目: 国家重点研究发展专项课题2018YFC1506900,国家自然科学基金项目41705035,广东省科技计划项目2017A020219005

Revised Initial Field and Lateral Boundary Condition Scheme for the TRAMS_RUC_1 km Model

  • 摘要: 本文从垂直分辨率、时间更新频率和要素完整性三个方面,对水平网格距为1 km的华南区域短时临近预报模式(TRAMS_RUC_1 km: Tropical Region Assimilation Model for South China Sea_The Rapid Update Cycle_1 km)中的初始场和侧边界方案进行改进研究。首先选择一次华南飑线个例进行敏感性试验,研究结果表明:(1)提高初始场和侧边界的垂直分辨率以后,模式对飑线内部中小尺度对流系统引起的强降水中心的模拟结果明显更加接近实况,而增加中低层的垂直分辨率对预报的改进起到了主要作用。(2)将模式侧边界时间更新频率从6 h一次提高到1 h一次以后,模式侧边界要素场的逐小时剧烈变化信息可以比较完整的保留下来。在使用高时间分辨率的侧边界条件进行模拟时,粤西沿海地区的水汽辐合明显加强,这对原来模式预报飑线移速偏慢现象会有改善作用。(3)当模式侧边界条件具有较高的时空分辨率时,进一步补充垂直速度和云微物理变量的侧边界条件对于飑线模拟结果的影响并不明显。总的来说,提高初始场和侧边界的垂直分辨率以及增加侧边界更新的时间分辨率,对于区域高分辨率模式对这次华南飑线预报效果的改进具有重要意义,而忽略垂直速度和云微物理量的侧边界条件则是一种可以接受的简化。在个例研究的基础上,利用改进后的初、边界条件进行为期一个月(2019年4月份)的批量试验,评估结果表明新方案对于逐小时降水空间分布和日变化特征的模拟均有明显改善。
  • 图  1  3 km模式和1 km模式的模拟范围。等值线为地形高度(单位:m)

    Figure  1.  Simulation domains of the 1- and 3-km (simulation domains of the 1- and 3-km resolution) models. The contours denote the height (units: m) of the topography

    图  2  TRAMS_RUC_1 km模式的运行流程示意图

    Figure  2.  Operational flow diagram of the TRAMS_RUC_1 km (Tropical Region Assimilation Model for South China Sea_The Rapid Update Cycle_1 km) model

    图  3  三种不同分辨率试验(Test-17L、Test-32L和Test-40L试验)的初、边界场垂直层分布

    Figure  3.  Vertical distributions of the layers of the initial fields and lateral boundaries in three experiments with different resolutions (Test-17L, Test-32L, Test-40L experiments). Test-17L experiment means simulation test with the original 17 vertical model layers. Test-32L experiment increases vertical resolution at low and middle levels based on Test-17L experiment, and Test-40L experiment increases vertical resolution at all levels based on Test-17L experiment

    图  4  2017年5月3日23时(协调世界时,下同)广东省天气雷达回波(单位:dBZ)拼图

    Figure  4.  Radar (units: dBZ) mosaic of Guangdong Province at 2300 UTC on 3 May 2017

    图  5  2017年5月3日06时不同垂直分辨率下的初始温度场(等值线,单位:K)和初始水汽混合比(阴影,单位:g kg−1)沿着115.4°E高度—纬度剖面:(a)Test-17L试验;(b)Test-32L试验;(c)Test-40L试验

    Figure  5.  Height–latitude cross sections of the initial temperature field (contours, units: K) and initial mixing ratio of water vapour (shadings, units: g kg−1) at 115.4°E under different vertical resolutions at 0600 UTC on 3 May 2017: (a) Test-17L experiment; (b) Test-32L experiment; (c) Test-40L experiment

    图  6  2017年5月3日17时至18时累积降水量(单位:mm)比较:(a)实况;(b)Test-17L试验;(c)Test-32L试验;(d)Test-40L试验

    Figure  6.  1-h (from 1700 UTC to 1800 UTC) accumulated precipitation (units: mm) on 3 May 2017 from (a) observations, (b) Test-17L experiment, (c) Test-32L experiment, (d) Test-40L experiment

    图  7  不同更新频率下风场的经向风v分量侧边界倾向(单位:m s−2)的时间演变

    Figure  7.  Evolutions of v (meridional wind) lateral boundary tendency (units: m s−2) under different time update frequencies

    图  8  2017年5月3日23时至24时累积降水量(单位:mm)比较:(a)实况;(b)Test-6hfrq试验;(c)Test-3hfrq试验;(d)Test-1hfrq试验

    Figure  8.  1-h (from 2300 UTC to 2400 UTC) accumulated precipitation (units: mm) on 3 May 2017 from (a) observations, (b) Test-6hfrq experiment, (c) Test-3hfrq experiment, (d) Test-1hfrq experiment. Test-6hfrq, Test-3hfrq, Test-1hfrq experiments represent simulation tests with boundary condition updated every 1 h, 3 h, and 6 h, respectively

    图  9  2017年5月3日23时粤西沿海地区的850 hPa水汽通量(矢量,单位:kg m−1 s−1):(a)Test-6hfrq试验;(b)Test-3hfrq试验;(c)Test-1hfrq试验。阴影表示水汽通量的大小

    Figure  9.  850-hPa water vapor fluxes (vectors, units: kg m−1 s−1) over the western part of Guangdong Province at 2300 UTC on 3 May 2017: (a) Test-6hfrq experiment; (b) Test-3hfrq experiment; (c) Test-1hfrq experiment. The shaded areas denote the value of water vapor fluxes

    图  10  2017年5月3日24时的垂直速度(黑色线,单位:m s−1)和云水混合比加雨水混合比(阴影,单位:g kg−1)的高度—纬度垂直剖面:(a)Test-ctl试验,沿着108°E作剖面;(b)Test-wcloud试验,沿着108°E作剖面;(c)Test-ctl试验,沿着110°E作剖面;(d)Test-wcloud,沿着110°E作剖面

    Figure  10.  Height–latitude cross sections of vertical speed (black lines, units: m s−1) and mixing ratio of cloud water and rain water (shadings, units: g kg−1) at 2400 UTC 3 May 2017: (a) Test-ctl experiment (ignoring the boundary condition of vertical speed and cloud particle), along 108°E; (b) Test-wcloud experiment (including the boundary condition of vertical speed and cloud particle), along 108°E; (c) Test-ctl experiment, along 110°E; (d) Test-wcloud experiment, along 110°E

    图  11  2019年4月份平均小时降水量(单位:mm):每天(a)11~12时、(d)17~18时、(g)23~24时的实测降水;(b、e、h)对应时刻Test-17L6h试验预报的降水;(c、f、i)对应时刻Test-32L1h试验预报的降水

    Figure  11.  Mean hourly precipitation (units: mm) in April 2019: Observed precipitation during (a) 1100–1200 UTC, (d) 1700–1800 UTC, (g) 2300–2400 UTC; (b, e, h) corresponding simulated precipitation in Test-17L6h experiment (Initial field with 17 vertical layers and boundary condition updated every 6 hours); (c, f, i) corresponding simulated precipitation in Test-32L1h experiment (Initial field with 32 vertical layers and boundary condition updated every 1 hour)

    图  12  2019年4月平均小时降水量(单位:mm)预报和实况的逐日演变:(a)观测;(b)Test-17L6h试验;(c)Test-32L1h试验。横坐标表示预报的时间,纵坐标表示每次预报的日期

    Figure  12.  Day-to-day evolutions of the mean hourly precipitation (units: mm) in April 2019: (a) Observations; (b) Test-17L6h experiment; (c) Test-32L1h experiment. x-axis denotes the time of forecast, y-axis denotes the date of each forecast

    图  13  观测和模式预报的2019年4月份平均小时降水量(单位:mm h−1)的日变化

    Figure  13.  Diurnal cycles of the observed and simulated mean hourly precipitation (units: mm h−1) in April 2019

    图  14  Test-17L6h试验、Test-32L1h试验的1 km模式预报的2019年4月份逐小时降水量(单位:mm)(对1小时降水量大于1 mm的站点进行评估)的(a)TS评分、(b)BS评分

    Figure  14.  (a) TS (Threat score), (b) BS (Bias score) of hourly precipitation (units: mm, evaluations only for the stations with hourly precipitation exceeding 1 mm) simulated using the 1 km model with Test-17L6h experiment, Test-32L1h experiment in April 2019

    表  1  侧边界时间更新频率的试验

    Table  1.   Test of the time update frequency for lateral boundary

    试验名称试验说明
    Test-6hfrq每隔6小时更新一次侧边界条件
    Test-3hfrq每隔3小时更新一次侧边界条件
    Test-1hfrq每隔1小时更新一次侧边界条件
    下载: 导出CSV
  • [1] Alpert P, Krichak S O, Krishnamurti T N, et al. 1996. The relative roles of lateral boundaries, initial conditions, and topography in mesoscale simulations of lee cyclogenesis [J]. J. Appl. Meteor., 35(7): 1091-1099. doi: 10.1175/1520-0450(1996)035<1091:TRROLB>2.0.CO;2
    [2] 陈德辉, 薛纪善, 杨学胜, 等. 2008. GRAPES新一代全球/区域多尺度统一数值预报模式总体设计研究 [J]. 科学通报, 53(22): 3433-3445
    [3] Chen D H, Xue J S, Yang X S, et al. 2008. New generation of multi-scale NWP system (GRAPES): General scientific design [J]. Chinese Sci. Bull. (in Chinese), 53(22): 3433-3445. doi: 10.1007/s11434-008-0494-z
    [4] Chikhar K, Gauthier P. 2017. Impact of lateral boundary conditions on regional analyses [J]. Mon. Wea. Rev., 145(4): 1361-1379. doi: 10.1175/MWR-D-16-0245.1
    [5] Davies H C. 1976. A lateral boundary formulation for multi-level prediction models [J]. Quart. J. Roy. Meteor. Soc., 102(432): 405-418. doi: 10.1002/qj.49710243210
    [6] 高士博, 闵锦忠, 黄丹莲. 2016. EnSRF雷达资料同化在一次飑线过程中的应用研究[J]. 大气科学, 40(6): 1127–1142.
    [7] Gao S B, Min J Z, Huang D L. The simulation of a squall line with Doppler radar data assimilation using the EnSRF method [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(6): 1127–1142. doi: 10.3878/j.issn.1006-9895.1601.15216
    [8] Grell G A, Dudhia J, Stauffer D. 1995. A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5) [R]. No. NCAR/TN-398+STR. doi: 10.5065/D60Z716B
    [9] 广东省气象局《广东省天气预报技术手册》编写组. 2006. 广东省天气预报技术手册[M]. 北京: 气象出版社, 216–218.
    [10] Compilation Team of “Technical Manual of Weather Forecast in Guangdong Province” Guangdong Meteorological Bureau. 2006. Technical Guidance on Weather Forecasting in Guangdong Province (in Chinese) [M]. Beijing: China Meteorological Press, 216–218.
    [11] Hong S Y, Pan H L. 1996. Nonlocal boundary layer vertical diffusion in a medium-range forecast model [J]. Mon. Wea. Rev., 124(10): 2322-2339. doi: 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
    [12] Hong S Y, Dudhia J, Chen S H. 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation [J]. Mon. Wea. Rev., 132(1): 103-120. doi: 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
    [13] Iacono M J, Delamere J S, Mlawer E J, et al. 2008. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models [J]. J. Geophys. Res., 113: D13103. doi: 10.1029/2008JD009944
    [14] 黄丽萍, 颜宏, 赵俊英. 2014. 区域气候模拟中侧边界嵌套误差的研究 [J]. 应用气象学报, 15(2): 152-161
    [15] Huang L P, Yan H, Zhao J Y. 2014. Analysis of lateral boundary nesting errors in regional climate modeling [J]. J. Appl. Meteor. Sci. (in Chinese), 15(2): 152-161. doi: 10.3969/j.issn.1001-7313.2004.02.003
    [16] 李少英, 张述文, 毛伏平, 等. 2017. 采用不同样本集合同化地面观测对一次飑线过程的影响 [J]. 大气科学, 41(2): 236-250
    [17] Li S Y, Zhang S W, Mao F P, et al. 2017. Influence of assimilating surface observations on a squall line with different ensembles [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(2): 236-250. doi: 10.3878/j.issn.1006-9895.1606.15298
    [18] Moufouma-Okia W, Rowell D P. 2010. Impact of soil moisture initialisation and lateral boundary conditions on regional climate model simulations of the West African monsoon [J]. Climate Dyn., 35(1): 213-229. doi: 10.1007/s00382-009-0638-0
    [19] Pendlebury D, Gravel S, Moran M D, et al. 2018. Impact of chemical lateral boundary conditions in a regional air quality forecast model on surface ozone predictions during stratospheric intrusions [J]. Atmos. Environ., 174: 148-170. doi: 10.1016/j.atmosenv.2017.10.052
    [20] 魏和林, 符淙斌, 王纬强. 1998. 区域气候模式侧边界的处理对东亚夏季风降水模拟的影响 [J]. 大气科学, 22(5): 779-790
    [21] Wei H L, Fu C B, Wang W C. 1998. The effect of lateral boundary treatment of regional climate model on the East Asian summer monsoon rainfall simulation [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 22(5): 779-790. doi: 10.3878/j.issn.1006-9895.1998.05.13
    [22] 徐道生, 陈子通, 谢东东, 等. 2015. 地形效应引起的局地扰动对华南降水预报的影响研究 [J]. 热带气象学报, 31(2): 173-181
    [23] Xu D S, Chen Z T, Xie D D, et al. 2015. Influence of local perturbation induced by orographic effect on forecast of precipitation in South China [J]. J. Trop. Meteor. (in Chinese), 31(2): 173-181. doi: 10.16032/j.issn.1004-4965.2015.02.004
    [24] 徐道生, 张艳霞, 陈子通, 等. 2016. 不同水汽分析场对一次华南前汛期暴雨预报的影响分析 [J]. 热带气象学报, 32(2): 155-162
    [25] Xu D S, Zhang Y X, Chen Z T, et al. 2016. Influence of different moisture analysis field to the forecast of precipitation during the pre-flood season in South China [J]. J. Trop. Meteor. (in Chinese), 32(2): 155-162. doi: 10.16032/j.issn.1004-4965.2016.02.002
    [26] 赵宗慈, 罗勇. 1999. 区域气候模式在东亚地区的应用研究——垂直分辨率与侧边界对夏季季风降水影响研究 [J]. 大气科学, 23(5): 522-532
    [27] Zhao Z C, Luo Y. 1999. Investigations of application for the regional climate model over East Asia [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 23(5): 522-532. doi: 10.3878/j.issn.1006-9895.1999.05.02
    [28] 庄潇然, 闵锦忠, 蔡沅辰, 等. 2016. 不同大尺度强迫条件下考虑初始场与侧边界条件不确定性的对流尺度集合预报试验 [J]. 气象学报, 74(2): 244-258
    [29] Zhuang X R, Min J Z, Cai Y C, et al. 2016. Convective-scale ensemble prediction experiments under different large-scale forcing with consideration of uncertainties in initial and lateral boundary condition [J]. Acta Meteor. Sinica (in Chinese), 74(2): 244-258. doi: 10.11676/qxxb2016.019
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  8
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-15

目录

    /

    返回文章
    返回